linux/arch/sparc/kernel/process.c
Nick Piggin 5bfb5d690f [PATCH] sched: disable preempt in idle tasks
Run idle threads with preempt disabled.

Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
How did it ever work before?

Might fix the CPU hotplugging hang which Nigel Cunningham noted.

We think the bug hits if the idle thread is preempted after checking
need_resched() and before going to sleep, then the CPU offlined.

After calling stop_machine_run, the CPU eventually returns from preemption and
into the idle thread and goes to sleep.  The CPU will continue executing
previous idle and have no chance to call play_dead.

By disabling preemption until we are ready to explicitly schedule, this bug is
fixed and the idle threads generally become more robust.

From: alexs <ashepard@u.washington.edu>

  PPC build fix

From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>

  MIPS build fix

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-09 07:56:33 -08:00

751 lines
20 KiB
C

/* $Id: process.c,v 1.161 2002/01/23 11:27:32 davem Exp $
* linux/arch/sparc/kernel/process.c
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kallsyms.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/config.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/init.h>
#include <asm/auxio.h>
#include <asm/oplib.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/delay.h>
#include <asm/processor.h>
#include <asm/psr.h>
#include <asm/elf.h>
#include <asm/unistd.h>
/*
* Power management idle function
* Set in pm platform drivers (apc.c and pmc.c)
*/
void (*pm_idle)(void);
/*
* Power-off handler instantiation for pm.h compliance
* This is done via auxio, but could be used as a fallback
* handler when auxio is not present-- unused for now...
*/
void (*pm_power_off)(void);
/*
* sysctl - toggle power-off restriction for serial console
* systems in machine_power_off()
*/
int scons_pwroff = 1;
extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *);
struct task_struct *last_task_used_math = NULL;
struct thread_info *current_set[NR_CPUS];
/*
* default_idle is new in 2.5. XXX Review, currently stolen from sparc64.
*/
void default_idle(void)
{
}
#ifndef CONFIG_SMP
#define SUN4C_FAULT_HIGH 100
/*
* the idle loop on a Sparc... ;)
*/
void cpu_idle(void)
{
/* endless idle loop with no priority at all */
for (;;) {
if (ARCH_SUN4C_SUN4) {
static int count = HZ;
static unsigned long last_jiffies;
static unsigned long last_faults;
static unsigned long fps;
unsigned long now;
unsigned long faults;
unsigned long flags;
extern unsigned long sun4c_kernel_faults;
extern void sun4c_grow_kernel_ring(void);
local_irq_save(flags);
now = jiffies;
count -= (now - last_jiffies);
last_jiffies = now;
if (count < 0) {
count += HZ;
faults = sun4c_kernel_faults;
fps = (fps + (faults - last_faults)) >> 1;
last_faults = faults;
#if 0
printk("kernel faults / second = %ld\n", fps);
#endif
if (fps >= SUN4C_FAULT_HIGH) {
sun4c_grow_kernel_ring();
}
}
local_irq_restore(flags);
}
while((!need_resched()) && pm_idle) {
(*pm_idle)();
}
preempt_enable_no_resched();
schedule();
preempt_disable();
check_pgt_cache();
}
}
#else
/* This is being executed in task 0 'user space'. */
void cpu_idle(void)
{
/* endless idle loop with no priority at all */
while(1) {
if(need_resched()) {
preempt_enable_no_resched();
schedule();
preempt_disable();
check_pgt_cache();
}
barrier(); /* or else gcc optimizes... */
}
}
#endif
extern char reboot_command [];
extern void (*prom_palette)(int);
/* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */
void machine_halt(void)
{
local_irq_enable();
mdelay(8);
local_irq_disable();
if (!serial_console && prom_palette)
prom_palette (1);
prom_halt();
panic("Halt failed!");
}
void machine_restart(char * cmd)
{
char *p;
local_irq_enable();
mdelay(8);
local_irq_disable();
p = strchr (reboot_command, '\n');
if (p) *p = 0;
if (!serial_console && prom_palette)
prom_palette (1);
if (cmd)
prom_reboot(cmd);
if (*reboot_command)
prom_reboot(reboot_command);
prom_feval ("reset");
panic("Reboot failed!");
}
void machine_power_off(void)
{
#ifdef CONFIG_SUN_AUXIO
if (auxio_power_register && (!serial_console || scons_pwroff))
*auxio_power_register |= AUXIO_POWER_OFF;
#endif
machine_halt();
}
static DEFINE_SPINLOCK(sparc_backtrace_lock);
void __show_backtrace(unsigned long fp)
{
struct reg_window *rw;
unsigned long flags;
int cpu = smp_processor_id();
spin_lock_irqsave(&sparc_backtrace_lock, flags);
rw = (struct reg_window *)fp;
while(rw && (((unsigned long) rw) >= PAGE_OFFSET) &&
!(((unsigned long) rw) & 0x7)) {
printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] "
"FP[%08lx] CALLER[%08lx]: ", cpu,
rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
rw->ins[4], rw->ins[5],
rw->ins[6],
rw->ins[7]);
print_symbol("%s\n", rw->ins[7]);
rw = (struct reg_window *) rw->ins[6];
}
spin_unlock_irqrestore(&sparc_backtrace_lock, flags);
}
#define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t")
#define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t")
#define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp))
void show_backtrace(void)
{
unsigned long fp;
__SAVE; __SAVE; __SAVE; __SAVE;
__SAVE; __SAVE; __SAVE; __SAVE;
__RESTORE; __RESTORE; __RESTORE; __RESTORE;
__RESTORE; __RESTORE; __RESTORE; __RESTORE;
__GET_FP(fp);
__show_backtrace(fp);
}
#ifdef CONFIG_SMP
void smp_show_backtrace_all_cpus(void)
{
xc0((smpfunc_t) show_backtrace);
show_backtrace();
}
#endif
#if 0
void show_stackframe(struct sparc_stackf *sf)
{
unsigned long size;
unsigned long *stk;
int i;
printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
"l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
"i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx "
"x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n",
(unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
sf->xxargs[0]);
size = ((unsigned long)sf->fp) - ((unsigned long)sf);
size -= STACKFRAME_SZ;
stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
i = 0;
do {
printk("s%d: %08lx\n", i++, *stk++);
} while ((size -= sizeof(unsigned long)));
}
#endif
void show_regs(struct pt_regs *r)
{
struct reg_window *rw = (struct reg_window *) r->u_regs[14];
printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n",
r->psr, r->pc, r->npc, r->y, print_tainted());
print_symbol("PC: <%s>\n", r->pc);
printk("%%G: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3],
r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]);
printk("%%O: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11],
r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]);
print_symbol("RPC: <%s>\n", r->u_regs[15]);
printk("%%L: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3],
rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]);
printk("%%I: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]);
}
/*
* The show_stack is an external API which we do not use ourselves.
* The oops is printed in die_if_kernel.
*/
void show_stack(struct task_struct *tsk, unsigned long *_ksp)
{
unsigned long pc, fp;
unsigned long task_base;
struct reg_window *rw;
int count = 0;
if (tsk != NULL)
task_base = (unsigned long) tsk->thread_info;
else
task_base = (unsigned long) current_thread_info();
fp = (unsigned long) _ksp;
do {
/* Bogus frame pointer? */
if (fp < (task_base + sizeof(struct thread_info)) ||
fp >= (task_base + (PAGE_SIZE << 1)))
break;
rw = (struct reg_window *) fp;
pc = rw->ins[7];
printk("[%08lx : ", pc);
print_symbol("%s ] ", pc);
fp = rw->ins[6];
} while (++count < 16);
printk("\n");
}
void dump_stack(void)
{
unsigned long *ksp;
__asm__ __volatile__("mov %%fp, %0"
: "=r" (ksp));
show_stack(current, ksp);
}
EXPORT_SYMBOL(dump_stack);
/*
* Note: sparc64 has a pretty intricated thread_saved_pc, check it out.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return tsk->thread_info->kpc;
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
#ifndef CONFIG_SMP
if(last_task_used_math == current) {
#else
if(current_thread_info()->flags & _TIF_USEDFPU) {
#endif
/* Keep process from leaving FPU in a bogon state. */
put_psr(get_psr() | PSR_EF);
fpsave(&current->thread.float_regs[0], &current->thread.fsr,
&current->thread.fpqueue[0], &current->thread.fpqdepth);
#ifndef CONFIG_SMP
last_task_used_math = NULL;
#else
current_thread_info()->flags &= ~_TIF_USEDFPU;
#endif
}
}
void flush_thread(void)
{
current_thread_info()->w_saved = 0;
/* No new signal delivery by default */
current->thread.new_signal = 0;
#ifndef CONFIG_SMP
if(last_task_used_math == current) {
#else
if(current_thread_info()->flags & _TIF_USEDFPU) {
#endif
/* Clean the fpu. */
put_psr(get_psr() | PSR_EF);
fpsave(&current->thread.float_regs[0], &current->thread.fsr,
&current->thread.fpqueue[0], &current->thread.fpqdepth);
#ifndef CONFIG_SMP
last_task_used_math = NULL;
#else
current_thread_info()->flags &= ~_TIF_USEDFPU;
#endif
}
/* Now, this task is no longer a kernel thread. */
current->thread.current_ds = USER_DS;
if (current->thread.flags & SPARC_FLAG_KTHREAD) {
current->thread.flags &= ~SPARC_FLAG_KTHREAD;
/* We must fixup kregs as well. */
/* XXX This was not fixed for ti for a while, worked. Unused? */
current->thread.kregs = (struct pt_regs *)
((char *)current->thread_info + (THREAD_SIZE - TRACEREG_SZ));
}
}
static __inline__ struct sparc_stackf __user *
clone_stackframe(struct sparc_stackf __user *dst,
struct sparc_stackf __user *src)
{
unsigned long size, fp;
struct sparc_stackf *tmp;
struct sparc_stackf __user *sp;
if (get_user(tmp, &src->fp))
return NULL;
fp = (unsigned long) tmp;
size = (fp - ((unsigned long) src));
fp = (unsigned long) dst;
sp = (struct sparc_stackf __user *)(fp - size);
/* do_fork() grabs the parent semaphore, we must release it
* temporarily so we can build the child clone stack frame
* without deadlocking.
*/
if (__copy_user(sp, src, size))
sp = NULL;
else if (put_user(fp, &sp->fp))
sp = NULL;
return sp;
}
asmlinkage int sparc_do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size)
{
unsigned long parent_tid_ptr, child_tid_ptr;
parent_tid_ptr = regs->u_regs[UREG_I2];
child_tid_ptr = regs->u_regs[UREG_I4];
return do_fork(clone_flags, stack_start,
regs, stack_size,
(int __user *) parent_tid_ptr,
(int __user *) child_tid_ptr);
}
/* Copy a Sparc thread. The fork() return value conventions
* under SunOS are nothing short of bletcherous:
* Parent --> %o0 == childs pid, %o1 == 0
* Child --> %o0 == parents pid, %o1 == 1
*
* NOTE: We have a separate fork kpsr/kwim because
* the parent could change these values between
* sys_fork invocation and when we reach here
* if the parent should sleep while trying to
* allocate the task_struct and kernel stack in
* do_fork().
* XXX See comment above sys_vfork in sparc64. todo.
*/
extern void ret_from_fork(void);
int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *ti = p->thread_info;
struct pt_regs *childregs;
char *new_stack;
#ifndef CONFIG_SMP
if(last_task_used_math == current) {
#else
if(current_thread_info()->flags & _TIF_USEDFPU) {
#endif
put_psr(get_psr() | PSR_EF);
fpsave(&p->thread.float_regs[0], &p->thread.fsr,
&p->thread.fpqueue[0], &p->thread.fpqdepth);
#ifdef CONFIG_SMP
current_thread_info()->flags &= ~_TIF_USEDFPU;
#endif
}
/*
* p->thread_info new_stack childregs
* ! ! ! {if(PSR_PS) }
* V V (stk.fr.) V (pt_regs) { (stk.fr.) }
* +----- - - - - - ------+===========+============={+==========}+
*/
new_stack = (char*)ti + THREAD_SIZE;
if (regs->psr & PSR_PS)
new_stack -= STACKFRAME_SZ;
new_stack -= STACKFRAME_SZ + TRACEREG_SZ;
memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ);
childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ);
/*
* A new process must start with interrupts closed in 2.5,
* because this is how Mingo's scheduler works (see schedule_tail
* and finish_arch_switch). If we do not do it, a timer interrupt hits
* before we unlock, attempts to re-take the rq->lock, and then we die.
* Thus, kpsr|=PSR_PIL.
*/
ti->ksp = (unsigned long) new_stack;
ti->kpc = (((unsigned long) ret_from_fork) - 0x8);
ti->kpsr = current->thread.fork_kpsr | PSR_PIL;
ti->kwim = current->thread.fork_kwim;
if(regs->psr & PSR_PS) {
extern struct pt_regs fake_swapper_regs;
p->thread.kregs = &fake_swapper_regs;
new_stack += STACKFRAME_SZ + TRACEREG_SZ;
childregs->u_regs[UREG_FP] = (unsigned long) new_stack;
p->thread.flags |= SPARC_FLAG_KTHREAD;
p->thread.current_ds = KERNEL_DS;
memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ);
childregs->u_regs[UREG_G6] = (unsigned long) ti;
} else {
p->thread.kregs = childregs;
childregs->u_regs[UREG_FP] = sp;
p->thread.flags &= ~SPARC_FLAG_KTHREAD;
p->thread.current_ds = USER_DS;
if (sp != regs->u_regs[UREG_FP]) {
struct sparc_stackf __user *childstack;
struct sparc_stackf __user *parentstack;
/*
* This is a clone() call with supplied user stack.
* Set some valid stack frames to give to the child.
*/
childstack = (struct sparc_stackf __user *)
(sp & ~0x7UL);
parentstack = (struct sparc_stackf __user *)
regs->u_regs[UREG_FP];
#if 0
printk("clone: parent stack:\n");
show_stackframe(parentstack);
#endif
childstack = clone_stackframe(childstack, parentstack);
if (!childstack)
return -EFAULT;
#if 0
printk("clone: child stack:\n");
show_stackframe(childstack);
#endif
childregs->u_regs[UREG_FP] = (unsigned long)childstack;
}
}
#ifdef CONFIG_SMP
/* FPU must be disabled on SMP. */
childregs->psr &= ~PSR_EF;
#endif
/* Set the return value for the child. */
childregs->u_regs[UREG_I0] = current->pid;
childregs->u_regs[UREG_I1] = 1;
/* Set the return value for the parent. */
regs->u_regs[UREG_I1] = 0;
if (clone_flags & CLONE_SETTLS)
childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
return 0;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * regs, struct user * dump)
{
unsigned long first_stack_page;
dump->magic = SUNOS_CORE_MAGIC;
dump->len = sizeof(struct user);
dump->regs.psr = regs->psr;
dump->regs.pc = regs->pc;
dump->regs.npc = regs->npc;
dump->regs.y = regs->y;
/* fuck me plenty */
memcpy(&dump->regs.regs[0], &regs->u_regs[1], (sizeof(unsigned long) * 15));
dump->uexec = current->thread.core_exec;
dump->u_tsize = (((unsigned long) current->mm->end_code) -
((unsigned long) current->mm->start_code)) & ~(PAGE_SIZE - 1);
dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1)));
dump->u_dsize -= dump->u_tsize;
dump->u_dsize &= ~(PAGE_SIZE - 1);
first_stack_page = (regs->u_regs[UREG_FP] & ~(PAGE_SIZE - 1));
dump->u_ssize = (TASK_SIZE - first_stack_page) & ~(PAGE_SIZE - 1);
memcpy(&dump->fpu.fpstatus.fregs.regs[0], &current->thread.float_regs[0], (sizeof(unsigned long) * 32));
dump->fpu.fpstatus.fsr = current->thread.fsr;
dump->fpu.fpstatus.flags = dump->fpu.fpstatus.extra = 0;
dump->fpu.fpstatus.fpq_count = current->thread.fpqdepth;
memcpy(&dump->fpu.fpstatus.fpq[0], &current->thread.fpqueue[0],
((sizeof(unsigned long) * 2) * 16));
dump->sigcode = 0;
}
/*
* fill in the fpu structure for a core dump.
*/
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
{
if (used_math()) {
memset(fpregs, 0, sizeof(*fpregs));
fpregs->pr_q_entrysize = 8;
return 1;
}
#ifdef CONFIG_SMP
if (current_thread_info()->flags & _TIF_USEDFPU) {
put_psr(get_psr() | PSR_EF);
fpsave(&current->thread.float_regs[0], &current->thread.fsr,
&current->thread.fpqueue[0], &current->thread.fpqdepth);
if (regs != NULL) {
regs->psr &= ~(PSR_EF);
current_thread_info()->flags &= ~(_TIF_USEDFPU);
}
}
#else
if (current == last_task_used_math) {
put_psr(get_psr() | PSR_EF);
fpsave(&current->thread.float_regs[0], &current->thread.fsr,
&current->thread.fpqueue[0], &current->thread.fpqdepth);
if (regs != NULL) {
regs->psr &= ~(PSR_EF);
last_task_used_math = NULL;
}
}
#endif
memcpy(&fpregs->pr_fr.pr_regs[0],
&current->thread.float_regs[0],
(sizeof(unsigned long) * 32));
fpregs->pr_fsr = current->thread.fsr;
fpregs->pr_qcnt = current->thread.fpqdepth;
fpregs->pr_q_entrysize = 8;
fpregs->pr_en = 1;
if(fpregs->pr_qcnt != 0) {
memcpy(&fpregs->pr_q[0],
&current->thread.fpqueue[0],
sizeof(struct fpq) * fpregs->pr_qcnt);
}
/* Zero out the rest. */
memset(&fpregs->pr_q[fpregs->pr_qcnt], 0,
sizeof(struct fpq) * (32 - fpregs->pr_qcnt));
return 1;
}
/*
* sparc_execve() executes a new program after the asm stub has set
* things up for us. This should basically do what I want it to.
*/
asmlinkage int sparc_execve(struct pt_regs *regs)
{
int error, base = 0;
char *filename;
/* Check for indirect call. */
if(regs->u_regs[UREG_G1] == 0)
base = 1;
filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
error = PTR_ERR(filename);
if(IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *)regs->u_regs[base + UREG_I1],
(char __user * __user *)regs->u_regs[base + UREG_I2],
regs);
putname(filename);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
out:
return error;
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be free'd until both the parent and the child have exited.
*/
pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
long retval;
__asm__ __volatile__("mov %4, %%g2\n\t" /* Set aside fn ptr... */
"mov %5, %%g3\n\t" /* and arg. */
"mov %1, %%g1\n\t"
"mov %2, %%o0\n\t" /* Clone flags. */
"mov 0, %%o1\n\t" /* usp arg == 0 */
"t 0x10\n\t" /* Linux/Sparc clone(). */
"cmp %%o1, 0\n\t"
"be 1f\n\t" /* The parent, just return. */
" nop\n\t" /* Delay slot. */
"jmpl %%g2, %%o7\n\t" /* Call the function. */
" mov %%g3, %%o0\n\t" /* Get back the arg in delay. */
"mov %3, %%g1\n\t"
"t 0x10\n\t" /* Linux/Sparc exit(). */
/* Notreached by child. */
"1: mov %%o0, %0\n\t" :
"=r" (retval) :
"i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
"i" (__NR_exit), "r" (fn), "r" (arg) :
"g1", "g2", "g3", "o0", "o1", "memory", "cc");
return retval;
}
unsigned long get_wchan(struct task_struct *task)
{
unsigned long pc, fp, bias = 0;
unsigned long task_base = (unsigned long) task;
unsigned long ret = 0;
struct reg_window *rw;
int count = 0;
if (!task || task == current ||
task->state == TASK_RUNNING)
goto out;
fp = task->thread_info->ksp + bias;
do {
/* Bogus frame pointer? */
if (fp < (task_base + sizeof(struct thread_info)) ||
fp >= (task_base + (2 * PAGE_SIZE)))
break;
rw = (struct reg_window *) fp;
pc = rw->ins[7];
if (!in_sched_functions(pc)) {
ret = pc;
goto out;
}
fp = rw->ins[6] + bias;
} while (++count < 16);
out:
return ret;
}