forked from Minki/linux
4eaa0e3c86
Followup of commit 634a4b20
Allow tnode_get_child_rcu() to be called either under rcu_read_lock()
protection or with RTNL held.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2673 lines
62 KiB
C
2673 lines
62 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
|
|
* & Swedish University of Agricultural Sciences.
|
|
*
|
|
* Jens Laas <jens.laas@data.slu.se> Swedish University of
|
|
* Agricultural Sciences.
|
|
*
|
|
* Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
|
|
*
|
|
* This work is based on the LPC-trie which is originally descibed in:
|
|
*
|
|
* An experimental study of compression methods for dynamic tries
|
|
* Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
|
|
* http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
|
|
*
|
|
*
|
|
* IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
|
|
* IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
|
|
*
|
|
*
|
|
* Code from fib_hash has been reused which includes the following header:
|
|
*
|
|
*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* IPv4 FIB: lookup engine and maintenance routines.
|
|
*
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Substantial contributions to this work comes from:
|
|
*
|
|
* David S. Miller, <davem@davemloft.net>
|
|
* Stephen Hemminger <shemminger@osdl.org>
|
|
* Paul E. McKenney <paulmck@us.ibm.com>
|
|
* Patrick McHardy <kaber@trash.net>
|
|
*/
|
|
|
|
#define VERSION "0.409"
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/in.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/inetdevice.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <net/net_namespace.h>
|
|
#include <net/ip.h>
|
|
#include <net/protocol.h>
|
|
#include <net/route.h>
|
|
#include <net/tcp.h>
|
|
#include <net/sock.h>
|
|
#include <net/ip_fib.h>
|
|
#include "fib_lookup.h"
|
|
|
|
#define MAX_STAT_DEPTH 32
|
|
|
|
#define KEYLENGTH (8*sizeof(t_key))
|
|
|
|
typedef unsigned int t_key;
|
|
|
|
#define T_TNODE 0
|
|
#define T_LEAF 1
|
|
#define NODE_TYPE_MASK 0x1UL
|
|
#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
|
|
|
|
#define IS_TNODE(n) (!(n->parent & T_LEAF))
|
|
#define IS_LEAF(n) (n->parent & T_LEAF)
|
|
|
|
struct node {
|
|
unsigned long parent;
|
|
t_key key;
|
|
};
|
|
|
|
struct leaf {
|
|
unsigned long parent;
|
|
t_key key;
|
|
struct hlist_head list;
|
|
struct rcu_head rcu;
|
|
};
|
|
|
|
struct leaf_info {
|
|
struct hlist_node hlist;
|
|
struct rcu_head rcu;
|
|
int plen;
|
|
struct list_head falh;
|
|
};
|
|
|
|
struct tnode {
|
|
unsigned long parent;
|
|
t_key key;
|
|
unsigned char pos; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned char bits; /* 2log(KEYLENGTH) bits needed */
|
|
unsigned int full_children; /* KEYLENGTH bits needed */
|
|
unsigned int empty_children; /* KEYLENGTH bits needed */
|
|
union {
|
|
struct rcu_head rcu;
|
|
struct work_struct work;
|
|
struct tnode *tnode_free;
|
|
};
|
|
struct node *child[0];
|
|
};
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats {
|
|
unsigned int gets;
|
|
unsigned int backtrack;
|
|
unsigned int semantic_match_passed;
|
|
unsigned int semantic_match_miss;
|
|
unsigned int null_node_hit;
|
|
unsigned int resize_node_skipped;
|
|
};
|
|
#endif
|
|
|
|
struct trie_stat {
|
|
unsigned int totdepth;
|
|
unsigned int maxdepth;
|
|
unsigned int tnodes;
|
|
unsigned int leaves;
|
|
unsigned int nullpointers;
|
|
unsigned int prefixes;
|
|
unsigned int nodesizes[MAX_STAT_DEPTH];
|
|
};
|
|
|
|
struct trie {
|
|
struct node *trie;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
struct trie_use_stats stats;
|
|
#endif
|
|
};
|
|
|
|
static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
|
|
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
|
|
int wasfull);
|
|
static struct node *resize(struct trie *t, struct tnode *tn);
|
|
static struct tnode *inflate(struct trie *t, struct tnode *tn);
|
|
static struct tnode *halve(struct trie *t, struct tnode *tn);
|
|
/* tnodes to free after resize(); protected by RTNL */
|
|
static struct tnode *tnode_free_head;
|
|
static size_t tnode_free_size;
|
|
|
|
/*
|
|
* synchronize_rcu after call_rcu for that many pages; it should be especially
|
|
* useful before resizing the root node with PREEMPT_NONE configs; the value was
|
|
* obtained experimentally, aiming to avoid visible slowdown.
|
|
*/
|
|
static const int sync_pages = 128;
|
|
|
|
static struct kmem_cache *fn_alias_kmem __read_mostly;
|
|
static struct kmem_cache *trie_leaf_kmem __read_mostly;
|
|
|
|
static inline struct tnode *node_parent(struct node *node)
|
|
{
|
|
return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
|
|
}
|
|
|
|
static inline struct tnode *node_parent_rcu(struct node *node)
|
|
{
|
|
struct tnode *ret = node_parent(node);
|
|
|
|
return rcu_dereference(ret);
|
|
}
|
|
|
|
/* Same as rcu_assign_pointer
|
|
* but that macro() assumes that value is a pointer.
|
|
*/
|
|
static inline void node_set_parent(struct node *node, struct tnode *ptr)
|
|
{
|
|
smp_wmb();
|
|
node->parent = (unsigned long)ptr | NODE_TYPE(node);
|
|
}
|
|
|
|
static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
|
|
{
|
|
BUG_ON(i >= 1U << tn->bits);
|
|
|
|
return tn->child[i];
|
|
}
|
|
|
|
static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
|
|
{
|
|
struct node *ret = tnode_get_child(tn, i);
|
|
|
|
return rcu_dereference_check(ret,
|
|
rcu_read_lock_held() ||
|
|
lockdep_rtnl_is_held());
|
|
}
|
|
|
|
static inline int tnode_child_length(const struct tnode *tn)
|
|
{
|
|
return 1 << tn->bits;
|
|
}
|
|
|
|
static inline t_key mask_pfx(t_key k, unsigned short l)
|
|
{
|
|
return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
|
|
}
|
|
|
|
static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
|
|
{
|
|
if (offset < KEYLENGTH)
|
|
return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int tkey_equals(t_key a, t_key b)
|
|
{
|
|
return a == b;
|
|
}
|
|
|
|
static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
|
|
{
|
|
if (bits == 0 || offset >= KEYLENGTH)
|
|
return 1;
|
|
bits = bits > KEYLENGTH ? KEYLENGTH : bits;
|
|
return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
|
|
}
|
|
|
|
static inline int tkey_mismatch(t_key a, int offset, t_key b)
|
|
{
|
|
t_key diff = a ^ b;
|
|
int i = offset;
|
|
|
|
if (!diff)
|
|
return 0;
|
|
while ((diff << i) >> (KEYLENGTH-1) == 0)
|
|
i++;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
To understand this stuff, an understanding of keys and all their bits is
|
|
necessary. Every node in the trie has a key associated with it, but not
|
|
all of the bits in that key are significant.
|
|
|
|
Consider a node 'n' and its parent 'tp'.
|
|
|
|
If n is a leaf, every bit in its key is significant. Its presence is
|
|
necessitated by path compression, since during a tree traversal (when
|
|
searching for a leaf - unless we are doing an insertion) we will completely
|
|
ignore all skipped bits we encounter. Thus we need to verify, at the end of
|
|
a potentially successful search, that we have indeed been walking the
|
|
correct key path.
|
|
|
|
Note that we can never "miss" the correct key in the tree if present by
|
|
following the wrong path. Path compression ensures that segments of the key
|
|
that are the same for all keys with a given prefix are skipped, but the
|
|
skipped part *is* identical for each node in the subtrie below the skipped
|
|
bit! trie_insert() in this implementation takes care of that - note the
|
|
call to tkey_sub_equals() in trie_insert().
|
|
|
|
if n is an internal node - a 'tnode' here, the various parts of its key
|
|
have many different meanings.
|
|
|
|
Example:
|
|
_________________________________________________________________
|
|
| i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
|
|
-----------------------------------------------------------------
|
|
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
|
|
|
_________________________________________________________________
|
|
| C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
|
|
-----------------------------------------------------------------
|
|
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
|
|
|
tp->pos = 7
|
|
tp->bits = 3
|
|
n->pos = 15
|
|
n->bits = 4
|
|
|
|
First, let's just ignore the bits that come before the parent tp, that is
|
|
the bits from 0 to (tp->pos-1). They are *known* but at this point we do
|
|
not use them for anything.
|
|
|
|
The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
|
|
index into the parent's child array. That is, they will be used to find
|
|
'n' among tp's children.
|
|
|
|
The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
|
|
for the node n.
|
|
|
|
All the bits we have seen so far are significant to the node n. The rest
|
|
of the bits are really not needed or indeed known in n->key.
|
|
|
|
The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
|
|
n's child array, and will of course be different for each child.
|
|
|
|
|
|
The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
|
|
at this point.
|
|
|
|
*/
|
|
|
|
static inline void check_tnode(const struct tnode *tn)
|
|
{
|
|
WARN_ON(tn && tn->pos+tn->bits > 32);
|
|
}
|
|
|
|
static const int halve_threshold = 25;
|
|
static const int inflate_threshold = 50;
|
|
static const int halve_threshold_root = 15;
|
|
static const int inflate_threshold_root = 30;
|
|
|
|
static void __alias_free_mem(struct rcu_head *head)
|
|
{
|
|
struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
|
|
kmem_cache_free(fn_alias_kmem, fa);
|
|
}
|
|
|
|
static inline void alias_free_mem_rcu(struct fib_alias *fa)
|
|
{
|
|
call_rcu(&fa->rcu, __alias_free_mem);
|
|
}
|
|
|
|
static void __leaf_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct leaf *l = container_of(head, struct leaf, rcu);
|
|
kmem_cache_free(trie_leaf_kmem, l);
|
|
}
|
|
|
|
static inline void free_leaf(struct leaf *l)
|
|
{
|
|
call_rcu_bh(&l->rcu, __leaf_free_rcu);
|
|
}
|
|
|
|
static void __leaf_info_free_rcu(struct rcu_head *head)
|
|
{
|
|
kfree(container_of(head, struct leaf_info, rcu));
|
|
}
|
|
|
|
static inline void free_leaf_info(struct leaf_info *leaf)
|
|
{
|
|
call_rcu(&leaf->rcu, __leaf_info_free_rcu);
|
|
}
|
|
|
|
static struct tnode *tnode_alloc(size_t size)
|
|
{
|
|
if (size <= PAGE_SIZE)
|
|
return kzalloc(size, GFP_KERNEL);
|
|
else
|
|
return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
|
|
}
|
|
|
|
static void __tnode_vfree(struct work_struct *arg)
|
|
{
|
|
struct tnode *tn = container_of(arg, struct tnode, work);
|
|
vfree(tn);
|
|
}
|
|
|
|
static void __tnode_free_rcu(struct rcu_head *head)
|
|
{
|
|
struct tnode *tn = container_of(head, struct tnode, rcu);
|
|
size_t size = sizeof(struct tnode) +
|
|
(sizeof(struct node *) << tn->bits);
|
|
|
|
if (size <= PAGE_SIZE)
|
|
kfree(tn);
|
|
else {
|
|
INIT_WORK(&tn->work, __tnode_vfree);
|
|
schedule_work(&tn->work);
|
|
}
|
|
}
|
|
|
|
static inline void tnode_free(struct tnode *tn)
|
|
{
|
|
if (IS_LEAF(tn))
|
|
free_leaf((struct leaf *) tn);
|
|
else
|
|
call_rcu(&tn->rcu, __tnode_free_rcu);
|
|
}
|
|
|
|
static void tnode_free_safe(struct tnode *tn)
|
|
{
|
|
BUG_ON(IS_LEAF(tn));
|
|
tn->tnode_free = tnode_free_head;
|
|
tnode_free_head = tn;
|
|
tnode_free_size += sizeof(struct tnode) +
|
|
(sizeof(struct node *) << tn->bits);
|
|
}
|
|
|
|
static void tnode_free_flush(void)
|
|
{
|
|
struct tnode *tn;
|
|
|
|
while ((tn = tnode_free_head)) {
|
|
tnode_free_head = tn->tnode_free;
|
|
tn->tnode_free = NULL;
|
|
tnode_free(tn);
|
|
}
|
|
|
|
if (tnode_free_size >= PAGE_SIZE * sync_pages) {
|
|
tnode_free_size = 0;
|
|
synchronize_rcu();
|
|
}
|
|
}
|
|
|
|
static struct leaf *leaf_new(void)
|
|
{
|
|
struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
|
|
if (l) {
|
|
l->parent = T_LEAF;
|
|
INIT_HLIST_HEAD(&l->list);
|
|
}
|
|
return l;
|
|
}
|
|
|
|
static struct leaf_info *leaf_info_new(int plen)
|
|
{
|
|
struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
|
|
if (li) {
|
|
li->plen = plen;
|
|
INIT_LIST_HEAD(&li->falh);
|
|
}
|
|
return li;
|
|
}
|
|
|
|
static struct tnode *tnode_new(t_key key, int pos, int bits)
|
|
{
|
|
size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
|
|
struct tnode *tn = tnode_alloc(sz);
|
|
|
|
if (tn) {
|
|
tn->parent = T_TNODE;
|
|
tn->pos = pos;
|
|
tn->bits = bits;
|
|
tn->key = key;
|
|
tn->full_children = 0;
|
|
tn->empty_children = 1<<bits;
|
|
}
|
|
|
|
pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
|
|
(unsigned long) (sizeof(struct node) << bits));
|
|
return tn;
|
|
}
|
|
|
|
/*
|
|
* Check whether a tnode 'n' is "full", i.e. it is an internal node
|
|
* and no bits are skipped. See discussion in dyntree paper p. 6
|
|
*/
|
|
|
|
static inline int tnode_full(const struct tnode *tn, const struct node *n)
|
|
{
|
|
if (n == NULL || IS_LEAF(n))
|
|
return 0;
|
|
|
|
return ((struct tnode *) n)->pos == tn->pos + tn->bits;
|
|
}
|
|
|
|
static inline void put_child(struct trie *t, struct tnode *tn, int i,
|
|
struct node *n)
|
|
{
|
|
tnode_put_child_reorg(tn, i, n, -1);
|
|
}
|
|
|
|
/*
|
|
* Add a child at position i overwriting the old value.
|
|
* Update the value of full_children and empty_children.
|
|
*/
|
|
|
|
static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
|
|
int wasfull)
|
|
{
|
|
struct node *chi = tn->child[i];
|
|
int isfull;
|
|
|
|
BUG_ON(i >= 1<<tn->bits);
|
|
|
|
/* update emptyChildren */
|
|
if (n == NULL && chi != NULL)
|
|
tn->empty_children++;
|
|
else if (n != NULL && chi == NULL)
|
|
tn->empty_children--;
|
|
|
|
/* update fullChildren */
|
|
if (wasfull == -1)
|
|
wasfull = tnode_full(tn, chi);
|
|
|
|
isfull = tnode_full(tn, n);
|
|
if (wasfull && !isfull)
|
|
tn->full_children--;
|
|
else if (!wasfull && isfull)
|
|
tn->full_children++;
|
|
|
|
if (n)
|
|
node_set_parent(n, tn);
|
|
|
|
rcu_assign_pointer(tn->child[i], n);
|
|
}
|
|
|
|
#define MAX_WORK 10
|
|
static struct node *resize(struct trie *t, struct tnode *tn)
|
|
{
|
|
int i;
|
|
struct tnode *old_tn;
|
|
int inflate_threshold_use;
|
|
int halve_threshold_use;
|
|
int max_work;
|
|
|
|
if (!tn)
|
|
return NULL;
|
|
|
|
pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
|
|
tn, inflate_threshold, halve_threshold);
|
|
|
|
/* No children */
|
|
if (tn->empty_children == tnode_child_length(tn)) {
|
|
tnode_free_safe(tn);
|
|
return NULL;
|
|
}
|
|
/* One child */
|
|
if (tn->empty_children == tnode_child_length(tn) - 1)
|
|
goto one_child;
|
|
/*
|
|
* Double as long as the resulting node has a number of
|
|
* nonempty nodes that are above the threshold.
|
|
*/
|
|
|
|
/*
|
|
* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
|
|
* the Helsinki University of Technology and Matti Tikkanen of Nokia
|
|
* Telecommunications, page 6:
|
|
* "A node is doubled if the ratio of non-empty children to all
|
|
* children in the *doubled* node is at least 'high'."
|
|
*
|
|
* 'high' in this instance is the variable 'inflate_threshold'. It
|
|
* is expressed as a percentage, so we multiply it with
|
|
* tnode_child_length() and instead of multiplying by 2 (since the
|
|
* child array will be doubled by inflate()) and multiplying
|
|
* the left-hand side by 100 (to handle the percentage thing) we
|
|
* multiply the left-hand side by 50.
|
|
*
|
|
* The left-hand side may look a bit weird: tnode_child_length(tn)
|
|
* - tn->empty_children is of course the number of non-null children
|
|
* in the current node. tn->full_children is the number of "full"
|
|
* children, that is non-null tnodes with a skip value of 0.
|
|
* All of those will be doubled in the resulting inflated tnode, so
|
|
* we just count them one extra time here.
|
|
*
|
|
* A clearer way to write this would be:
|
|
*
|
|
* to_be_doubled = tn->full_children;
|
|
* not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
|
|
* tn->full_children;
|
|
*
|
|
* new_child_length = tnode_child_length(tn) * 2;
|
|
*
|
|
* new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
|
|
* new_child_length;
|
|
* if (new_fill_factor >= inflate_threshold)
|
|
*
|
|
* ...and so on, tho it would mess up the while () loop.
|
|
*
|
|
* anyway,
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
|
|
* inflate_threshold
|
|
*
|
|
* avoid a division:
|
|
* 100 * (not_to_be_doubled + 2*to_be_doubled) >=
|
|
* inflate_threshold * new_child_length
|
|
*
|
|
* expand not_to_be_doubled and to_be_doubled, and shorten:
|
|
* 100 * (tnode_child_length(tn) - tn->empty_children +
|
|
* tn->full_children) >= inflate_threshold * new_child_length
|
|
*
|
|
* expand new_child_length:
|
|
* 100 * (tnode_child_length(tn) - tn->empty_children +
|
|
* tn->full_children) >=
|
|
* inflate_threshold * tnode_child_length(tn) * 2
|
|
*
|
|
* shorten again:
|
|
* 50 * (tn->full_children + tnode_child_length(tn) -
|
|
* tn->empty_children) >= inflate_threshold *
|
|
* tnode_child_length(tn)
|
|
*
|
|
*/
|
|
|
|
check_tnode(tn);
|
|
|
|
/* Keep root node larger */
|
|
|
|
if (!node_parent((struct node*) tn)) {
|
|
inflate_threshold_use = inflate_threshold_root;
|
|
halve_threshold_use = halve_threshold_root;
|
|
}
|
|
else {
|
|
inflate_threshold_use = inflate_threshold;
|
|
halve_threshold_use = halve_threshold;
|
|
}
|
|
|
|
max_work = MAX_WORK;
|
|
while ((tn->full_children > 0 && max_work-- &&
|
|
50 * (tn->full_children + tnode_child_length(tn)
|
|
- tn->empty_children)
|
|
>= inflate_threshold_use * tnode_child_length(tn))) {
|
|
|
|
old_tn = tn;
|
|
tn = inflate(t, tn);
|
|
|
|
if (IS_ERR(tn)) {
|
|
tn = old_tn;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.resize_node_skipped++;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
check_tnode(tn);
|
|
|
|
/* Return if at least one inflate is run */
|
|
if( max_work != MAX_WORK)
|
|
return (struct node *) tn;
|
|
|
|
/*
|
|
* Halve as long as the number of empty children in this
|
|
* node is above threshold.
|
|
*/
|
|
|
|
max_work = MAX_WORK;
|
|
while (tn->bits > 1 && max_work-- &&
|
|
100 * (tnode_child_length(tn) - tn->empty_children) <
|
|
halve_threshold_use * tnode_child_length(tn)) {
|
|
|
|
old_tn = tn;
|
|
tn = halve(t, tn);
|
|
if (IS_ERR(tn)) {
|
|
tn = old_tn;
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.resize_node_skipped++;
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/* Only one child remains */
|
|
if (tn->empty_children == tnode_child_length(tn) - 1) {
|
|
one_child:
|
|
for (i = 0; i < tnode_child_length(tn); i++) {
|
|
struct node *n;
|
|
|
|
n = tn->child[i];
|
|
if (!n)
|
|
continue;
|
|
|
|
/* compress one level */
|
|
|
|
node_set_parent(n, NULL);
|
|
tnode_free_safe(tn);
|
|
return n;
|
|
}
|
|
}
|
|
return (struct node *) tn;
|
|
}
|
|
|
|
static struct tnode *inflate(struct trie *t, struct tnode *tn)
|
|
{
|
|
struct tnode *oldtnode = tn;
|
|
int olen = tnode_child_length(tn);
|
|
int i;
|
|
|
|
pr_debug("In inflate\n");
|
|
|
|
tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
|
|
|
|
if (!tn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Preallocate and store tnodes before the actual work so we
|
|
* don't get into an inconsistent state if memory allocation
|
|
* fails. In case of failure we return the oldnode and inflate
|
|
* of tnode is ignored.
|
|
*/
|
|
|
|
for (i = 0; i < olen; i++) {
|
|
struct tnode *inode;
|
|
|
|
inode = (struct tnode *) tnode_get_child(oldtnode, i);
|
|
if (inode &&
|
|
IS_TNODE(inode) &&
|
|
inode->pos == oldtnode->pos + oldtnode->bits &&
|
|
inode->bits > 1) {
|
|
struct tnode *left, *right;
|
|
t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
|
|
|
|
left = tnode_new(inode->key&(~m), inode->pos + 1,
|
|
inode->bits - 1);
|
|
if (!left)
|
|
goto nomem;
|
|
|
|
right = tnode_new(inode->key|m, inode->pos + 1,
|
|
inode->bits - 1);
|
|
|
|
if (!right) {
|
|
tnode_free(left);
|
|
goto nomem;
|
|
}
|
|
|
|
put_child(t, tn, 2*i, (struct node *) left);
|
|
put_child(t, tn, 2*i+1, (struct node *) right);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < olen; i++) {
|
|
struct tnode *inode;
|
|
struct node *node = tnode_get_child(oldtnode, i);
|
|
struct tnode *left, *right;
|
|
int size, j;
|
|
|
|
/* An empty child */
|
|
if (node == NULL)
|
|
continue;
|
|
|
|
/* A leaf or an internal node with skipped bits */
|
|
|
|
if (IS_LEAF(node) || ((struct tnode *) node)->pos >
|
|
tn->pos + tn->bits - 1) {
|
|
if (tkey_extract_bits(node->key,
|
|
oldtnode->pos + oldtnode->bits,
|
|
1) == 0)
|
|
put_child(t, tn, 2*i, node);
|
|
else
|
|
put_child(t, tn, 2*i+1, node);
|
|
continue;
|
|
}
|
|
|
|
/* An internal node with two children */
|
|
inode = (struct tnode *) node;
|
|
|
|
if (inode->bits == 1) {
|
|
put_child(t, tn, 2*i, inode->child[0]);
|
|
put_child(t, tn, 2*i+1, inode->child[1]);
|
|
|
|
tnode_free_safe(inode);
|
|
continue;
|
|
}
|
|
|
|
/* An internal node with more than two children */
|
|
|
|
/* We will replace this node 'inode' with two new
|
|
* ones, 'left' and 'right', each with half of the
|
|
* original children. The two new nodes will have
|
|
* a position one bit further down the key and this
|
|
* means that the "significant" part of their keys
|
|
* (see the discussion near the top of this file)
|
|
* will differ by one bit, which will be "0" in
|
|
* left's key and "1" in right's key. Since we are
|
|
* moving the key position by one step, the bit that
|
|
* we are moving away from - the bit at position
|
|
* (inode->pos) - is the one that will differ between
|
|
* left and right. So... we synthesize that bit in the
|
|
* two new keys.
|
|
* The mask 'm' below will be a single "one" bit at
|
|
* the position (inode->pos)
|
|
*/
|
|
|
|
/* Use the old key, but set the new significant
|
|
* bit to zero.
|
|
*/
|
|
|
|
left = (struct tnode *) tnode_get_child(tn, 2*i);
|
|
put_child(t, tn, 2*i, NULL);
|
|
|
|
BUG_ON(!left);
|
|
|
|
right = (struct tnode *) tnode_get_child(tn, 2*i+1);
|
|
put_child(t, tn, 2*i+1, NULL);
|
|
|
|
BUG_ON(!right);
|
|
|
|
size = tnode_child_length(left);
|
|
for (j = 0; j < size; j++) {
|
|
put_child(t, left, j, inode->child[j]);
|
|
put_child(t, right, j, inode->child[j + size]);
|
|
}
|
|
put_child(t, tn, 2*i, resize(t, left));
|
|
put_child(t, tn, 2*i+1, resize(t, right));
|
|
|
|
tnode_free_safe(inode);
|
|
}
|
|
tnode_free_safe(oldtnode);
|
|
return tn;
|
|
nomem:
|
|
{
|
|
int size = tnode_child_length(tn);
|
|
int j;
|
|
|
|
for (j = 0; j < size; j++)
|
|
if (tn->child[j])
|
|
tnode_free((struct tnode *)tn->child[j]);
|
|
|
|
tnode_free(tn);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
}
|
|
|
|
static struct tnode *halve(struct trie *t, struct tnode *tn)
|
|
{
|
|
struct tnode *oldtnode = tn;
|
|
struct node *left, *right;
|
|
int i;
|
|
int olen = tnode_child_length(tn);
|
|
|
|
pr_debug("In halve\n");
|
|
|
|
tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
|
|
|
|
if (!tn)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Preallocate and store tnodes before the actual work so we
|
|
* don't get into an inconsistent state if memory allocation
|
|
* fails. In case of failure we return the oldnode and halve
|
|
* of tnode is ignored.
|
|
*/
|
|
|
|
for (i = 0; i < olen; i += 2) {
|
|
left = tnode_get_child(oldtnode, i);
|
|
right = tnode_get_child(oldtnode, i+1);
|
|
|
|
/* Two nonempty children */
|
|
if (left && right) {
|
|
struct tnode *newn;
|
|
|
|
newn = tnode_new(left->key, tn->pos + tn->bits, 1);
|
|
|
|
if (!newn)
|
|
goto nomem;
|
|
|
|
put_child(t, tn, i/2, (struct node *)newn);
|
|
}
|
|
|
|
}
|
|
|
|
for (i = 0; i < olen; i += 2) {
|
|
struct tnode *newBinNode;
|
|
|
|
left = tnode_get_child(oldtnode, i);
|
|
right = tnode_get_child(oldtnode, i+1);
|
|
|
|
/* At least one of the children is empty */
|
|
if (left == NULL) {
|
|
if (right == NULL) /* Both are empty */
|
|
continue;
|
|
put_child(t, tn, i/2, right);
|
|
continue;
|
|
}
|
|
|
|
if (right == NULL) {
|
|
put_child(t, tn, i/2, left);
|
|
continue;
|
|
}
|
|
|
|
/* Two nonempty children */
|
|
newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
|
|
put_child(t, tn, i/2, NULL);
|
|
put_child(t, newBinNode, 0, left);
|
|
put_child(t, newBinNode, 1, right);
|
|
put_child(t, tn, i/2, resize(t, newBinNode));
|
|
}
|
|
tnode_free_safe(oldtnode);
|
|
return tn;
|
|
nomem:
|
|
{
|
|
int size = tnode_child_length(tn);
|
|
int j;
|
|
|
|
for (j = 0; j < size; j++)
|
|
if (tn->child[j])
|
|
tnode_free((struct tnode *)tn->child[j]);
|
|
|
|
tnode_free(tn);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
}
|
|
|
|
/* readside must use rcu_read_lock currently dump routines
|
|
via get_fa_head and dump */
|
|
|
|
static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
|
|
{
|
|
struct hlist_head *head = &l->list;
|
|
struct hlist_node *node;
|
|
struct leaf_info *li;
|
|
|
|
hlist_for_each_entry_rcu(li, node, head, hlist)
|
|
if (li->plen == plen)
|
|
return li;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct list_head *get_fa_head(struct leaf *l, int plen)
|
|
{
|
|
struct leaf_info *li = find_leaf_info(l, plen);
|
|
|
|
if (!li)
|
|
return NULL;
|
|
|
|
return &li->falh;
|
|
}
|
|
|
|
static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
|
|
{
|
|
struct leaf_info *li = NULL, *last = NULL;
|
|
struct hlist_node *node;
|
|
|
|
if (hlist_empty(head)) {
|
|
hlist_add_head_rcu(&new->hlist, head);
|
|
} else {
|
|
hlist_for_each_entry(li, node, head, hlist) {
|
|
if (new->plen > li->plen)
|
|
break;
|
|
|
|
last = li;
|
|
}
|
|
if (last)
|
|
hlist_add_after_rcu(&last->hlist, &new->hlist);
|
|
else
|
|
hlist_add_before_rcu(&new->hlist, &li->hlist);
|
|
}
|
|
}
|
|
|
|
/* rcu_read_lock needs to be hold by caller from readside */
|
|
|
|
static struct leaf *
|
|
fib_find_node(struct trie *t, u32 key)
|
|
{
|
|
int pos;
|
|
struct tnode *tn;
|
|
struct node *n;
|
|
|
|
pos = 0;
|
|
n = rcu_dereference_check(t->trie,
|
|
rcu_read_lock_held() ||
|
|
lockdep_rtnl_is_held());
|
|
|
|
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
|
|
tn = (struct tnode *) n;
|
|
|
|
check_tnode(tn);
|
|
|
|
if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
|
|
pos = tn->pos + tn->bits;
|
|
n = tnode_get_child_rcu(tn,
|
|
tkey_extract_bits(key,
|
|
tn->pos,
|
|
tn->bits));
|
|
} else
|
|
break;
|
|
}
|
|
/* Case we have found a leaf. Compare prefixes */
|
|
|
|
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
|
|
return (struct leaf *)n;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void trie_rebalance(struct trie *t, struct tnode *tn)
|
|
{
|
|
int wasfull;
|
|
t_key cindex, key;
|
|
struct tnode *tp;
|
|
|
|
key = tn->key;
|
|
|
|
while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
|
|
tn = (struct tnode *) resize(t, (struct tnode *)tn);
|
|
|
|
tnode_put_child_reorg((struct tnode *)tp, cindex,
|
|
(struct node *)tn, wasfull);
|
|
|
|
tp = node_parent((struct node *) tn);
|
|
if (!tp)
|
|
rcu_assign_pointer(t->trie, (struct node *)tn);
|
|
|
|
tnode_free_flush();
|
|
if (!tp)
|
|
break;
|
|
tn = tp;
|
|
}
|
|
|
|
/* Handle last (top) tnode */
|
|
if (IS_TNODE(tn))
|
|
tn = (struct tnode *)resize(t, (struct tnode *)tn);
|
|
|
|
rcu_assign_pointer(t->trie, (struct node *)tn);
|
|
tnode_free_flush();
|
|
|
|
return;
|
|
}
|
|
|
|
/* only used from updater-side */
|
|
|
|
static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
|
|
{
|
|
int pos, newpos;
|
|
struct tnode *tp = NULL, *tn = NULL;
|
|
struct node *n;
|
|
struct leaf *l;
|
|
int missbit;
|
|
struct list_head *fa_head = NULL;
|
|
struct leaf_info *li;
|
|
t_key cindex;
|
|
|
|
pos = 0;
|
|
n = t->trie;
|
|
|
|
/* If we point to NULL, stop. Either the tree is empty and we should
|
|
* just put a new leaf in if, or we have reached an empty child slot,
|
|
* and we should just put our new leaf in that.
|
|
* If we point to a T_TNODE, check if it matches our key. Note that
|
|
* a T_TNODE might be skipping any number of bits - its 'pos' need
|
|
* not be the parent's 'pos'+'bits'!
|
|
*
|
|
* If it does match the current key, get pos/bits from it, extract
|
|
* the index from our key, push the T_TNODE and walk the tree.
|
|
*
|
|
* If it doesn't, we have to replace it with a new T_TNODE.
|
|
*
|
|
* If we point to a T_LEAF, it might or might not have the same key
|
|
* as we do. If it does, just change the value, update the T_LEAF's
|
|
* value, and return it.
|
|
* If it doesn't, we need to replace it with a T_TNODE.
|
|
*/
|
|
|
|
while (n != NULL && NODE_TYPE(n) == T_TNODE) {
|
|
tn = (struct tnode *) n;
|
|
|
|
check_tnode(tn);
|
|
|
|
if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
|
|
tp = tn;
|
|
pos = tn->pos + tn->bits;
|
|
n = tnode_get_child(tn,
|
|
tkey_extract_bits(key,
|
|
tn->pos,
|
|
tn->bits));
|
|
|
|
BUG_ON(n && node_parent(n) != tn);
|
|
} else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* n ----> NULL, LEAF or TNODE
|
|
*
|
|
* tp is n's (parent) ----> NULL or TNODE
|
|
*/
|
|
|
|
BUG_ON(tp && IS_LEAF(tp));
|
|
|
|
/* Case 1: n is a leaf. Compare prefixes */
|
|
|
|
if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
|
|
l = (struct leaf *) n;
|
|
li = leaf_info_new(plen);
|
|
|
|
if (!li)
|
|
return NULL;
|
|
|
|
fa_head = &li->falh;
|
|
insert_leaf_info(&l->list, li);
|
|
goto done;
|
|
}
|
|
l = leaf_new();
|
|
|
|
if (!l)
|
|
return NULL;
|
|
|
|
l->key = key;
|
|
li = leaf_info_new(plen);
|
|
|
|
if (!li) {
|
|
free_leaf(l);
|
|
return NULL;
|
|
}
|
|
|
|
fa_head = &li->falh;
|
|
insert_leaf_info(&l->list, li);
|
|
|
|
if (t->trie && n == NULL) {
|
|
/* Case 2: n is NULL, and will just insert a new leaf */
|
|
|
|
node_set_parent((struct node *)l, tp);
|
|
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
|
|
} else {
|
|
/* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
|
|
/*
|
|
* Add a new tnode here
|
|
* first tnode need some special handling
|
|
*/
|
|
|
|
if (tp)
|
|
pos = tp->pos+tp->bits;
|
|
else
|
|
pos = 0;
|
|
|
|
if (n) {
|
|
newpos = tkey_mismatch(key, pos, n->key);
|
|
tn = tnode_new(n->key, newpos, 1);
|
|
} else {
|
|
newpos = 0;
|
|
tn = tnode_new(key, newpos, 1); /* First tnode */
|
|
}
|
|
|
|
if (!tn) {
|
|
free_leaf_info(li);
|
|
free_leaf(l);
|
|
return NULL;
|
|
}
|
|
|
|
node_set_parent((struct node *)tn, tp);
|
|
|
|
missbit = tkey_extract_bits(key, newpos, 1);
|
|
put_child(t, tn, missbit, (struct node *)l);
|
|
put_child(t, tn, 1-missbit, n);
|
|
|
|
if (tp) {
|
|
cindex = tkey_extract_bits(key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex,
|
|
(struct node *)tn);
|
|
} else {
|
|
rcu_assign_pointer(t->trie, (struct node *)tn);
|
|
tp = tn;
|
|
}
|
|
}
|
|
|
|
if (tp && tp->pos + tp->bits > 32)
|
|
pr_warning("fib_trie"
|
|
" tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
|
|
tp, tp->pos, tp->bits, key, plen);
|
|
|
|
/* Rebalance the trie */
|
|
|
|
trie_rebalance(t, tp);
|
|
done:
|
|
return fa_head;
|
|
}
|
|
|
|
/*
|
|
* Caller must hold RTNL.
|
|
*/
|
|
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct fib_alias *fa, *new_fa;
|
|
struct list_head *fa_head = NULL;
|
|
struct fib_info *fi;
|
|
int plen = cfg->fc_dst_len;
|
|
u8 tos = cfg->fc_tos;
|
|
u32 key, mask;
|
|
int err;
|
|
struct leaf *l;
|
|
|
|
if (plen > 32)
|
|
return -EINVAL;
|
|
|
|
key = ntohl(cfg->fc_dst);
|
|
|
|
pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
|
|
|
|
mask = ntohl(inet_make_mask(plen));
|
|
|
|
if (key & ~mask)
|
|
return -EINVAL;
|
|
|
|
key = key & mask;
|
|
|
|
fi = fib_create_info(cfg);
|
|
if (IS_ERR(fi)) {
|
|
err = PTR_ERR(fi);
|
|
goto err;
|
|
}
|
|
|
|
l = fib_find_node(t, key);
|
|
fa = NULL;
|
|
|
|
if (l) {
|
|
fa_head = get_fa_head(l, plen);
|
|
fa = fib_find_alias(fa_head, tos, fi->fib_priority);
|
|
}
|
|
|
|
/* Now fa, if non-NULL, points to the first fib alias
|
|
* with the same keys [prefix,tos,priority], if such key already
|
|
* exists or to the node before which we will insert new one.
|
|
*
|
|
* If fa is NULL, we will need to allocate a new one and
|
|
* insert to the head of f.
|
|
*
|
|
* If f is NULL, no fib node matched the destination key
|
|
* and we need to allocate a new one of those as well.
|
|
*/
|
|
|
|
if (fa && fa->fa_tos == tos &&
|
|
fa->fa_info->fib_priority == fi->fib_priority) {
|
|
struct fib_alias *fa_first, *fa_match;
|
|
|
|
err = -EEXIST;
|
|
if (cfg->fc_nlflags & NLM_F_EXCL)
|
|
goto out;
|
|
|
|
/* We have 2 goals:
|
|
* 1. Find exact match for type, scope, fib_info to avoid
|
|
* duplicate routes
|
|
* 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
|
|
*/
|
|
fa_match = NULL;
|
|
fa_first = fa;
|
|
fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
|
|
list_for_each_entry_continue(fa, fa_head, fa_list) {
|
|
if (fa->fa_tos != tos)
|
|
break;
|
|
if (fa->fa_info->fib_priority != fi->fib_priority)
|
|
break;
|
|
if (fa->fa_type == cfg->fc_type &&
|
|
fa->fa_scope == cfg->fc_scope &&
|
|
fa->fa_info == fi) {
|
|
fa_match = fa;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (cfg->fc_nlflags & NLM_F_REPLACE) {
|
|
struct fib_info *fi_drop;
|
|
u8 state;
|
|
|
|
fa = fa_first;
|
|
if (fa_match) {
|
|
if (fa == fa_match)
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
err = -ENOBUFS;
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
|
|
if (new_fa == NULL)
|
|
goto out;
|
|
|
|
fi_drop = fa->fa_info;
|
|
new_fa->fa_tos = fa->fa_tos;
|
|
new_fa->fa_info = fi;
|
|
new_fa->fa_type = cfg->fc_type;
|
|
new_fa->fa_scope = cfg->fc_scope;
|
|
state = fa->fa_state;
|
|
new_fa->fa_state = state & ~FA_S_ACCESSED;
|
|
|
|
list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
|
|
alias_free_mem_rcu(fa);
|
|
|
|
fib_release_info(fi_drop);
|
|
if (state & FA_S_ACCESSED)
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
|
|
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
|
|
tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
|
|
|
|
goto succeeded;
|
|
}
|
|
/* Error if we find a perfect match which
|
|
* uses the same scope, type, and nexthop
|
|
* information.
|
|
*/
|
|
if (fa_match)
|
|
goto out;
|
|
|
|
if (!(cfg->fc_nlflags & NLM_F_APPEND))
|
|
fa = fa_first;
|
|
}
|
|
err = -ENOENT;
|
|
if (!(cfg->fc_nlflags & NLM_F_CREATE))
|
|
goto out;
|
|
|
|
err = -ENOBUFS;
|
|
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
|
|
if (new_fa == NULL)
|
|
goto out;
|
|
|
|
new_fa->fa_info = fi;
|
|
new_fa->fa_tos = tos;
|
|
new_fa->fa_type = cfg->fc_type;
|
|
new_fa->fa_scope = cfg->fc_scope;
|
|
new_fa->fa_state = 0;
|
|
/*
|
|
* Insert new entry to the list.
|
|
*/
|
|
|
|
if (!fa_head) {
|
|
fa_head = fib_insert_node(t, key, plen);
|
|
if (unlikely(!fa_head)) {
|
|
err = -ENOMEM;
|
|
goto out_free_new_fa;
|
|
}
|
|
}
|
|
|
|
list_add_tail_rcu(&new_fa->fa_list,
|
|
(fa ? &fa->fa_list : fa_head));
|
|
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
|
|
rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
|
|
&cfg->fc_nlinfo, 0);
|
|
succeeded:
|
|
return 0;
|
|
|
|
out_free_new_fa:
|
|
kmem_cache_free(fn_alias_kmem, new_fa);
|
|
out:
|
|
fib_release_info(fi);
|
|
err:
|
|
return err;
|
|
}
|
|
|
|
/* should be called with rcu_read_lock */
|
|
static int check_leaf(struct trie *t, struct leaf *l,
|
|
t_key key, const struct flowi *flp,
|
|
struct fib_result *res)
|
|
{
|
|
struct leaf_info *li;
|
|
struct hlist_head *hhead = &l->list;
|
|
struct hlist_node *node;
|
|
|
|
hlist_for_each_entry_rcu(li, node, hhead, hlist) {
|
|
int err;
|
|
int plen = li->plen;
|
|
__be32 mask = inet_make_mask(plen);
|
|
|
|
if (l->key != (key & ntohl(mask)))
|
|
continue;
|
|
|
|
err = fib_semantic_match(&li->falh, flp, res, plen);
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
if (err <= 0)
|
|
t->stats.semantic_match_passed++;
|
|
else
|
|
t->stats.semantic_match_miss++;
|
|
#endif
|
|
if (err <= 0)
|
|
return err;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
|
|
struct fib_result *res)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
int ret;
|
|
struct node *n;
|
|
struct tnode *pn;
|
|
int pos, bits;
|
|
t_key key = ntohl(flp->fl4_dst);
|
|
int chopped_off;
|
|
t_key cindex = 0;
|
|
int current_prefix_length = KEYLENGTH;
|
|
struct tnode *cn;
|
|
t_key node_prefix, key_prefix, pref_mismatch;
|
|
int mp;
|
|
|
|
rcu_read_lock();
|
|
|
|
n = rcu_dereference(t->trie);
|
|
if (!n)
|
|
goto failed;
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.gets++;
|
|
#endif
|
|
|
|
/* Just a leaf? */
|
|
if (IS_LEAF(n)) {
|
|
ret = check_leaf(t, (struct leaf *)n, key, flp, res);
|
|
goto found;
|
|
}
|
|
|
|
pn = (struct tnode *) n;
|
|
chopped_off = 0;
|
|
|
|
while (pn) {
|
|
pos = pn->pos;
|
|
bits = pn->bits;
|
|
|
|
if (!chopped_off)
|
|
cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
|
|
pos, bits);
|
|
|
|
n = tnode_get_child_rcu(pn, cindex);
|
|
|
|
if (n == NULL) {
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.null_node_hit++;
|
|
#endif
|
|
goto backtrace;
|
|
}
|
|
|
|
if (IS_LEAF(n)) {
|
|
ret = check_leaf(t, (struct leaf *)n, key, flp, res);
|
|
if (ret > 0)
|
|
goto backtrace;
|
|
goto found;
|
|
}
|
|
|
|
cn = (struct tnode *)n;
|
|
|
|
/*
|
|
* It's a tnode, and we can do some extra checks here if we
|
|
* like, to avoid descending into a dead-end branch.
|
|
* This tnode is in the parent's child array at index
|
|
* key[p_pos..p_pos+p_bits] but potentially with some bits
|
|
* chopped off, so in reality the index may be just a
|
|
* subprefix, padded with zero at the end.
|
|
* We can also take a look at any skipped bits in this
|
|
* tnode - everything up to p_pos is supposed to be ok,
|
|
* and the non-chopped bits of the index (se previous
|
|
* paragraph) are also guaranteed ok, but the rest is
|
|
* considered unknown.
|
|
*
|
|
* The skipped bits are key[pos+bits..cn->pos].
|
|
*/
|
|
|
|
/* If current_prefix_length < pos+bits, we are already doing
|
|
* actual prefix matching, which means everything from
|
|
* pos+(bits-chopped_off) onward must be zero along some
|
|
* branch of this subtree - otherwise there is *no* valid
|
|
* prefix present. Here we can only check the skipped
|
|
* bits. Remember, since we have already indexed into the
|
|
* parent's child array, we know that the bits we chopped of
|
|
* *are* zero.
|
|
*/
|
|
|
|
/* NOTA BENE: Checking only skipped bits
|
|
for the new node here */
|
|
|
|
if (current_prefix_length < pos+bits) {
|
|
if (tkey_extract_bits(cn->key, current_prefix_length,
|
|
cn->pos - current_prefix_length)
|
|
|| !(cn->child[0]))
|
|
goto backtrace;
|
|
}
|
|
|
|
/*
|
|
* If chopped_off=0, the index is fully validated and we
|
|
* only need to look at the skipped bits for this, the new,
|
|
* tnode. What we actually want to do is to find out if
|
|
* these skipped bits match our key perfectly, or if we will
|
|
* have to count on finding a matching prefix further down,
|
|
* because if we do, we would like to have some way of
|
|
* verifying the existence of such a prefix at this point.
|
|
*/
|
|
|
|
/* The only thing we can do at this point is to verify that
|
|
* any such matching prefix can indeed be a prefix to our
|
|
* key, and if the bits in the node we are inspecting that
|
|
* do not match our key are not ZERO, this cannot be true.
|
|
* Thus, find out where there is a mismatch (before cn->pos)
|
|
* and verify that all the mismatching bits are zero in the
|
|
* new tnode's key.
|
|
*/
|
|
|
|
/*
|
|
* Note: We aren't very concerned about the piece of
|
|
* the key that precede pn->pos+pn->bits, since these
|
|
* have already been checked. The bits after cn->pos
|
|
* aren't checked since these are by definition
|
|
* "unknown" at this point. Thus, what we want to see
|
|
* is if we are about to enter the "prefix matching"
|
|
* state, and in that case verify that the skipped
|
|
* bits that will prevail throughout this subtree are
|
|
* zero, as they have to be if we are to find a
|
|
* matching prefix.
|
|
*/
|
|
|
|
node_prefix = mask_pfx(cn->key, cn->pos);
|
|
key_prefix = mask_pfx(key, cn->pos);
|
|
pref_mismatch = key_prefix^node_prefix;
|
|
mp = 0;
|
|
|
|
/*
|
|
* In short: If skipped bits in this node do not match
|
|
* the search key, enter the "prefix matching"
|
|
* state.directly.
|
|
*/
|
|
if (pref_mismatch) {
|
|
while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
|
|
mp++;
|
|
pref_mismatch = pref_mismatch << 1;
|
|
}
|
|
key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
|
|
|
|
if (key_prefix != 0)
|
|
goto backtrace;
|
|
|
|
if (current_prefix_length >= cn->pos)
|
|
current_prefix_length = mp;
|
|
}
|
|
|
|
pn = (struct tnode *)n; /* Descend */
|
|
chopped_off = 0;
|
|
continue;
|
|
|
|
backtrace:
|
|
chopped_off++;
|
|
|
|
/* As zero don't change the child key (cindex) */
|
|
while ((chopped_off <= pn->bits)
|
|
&& !(cindex & (1<<(chopped_off-1))))
|
|
chopped_off++;
|
|
|
|
/* Decrease current_... with bits chopped off */
|
|
if (current_prefix_length > pn->pos + pn->bits - chopped_off)
|
|
current_prefix_length = pn->pos + pn->bits
|
|
- chopped_off;
|
|
|
|
/*
|
|
* Either we do the actual chop off according or if we have
|
|
* chopped off all bits in this tnode walk up to our parent.
|
|
*/
|
|
|
|
if (chopped_off <= pn->bits) {
|
|
cindex &= ~(1 << (chopped_off-1));
|
|
} else {
|
|
struct tnode *parent = node_parent_rcu((struct node *) pn);
|
|
if (!parent)
|
|
goto failed;
|
|
|
|
/* Get Child's index */
|
|
cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
|
|
pn = parent;
|
|
chopped_off = 0;
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
t->stats.backtrack++;
|
|
#endif
|
|
goto backtrace;
|
|
}
|
|
}
|
|
failed:
|
|
ret = 1;
|
|
found:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove the leaf and return parent.
|
|
*/
|
|
static void trie_leaf_remove(struct trie *t, struct leaf *l)
|
|
{
|
|
struct tnode *tp = node_parent((struct node *) l);
|
|
|
|
pr_debug("entering trie_leaf_remove(%p)\n", l);
|
|
|
|
if (tp) {
|
|
t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
|
|
put_child(t, (struct tnode *)tp, cindex, NULL);
|
|
trie_rebalance(t, tp);
|
|
} else
|
|
rcu_assign_pointer(t->trie, NULL);
|
|
|
|
free_leaf(l);
|
|
}
|
|
|
|
/*
|
|
* Caller must hold RTNL.
|
|
*/
|
|
int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
u32 key, mask;
|
|
int plen = cfg->fc_dst_len;
|
|
u8 tos = cfg->fc_tos;
|
|
struct fib_alias *fa, *fa_to_delete;
|
|
struct list_head *fa_head;
|
|
struct leaf *l;
|
|
struct leaf_info *li;
|
|
|
|
if (plen > 32)
|
|
return -EINVAL;
|
|
|
|
key = ntohl(cfg->fc_dst);
|
|
mask = ntohl(inet_make_mask(plen));
|
|
|
|
if (key & ~mask)
|
|
return -EINVAL;
|
|
|
|
key = key & mask;
|
|
l = fib_find_node(t, key);
|
|
|
|
if (!l)
|
|
return -ESRCH;
|
|
|
|
fa_head = get_fa_head(l, plen);
|
|
fa = fib_find_alias(fa_head, tos, 0);
|
|
|
|
if (!fa)
|
|
return -ESRCH;
|
|
|
|
pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
|
|
|
|
fa_to_delete = NULL;
|
|
fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
|
|
list_for_each_entry_continue(fa, fa_head, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if (fa->fa_tos != tos)
|
|
break;
|
|
|
|
if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
|
|
(cfg->fc_scope == RT_SCOPE_NOWHERE ||
|
|
fa->fa_scope == cfg->fc_scope) &&
|
|
(!cfg->fc_protocol ||
|
|
fi->fib_protocol == cfg->fc_protocol) &&
|
|
fib_nh_match(cfg, fi) == 0) {
|
|
fa_to_delete = fa;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!fa_to_delete)
|
|
return -ESRCH;
|
|
|
|
fa = fa_to_delete;
|
|
rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
|
|
&cfg->fc_nlinfo, 0);
|
|
|
|
l = fib_find_node(t, key);
|
|
li = find_leaf_info(l, plen);
|
|
|
|
list_del_rcu(&fa->fa_list);
|
|
|
|
if (list_empty(fa_head)) {
|
|
hlist_del_rcu(&li->hlist);
|
|
free_leaf_info(li);
|
|
}
|
|
|
|
if (hlist_empty(&l->list))
|
|
trie_leaf_remove(t, l);
|
|
|
|
if (fa->fa_state & FA_S_ACCESSED)
|
|
rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
|
|
|
|
fib_release_info(fa->fa_info);
|
|
alias_free_mem_rcu(fa);
|
|
return 0;
|
|
}
|
|
|
|
static int trie_flush_list(struct list_head *head)
|
|
{
|
|
struct fib_alias *fa, *fa_node;
|
|
int found = 0;
|
|
|
|
list_for_each_entry_safe(fa, fa_node, head, fa_list) {
|
|
struct fib_info *fi = fa->fa_info;
|
|
|
|
if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
|
|
list_del_rcu(&fa->fa_list);
|
|
fib_release_info(fa->fa_info);
|
|
alias_free_mem_rcu(fa);
|
|
found++;
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static int trie_flush_leaf(struct leaf *l)
|
|
{
|
|
int found = 0;
|
|
struct hlist_head *lih = &l->list;
|
|
struct hlist_node *node, *tmp;
|
|
struct leaf_info *li = NULL;
|
|
|
|
hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
|
|
found += trie_flush_list(&li->falh);
|
|
|
|
if (list_empty(&li->falh)) {
|
|
hlist_del_rcu(&li->hlist);
|
|
free_leaf_info(li);
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Scan for the next right leaf starting at node p->child[idx]
|
|
* Since we have back pointer, no recursion necessary.
|
|
*/
|
|
static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
|
|
{
|
|
do {
|
|
t_key idx;
|
|
|
|
if (c)
|
|
idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
|
|
else
|
|
idx = 0;
|
|
|
|
while (idx < 1u << p->bits) {
|
|
c = tnode_get_child_rcu(p, idx++);
|
|
if (!c)
|
|
continue;
|
|
|
|
if (IS_LEAF(c)) {
|
|
prefetch(p->child[idx]);
|
|
return (struct leaf *) c;
|
|
}
|
|
|
|
/* Rescan start scanning in new node */
|
|
p = (struct tnode *) c;
|
|
idx = 0;
|
|
}
|
|
|
|
/* Node empty, walk back up to parent */
|
|
c = (struct node *) p;
|
|
} while ( (p = node_parent_rcu(c)) != NULL);
|
|
|
|
return NULL; /* Root of trie */
|
|
}
|
|
|
|
static struct leaf *trie_firstleaf(struct trie *t)
|
|
{
|
|
struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
|
|
|
|
if (!n)
|
|
return NULL;
|
|
|
|
if (IS_LEAF(n)) /* trie is just a leaf */
|
|
return (struct leaf *) n;
|
|
|
|
return leaf_walk_rcu(n, NULL);
|
|
}
|
|
|
|
static struct leaf *trie_nextleaf(struct leaf *l)
|
|
{
|
|
struct node *c = (struct node *) l;
|
|
struct tnode *p = node_parent_rcu(c);
|
|
|
|
if (!p)
|
|
return NULL; /* trie with just one leaf */
|
|
|
|
return leaf_walk_rcu(p, c);
|
|
}
|
|
|
|
static struct leaf *trie_leafindex(struct trie *t, int index)
|
|
{
|
|
struct leaf *l = trie_firstleaf(t);
|
|
|
|
while (l && index-- > 0)
|
|
l = trie_nextleaf(l);
|
|
|
|
return l;
|
|
}
|
|
|
|
|
|
/*
|
|
* Caller must hold RTNL.
|
|
*/
|
|
int fib_table_flush(struct fib_table *tb)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct leaf *l, *ll = NULL;
|
|
int found = 0;
|
|
|
|
for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
|
|
found += trie_flush_leaf(l);
|
|
|
|
if (ll && hlist_empty(&ll->list))
|
|
trie_leaf_remove(t, ll);
|
|
ll = l;
|
|
}
|
|
|
|
if (ll && hlist_empty(&ll->list))
|
|
trie_leaf_remove(t, ll);
|
|
|
|
pr_debug("trie_flush found=%d\n", found);
|
|
return found;
|
|
}
|
|
|
|
void fib_table_select_default(struct fib_table *tb,
|
|
const struct flowi *flp,
|
|
struct fib_result *res)
|
|
{
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
int order, last_idx;
|
|
struct fib_info *fi = NULL;
|
|
struct fib_info *last_resort;
|
|
struct fib_alias *fa = NULL;
|
|
struct list_head *fa_head;
|
|
struct leaf *l;
|
|
|
|
last_idx = -1;
|
|
last_resort = NULL;
|
|
order = -1;
|
|
|
|
rcu_read_lock();
|
|
|
|
l = fib_find_node(t, 0);
|
|
if (!l)
|
|
goto out;
|
|
|
|
fa_head = get_fa_head(l, 0);
|
|
if (!fa_head)
|
|
goto out;
|
|
|
|
if (list_empty(fa_head))
|
|
goto out;
|
|
|
|
list_for_each_entry_rcu(fa, fa_head, fa_list) {
|
|
struct fib_info *next_fi = fa->fa_info;
|
|
|
|
if (fa->fa_scope != res->scope ||
|
|
fa->fa_type != RTN_UNICAST)
|
|
continue;
|
|
|
|
if (next_fi->fib_priority > res->fi->fib_priority)
|
|
break;
|
|
if (!next_fi->fib_nh[0].nh_gw ||
|
|
next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
|
|
continue;
|
|
fa->fa_state |= FA_S_ACCESSED;
|
|
|
|
if (fi == NULL) {
|
|
if (next_fi != res->fi)
|
|
break;
|
|
} else if (!fib_detect_death(fi, order, &last_resort,
|
|
&last_idx, tb->tb_default)) {
|
|
fib_result_assign(res, fi);
|
|
tb->tb_default = order;
|
|
goto out;
|
|
}
|
|
fi = next_fi;
|
|
order++;
|
|
}
|
|
if (order <= 0 || fi == NULL) {
|
|
tb->tb_default = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (!fib_detect_death(fi, order, &last_resort, &last_idx,
|
|
tb->tb_default)) {
|
|
fib_result_assign(res, fi);
|
|
tb->tb_default = order;
|
|
goto out;
|
|
}
|
|
if (last_idx >= 0)
|
|
fib_result_assign(res, last_resort);
|
|
tb->tb_default = last_idx;
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
|
|
struct fib_table *tb,
|
|
struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
int i, s_i;
|
|
struct fib_alias *fa;
|
|
__be32 xkey = htonl(key);
|
|
|
|
s_i = cb->args[5];
|
|
i = 0;
|
|
|
|
/* rcu_read_lock is hold by caller */
|
|
|
|
list_for_each_entry_rcu(fa, fah, fa_list) {
|
|
if (i < s_i) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
|
|
cb->nlh->nlmsg_seq,
|
|
RTM_NEWROUTE,
|
|
tb->tb_id,
|
|
fa->fa_type,
|
|
fa->fa_scope,
|
|
xkey,
|
|
plen,
|
|
fa->fa_tos,
|
|
fa->fa_info, NLM_F_MULTI) < 0) {
|
|
cb->args[5] = i;
|
|
return -1;
|
|
}
|
|
i++;
|
|
}
|
|
cb->args[5] = i;
|
|
return skb->len;
|
|
}
|
|
|
|
static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
|
|
struct sk_buff *skb, struct netlink_callback *cb)
|
|
{
|
|
struct leaf_info *li;
|
|
struct hlist_node *node;
|
|
int i, s_i;
|
|
|
|
s_i = cb->args[4];
|
|
i = 0;
|
|
|
|
/* rcu_read_lock is hold by caller */
|
|
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
|
|
if (i < s_i) {
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
if (i > s_i)
|
|
cb->args[5] = 0;
|
|
|
|
if (list_empty(&li->falh))
|
|
continue;
|
|
|
|
if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
|
|
cb->args[4] = i;
|
|
return -1;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
cb->args[4] = i;
|
|
return skb->len;
|
|
}
|
|
|
|
int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
|
|
struct netlink_callback *cb)
|
|
{
|
|
struct leaf *l;
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
t_key key = cb->args[2];
|
|
int count = cb->args[3];
|
|
|
|
rcu_read_lock();
|
|
/* Dump starting at last key.
|
|
* Note: 0.0.0.0/0 (ie default) is first key.
|
|
*/
|
|
if (count == 0)
|
|
l = trie_firstleaf(t);
|
|
else {
|
|
/* Normally, continue from last key, but if that is missing
|
|
* fallback to using slow rescan
|
|
*/
|
|
l = fib_find_node(t, key);
|
|
if (!l)
|
|
l = trie_leafindex(t, count);
|
|
}
|
|
|
|
while (l) {
|
|
cb->args[2] = l->key;
|
|
if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
|
|
cb->args[3] = count;
|
|
rcu_read_unlock();
|
|
return -1;
|
|
}
|
|
|
|
++count;
|
|
l = trie_nextleaf(l);
|
|
memset(&cb->args[4], 0,
|
|
sizeof(cb->args) - 4*sizeof(cb->args[0]));
|
|
}
|
|
cb->args[3] = count;
|
|
rcu_read_unlock();
|
|
|
|
return skb->len;
|
|
}
|
|
|
|
void __init fib_hash_init(void)
|
|
{
|
|
fn_alias_kmem = kmem_cache_create("ip_fib_alias",
|
|
sizeof(struct fib_alias),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
|
|
max(sizeof(struct leaf),
|
|
sizeof(struct leaf_info)),
|
|
0, SLAB_PANIC, NULL);
|
|
}
|
|
|
|
|
|
/* Fix more generic FIB names for init later */
|
|
struct fib_table *fib_hash_table(u32 id)
|
|
{
|
|
struct fib_table *tb;
|
|
struct trie *t;
|
|
|
|
tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
|
|
GFP_KERNEL);
|
|
if (tb == NULL)
|
|
return NULL;
|
|
|
|
tb->tb_id = id;
|
|
tb->tb_default = -1;
|
|
|
|
t = (struct trie *) tb->tb_data;
|
|
memset(t, 0, sizeof(*t));
|
|
|
|
if (id == RT_TABLE_LOCAL)
|
|
pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
|
|
|
|
return tb;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* Depth first Trie walk iterator */
|
|
struct fib_trie_iter {
|
|
struct seq_net_private p;
|
|
struct fib_table *tb;
|
|
struct tnode *tnode;
|
|
unsigned index;
|
|
unsigned depth;
|
|
};
|
|
|
|
static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
|
|
{
|
|
struct tnode *tn = iter->tnode;
|
|
unsigned cindex = iter->index;
|
|
struct tnode *p;
|
|
|
|
/* A single entry routing table */
|
|
if (!tn)
|
|
return NULL;
|
|
|
|
pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
|
|
iter->tnode, iter->index, iter->depth);
|
|
rescan:
|
|
while (cindex < (1<<tn->bits)) {
|
|
struct node *n = tnode_get_child_rcu(tn, cindex);
|
|
|
|
if (n) {
|
|
if (IS_LEAF(n)) {
|
|
iter->tnode = tn;
|
|
iter->index = cindex + 1;
|
|
} else {
|
|
/* push down one level */
|
|
iter->tnode = (struct tnode *) n;
|
|
iter->index = 0;
|
|
++iter->depth;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
++cindex;
|
|
}
|
|
|
|
/* Current node exhausted, pop back up */
|
|
p = node_parent_rcu((struct node *)tn);
|
|
if (p) {
|
|
cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
|
|
tn = p;
|
|
--iter->depth;
|
|
goto rescan;
|
|
}
|
|
|
|
/* got root? */
|
|
return NULL;
|
|
}
|
|
|
|
static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
|
|
struct trie *t)
|
|
{
|
|
struct node *n;
|
|
|
|
if (!t)
|
|
return NULL;
|
|
|
|
n = rcu_dereference(t->trie);
|
|
if (!n)
|
|
return NULL;
|
|
|
|
if (IS_TNODE(n)) {
|
|
iter->tnode = (struct tnode *) n;
|
|
iter->index = 0;
|
|
iter->depth = 1;
|
|
} else {
|
|
iter->tnode = NULL;
|
|
iter->index = 0;
|
|
iter->depth = 0;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void trie_collect_stats(struct trie *t, struct trie_stat *s)
|
|
{
|
|
struct node *n;
|
|
struct fib_trie_iter iter;
|
|
|
|
memset(s, 0, sizeof(*s));
|
|
|
|
rcu_read_lock();
|
|
for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
|
|
if (IS_LEAF(n)) {
|
|
struct leaf *l = (struct leaf *)n;
|
|
struct leaf_info *li;
|
|
struct hlist_node *tmp;
|
|
|
|
s->leaves++;
|
|
s->totdepth += iter.depth;
|
|
if (iter.depth > s->maxdepth)
|
|
s->maxdepth = iter.depth;
|
|
|
|
hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
|
|
++s->prefixes;
|
|
} else {
|
|
const struct tnode *tn = (const struct tnode *) n;
|
|
int i;
|
|
|
|
s->tnodes++;
|
|
if (tn->bits < MAX_STAT_DEPTH)
|
|
s->nodesizes[tn->bits]++;
|
|
|
|
for (i = 0; i < (1<<tn->bits); i++)
|
|
if (!tn->child[i])
|
|
s->nullpointers++;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/fib_triestats
|
|
*/
|
|
static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
|
|
{
|
|
unsigned i, max, pointers, bytes, avdepth;
|
|
|
|
if (stat->leaves)
|
|
avdepth = stat->totdepth*100 / stat->leaves;
|
|
else
|
|
avdepth = 0;
|
|
|
|
seq_printf(seq, "\tAver depth: %u.%02d\n",
|
|
avdepth / 100, avdepth % 100);
|
|
seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
|
|
|
|
seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
|
|
bytes = sizeof(struct leaf) * stat->leaves;
|
|
|
|
seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
|
|
bytes += sizeof(struct leaf_info) * stat->prefixes;
|
|
|
|
seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
|
|
bytes += sizeof(struct tnode) * stat->tnodes;
|
|
|
|
max = MAX_STAT_DEPTH;
|
|
while (max > 0 && stat->nodesizes[max-1] == 0)
|
|
max--;
|
|
|
|
pointers = 0;
|
|
for (i = 1; i <= max; i++)
|
|
if (stat->nodesizes[i] != 0) {
|
|
seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
|
|
pointers += (1<<i) * stat->nodesizes[i];
|
|
}
|
|
seq_putc(seq, '\n');
|
|
seq_printf(seq, "\tPointers: %u\n", pointers);
|
|
|
|
bytes += sizeof(struct node *) * pointers;
|
|
seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
|
|
seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
|
|
}
|
|
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
static void trie_show_usage(struct seq_file *seq,
|
|
const struct trie_use_stats *stats)
|
|
{
|
|
seq_printf(seq, "\nCounters:\n---------\n");
|
|
seq_printf(seq, "gets = %u\n", stats->gets);
|
|
seq_printf(seq, "backtracks = %u\n", stats->backtrack);
|
|
seq_printf(seq, "semantic match passed = %u\n",
|
|
stats->semantic_match_passed);
|
|
seq_printf(seq, "semantic match miss = %u\n",
|
|
stats->semantic_match_miss);
|
|
seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
|
|
seq_printf(seq, "skipped node resize = %u\n\n",
|
|
stats->resize_node_skipped);
|
|
}
|
|
#endif /* CONFIG_IP_FIB_TRIE_STATS */
|
|
|
|
static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
|
|
{
|
|
if (tb->tb_id == RT_TABLE_LOCAL)
|
|
seq_puts(seq, "Local:\n");
|
|
else if (tb->tb_id == RT_TABLE_MAIN)
|
|
seq_puts(seq, "Main:\n");
|
|
else
|
|
seq_printf(seq, "Id %d:\n", tb->tb_id);
|
|
}
|
|
|
|
|
|
static int fib_triestat_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct net *net = (struct net *)seq->private;
|
|
unsigned int h;
|
|
|
|
seq_printf(seq,
|
|
"Basic info: size of leaf:"
|
|
" %Zd bytes, size of tnode: %Zd bytes.\n",
|
|
sizeof(struct leaf), sizeof(struct tnode));
|
|
|
|
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
struct hlist_node *node;
|
|
struct fib_table *tb;
|
|
|
|
hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
|
|
struct trie *t = (struct trie *) tb->tb_data;
|
|
struct trie_stat stat;
|
|
|
|
if (!t)
|
|
continue;
|
|
|
|
fib_table_print(seq, tb);
|
|
|
|
trie_collect_stats(t, &stat);
|
|
trie_show_stats(seq, &stat);
|
|
#ifdef CONFIG_IP_FIB_TRIE_STATS
|
|
trie_show_usage(seq, &t->stats);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fib_triestat_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open_net(inode, file, fib_triestat_seq_show);
|
|
}
|
|
|
|
static const struct file_operations fib_triestat_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_triestat_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release_net,
|
|
};
|
|
|
|
static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
|
|
{
|
|
struct fib_trie_iter *iter = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
loff_t idx = 0;
|
|
unsigned int h;
|
|
|
|
for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
struct hlist_node *node;
|
|
struct fib_table *tb;
|
|
|
|
hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
|
|
struct node *n;
|
|
|
|
for (n = fib_trie_get_first(iter,
|
|
(struct trie *) tb->tb_data);
|
|
n; n = fib_trie_get_next(iter))
|
|
if (pos == idx++) {
|
|
iter->tb = tb;
|
|
return n;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
|
|
__acquires(RCU)
|
|
{
|
|
rcu_read_lock();
|
|
return fib_trie_get_idx(seq, *pos);
|
|
}
|
|
|
|
static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct fib_trie_iter *iter = seq->private;
|
|
struct net *net = seq_file_net(seq);
|
|
struct fib_table *tb = iter->tb;
|
|
struct hlist_node *tb_node;
|
|
unsigned int h;
|
|
struct node *n;
|
|
|
|
++*pos;
|
|
/* next node in same table */
|
|
n = fib_trie_get_next(iter);
|
|
if (n)
|
|
return n;
|
|
|
|
/* walk rest of this hash chain */
|
|
h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
|
|
while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
|
|
tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
|
|
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
|
|
if (n)
|
|
goto found;
|
|
}
|
|
|
|
/* new hash chain */
|
|
while (++h < FIB_TABLE_HASHSZ) {
|
|
struct hlist_head *head = &net->ipv4.fib_table_hash[h];
|
|
hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
|
|
n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
|
|
if (n)
|
|
goto found;
|
|
}
|
|
}
|
|
return NULL;
|
|
|
|
found:
|
|
iter->tb = tb;
|
|
return n;
|
|
}
|
|
|
|
static void fib_trie_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(RCU)
|
|
{
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void seq_indent(struct seq_file *seq, int n)
|
|
{
|
|
while (n-- > 0) seq_puts(seq, " ");
|
|
}
|
|
|
|
static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
|
|
{
|
|
switch (s) {
|
|
case RT_SCOPE_UNIVERSE: return "universe";
|
|
case RT_SCOPE_SITE: return "site";
|
|
case RT_SCOPE_LINK: return "link";
|
|
case RT_SCOPE_HOST: return "host";
|
|
case RT_SCOPE_NOWHERE: return "nowhere";
|
|
default:
|
|
snprintf(buf, len, "scope=%d", s);
|
|
return buf;
|
|
}
|
|
}
|
|
|
|
static const char *const rtn_type_names[__RTN_MAX] = {
|
|
[RTN_UNSPEC] = "UNSPEC",
|
|
[RTN_UNICAST] = "UNICAST",
|
|
[RTN_LOCAL] = "LOCAL",
|
|
[RTN_BROADCAST] = "BROADCAST",
|
|
[RTN_ANYCAST] = "ANYCAST",
|
|
[RTN_MULTICAST] = "MULTICAST",
|
|
[RTN_BLACKHOLE] = "BLACKHOLE",
|
|
[RTN_UNREACHABLE] = "UNREACHABLE",
|
|
[RTN_PROHIBIT] = "PROHIBIT",
|
|
[RTN_THROW] = "THROW",
|
|
[RTN_NAT] = "NAT",
|
|
[RTN_XRESOLVE] = "XRESOLVE",
|
|
};
|
|
|
|
static inline const char *rtn_type(char *buf, size_t len, unsigned t)
|
|
{
|
|
if (t < __RTN_MAX && rtn_type_names[t])
|
|
return rtn_type_names[t];
|
|
snprintf(buf, len, "type %u", t);
|
|
return buf;
|
|
}
|
|
|
|
/* Pretty print the trie */
|
|
static int fib_trie_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
const struct fib_trie_iter *iter = seq->private;
|
|
struct node *n = v;
|
|
|
|
if (!node_parent_rcu(n))
|
|
fib_table_print(seq, iter->tb);
|
|
|
|
if (IS_TNODE(n)) {
|
|
struct tnode *tn = (struct tnode *) n;
|
|
__be32 prf = htonl(mask_pfx(tn->key, tn->pos));
|
|
|
|
seq_indent(seq, iter->depth-1);
|
|
seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
|
|
&prf, tn->pos, tn->bits, tn->full_children,
|
|
tn->empty_children);
|
|
|
|
} else {
|
|
struct leaf *l = (struct leaf *) n;
|
|
struct leaf_info *li;
|
|
struct hlist_node *node;
|
|
__be32 val = htonl(l->key);
|
|
|
|
seq_indent(seq, iter->depth);
|
|
seq_printf(seq, " |-- %pI4\n", &val);
|
|
|
|
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
|
|
struct fib_alias *fa;
|
|
|
|
list_for_each_entry_rcu(fa, &li->falh, fa_list) {
|
|
char buf1[32], buf2[32];
|
|
|
|
seq_indent(seq, iter->depth+1);
|
|
seq_printf(seq, " /%d %s %s", li->plen,
|
|
rtn_scope(buf1, sizeof(buf1),
|
|
fa->fa_scope),
|
|
rtn_type(buf2, sizeof(buf2),
|
|
fa->fa_type));
|
|
if (fa->fa_tos)
|
|
seq_printf(seq, " tos=%d", fa->fa_tos);
|
|
seq_putc(seq, '\n');
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fib_trie_seq_ops = {
|
|
.start = fib_trie_seq_start,
|
|
.next = fib_trie_seq_next,
|
|
.stop = fib_trie_seq_stop,
|
|
.show = fib_trie_seq_show,
|
|
};
|
|
|
|
static int fib_trie_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open_net(inode, file, &fib_trie_seq_ops,
|
|
sizeof(struct fib_trie_iter));
|
|
}
|
|
|
|
static const struct file_operations fib_trie_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_trie_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net,
|
|
};
|
|
|
|
struct fib_route_iter {
|
|
struct seq_net_private p;
|
|
struct trie *main_trie;
|
|
loff_t pos;
|
|
t_key key;
|
|
};
|
|
|
|
static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
|
|
{
|
|
struct leaf *l = NULL;
|
|
struct trie *t = iter->main_trie;
|
|
|
|
/* use cache location of last found key */
|
|
if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
|
|
pos -= iter->pos;
|
|
else {
|
|
iter->pos = 0;
|
|
l = trie_firstleaf(t);
|
|
}
|
|
|
|
while (l && pos-- > 0) {
|
|
iter->pos++;
|
|
l = trie_nextleaf(l);
|
|
}
|
|
|
|
if (l)
|
|
iter->key = pos; /* remember it */
|
|
else
|
|
iter->pos = 0; /* forget it */
|
|
|
|
return l;
|
|
}
|
|
|
|
static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
|
|
__acquires(RCU)
|
|
{
|
|
struct fib_route_iter *iter = seq->private;
|
|
struct fib_table *tb;
|
|
|
|
rcu_read_lock();
|
|
tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
|
|
if (!tb)
|
|
return NULL;
|
|
|
|
iter->main_trie = (struct trie *) tb->tb_data;
|
|
if (*pos == 0)
|
|
return SEQ_START_TOKEN;
|
|
else
|
|
return fib_route_get_idx(iter, *pos - 1);
|
|
}
|
|
|
|
static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct fib_route_iter *iter = seq->private;
|
|
struct leaf *l = v;
|
|
|
|
++*pos;
|
|
if (v == SEQ_START_TOKEN) {
|
|
iter->pos = 0;
|
|
l = trie_firstleaf(iter->main_trie);
|
|
} else {
|
|
iter->pos++;
|
|
l = trie_nextleaf(l);
|
|
}
|
|
|
|
if (l)
|
|
iter->key = l->key;
|
|
else
|
|
iter->pos = 0;
|
|
return l;
|
|
}
|
|
|
|
static void fib_route_seq_stop(struct seq_file *seq, void *v)
|
|
__releases(RCU)
|
|
{
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
|
|
{
|
|
static unsigned type2flags[RTN_MAX + 1] = {
|
|
[7] = RTF_REJECT, [8] = RTF_REJECT,
|
|
};
|
|
unsigned flags = type2flags[type];
|
|
|
|
if (fi && fi->fib_nh->nh_gw)
|
|
flags |= RTF_GATEWAY;
|
|
if (mask == htonl(0xFFFFFFFF))
|
|
flags |= RTF_HOST;
|
|
flags |= RTF_UP;
|
|
return flags;
|
|
}
|
|
|
|
/*
|
|
* This outputs /proc/net/route.
|
|
* The format of the file is not supposed to be changed
|
|
* and needs to be same as fib_hash output to avoid breaking
|
|
* legacy utilities
|
|
*/
|
|
static int fib_route_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct leaf *l = v;
|
|
struct leaf_info *li;
|
|
struct hlist_node *node;
|
|
|
|
if (v == SEQ_START_TOKEN) {
|
|
seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
|
|
"\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
|
|
"\tWindow\tIRTT");
|
|
return 0;
|
|
}
|
|
|
|
hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
|
|
struct fib_alias *fa;
|
|
__be32 mask, prefix;
|
|
|
|
mask = inet_make_mask(li->plen);
|
|
prefix = htonl(l->key);
|
|
|
|
list_for_each_entry_rcu(fa, &li->falh, fa_list) {
|
|
const struct fib_info *fi = fa->fa_info;
|
|
unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
|
|
int len;
|
|
|
|
if (fa->fa_type == RTN_BROADCAST
|
|
|| fa->fa_type == RTN_MULTICAST)
|
|
continue;
|
|
|
|
if (fi)
|
|
seq_printf(seq,
|
|
"%s\t%08X\t%08X\t%04X\t%d\t%u\t"
|
|
"%d\t%08X\t%d\t%u\t%u%n",
|
|
fi->fib_dev ? fi->fib_dev->name : "*",
|
|
prefix,
|
|
fi->fib_nh->nh_gw, flags, 0, 0,
|
|
fi->fib_priority,
|
|
mask,
|
|
(fi->fib_advmss ?
|
|
fi->fib_advmss + 40 : 0),
|
|
fi->fib_window,
|
|
fi->fib_rtt >> 3, &len);
|
|
else
|
|
seq_printf(seq,
|
|
"*\t%08X\t%08X\t%04X\t%d\t%u\t"
|
|
"%d\t%08X\t%d\t%u\t%u%n",
|
|
prefix, 0, flags, 0, 0, 0,
|
|
mask, 0, 0, 0, &len);
|
|
|
|
seq_printf(seq, "%*s\n", 127 - len, "");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fib_route_seq_ops = {
|
|
.start = fib_route_seq_start,
|
|
.next = fib_route_seq_next,
|
|
.stop = fib_route_seq_stop,
|
|
.show = fib_route_seq_show,
|
|
};
|
|
|
|
static int fib_route_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open_net(inode, file, &fib_route_seq_ops,
|
|
sizeof(struct fib_route_iter));
|
|
}
|
|
|
|
static const struct file_operations fib_route_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = fib_route_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_net,
|
|
};
|
|
|
|
int __net_init fib_proc_init(struct net *net)
|
|
{
|
|
if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
|
|
goto out1;
|
|
|
|
if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
|
|
&fib_triestat_fops))
|
|
goto out2;
|
|
|
|
if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
|
|
goto out3;
|
|
|
|
return 0;
|
|
|
|
out3:
|
|
proc_net_remove(net, "fib_triestat");
|
|
out2:
|
|
proc_net_remove(net, "fib_trie");
|
|
out1:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void __net_exit fib_proc_exit(struct net *net)
|
|
{
|
|
proc_net_remove(net, "fib_trie");
|
|
proc_net_remove(net, "fib_triestat");
|
|
proc_net_remove(net, "route");
|
|
}
|
|
|
|
#endif /* CONFIG_PROC_FS */
|