forked from Minki/linux
589ee62844
Update code that relied on sched.h including various MM types for them. This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
611 lines
17 KiB
C
611 lines
17 KiB
C
/* arch/sparc64/mm/tsb.c
|
|
*
|
|
* Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tsb.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/oplib.h>
|
|
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
|
|
{
|
|
vaddr >>= hash_shift;
|
|
return vaddr & (nentries - 1);
|
|
}
|
|
|
|
static inline int tag_compare(unsigned long tag, unsigned long vaddr)
|
|
{
|
|
return (tag == (vaddr >> 22));
|
|
}
|
|
|
|
static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long idx;
|
|
|
|
for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
|
|
struct tsb *ent = &swapper_tsb[idx];
|
|
unsigned long match = idx << 13;
|
|
|
|
match |= (ent->tag << 22);
|
|
if (match >= start && match < end)
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
}
|
|
}
|
|
|
|
/* TSB flushes need only occur on the processor initiating the address
|
|
* space modification, not on each cpu the address space has run on.
|
|
* Only the TLB flush needs that treatment.
|
|
*/
|
|
|
|
void flush_tsb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v;
|
|
|
|
if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
|
|
return flush_tsb_kernel_range_scan(start, end);
|
|
|
|
for (v = start; v < end; v += PAGE_SIZE) {
|
|
unsigned long hash = tsb_hash(v, PAGE_SHIFT,
|
|
KERNEL_TSB_NENTRIES);
|
|
struct tsb *ent = &swapper_tsb[hash];
|
|
|
|
if (tag_compare(ent->tag, v))
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
}
|
|
}
|
|
|
|
static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
|
|
unsigned long hash_shift,
|
|
unsigned long nentries)
|
|
{
|
|
unsigned long tag, ent, hash;
|
|
|
|
v &= ~0x1UL;
|
|
hash = tsb_hash(v, hash_shift, nentries);
|
|
ent = tsb + (hash * sizeof(struct tsb));
|
|
tag = (v >> 22UL);
|
|
|
|
tsb_flush(ent, tag);
|
|
}
|
|
|
|
static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
|
|
unsigned long tsb, unsigned long nentries)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < tb->tlb_nr; i++)
|
|
__flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
|
|
}
|
|
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
|
|
unsigned long hash_shift,
|
|
unsigned long nentries,
|
|
unsigned int hugepage_shift)
|
|
{
|
|
unsigned int hpage_entries;
|
|
unsigned int i;
|
|
|
|
hpage_entries = 1 << (hugepage_shift - hash_shift);
|
|
for (i = 0; i < hpage_entries; i++)
|
|
__flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
|
|
nentries);
|
|
}
|
|
|
|
static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
|
|
unsigned long tsb, unsigned long nentries,
|
|
unsigned int hugepage_shift)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < tb->tlb_nr; i++)
|
|
__flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
|
|
nentries, hugepage_shift);
|
|
}
|
|
#endif
|
|
|
|
void flush_tsb_user(struct tlb_batch *tb)
|
|
{
|
|
struct mm_struct *mm = tb->mm;
|
|
unsigned long nentries, base, flags;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
if (tb->hugepage_shift < HPAGE_SHIFT) {
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
if (tb->hugepage_shift == PAGE_SHIFT)
|
|
__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
|
|
#if defined(CONFIG_HUGETLB_PAGE)
|
|
else
|
|
__flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
|
|
tb->hugepage_shift);
|
|
#endif
|
|
}
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
__flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
|
|
tb->hugepage_shift);
|
|
}
|
|
#endif
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
|
|
unsigned int hugepage_shift)
|
|
{
|
|
unsigned long nentries, base, flags;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
if (hugepage_shift < HPAGE_SHIFT) {
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
if (hugepage_shift == PAGE_SHIFT)
|
|
__flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
|
|
nentries);
|
|
#if defined(CONFIG_HUGETLB_PAGE)
|
|
else
|
|
__flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
|
|
nentries, hugepage_shift);
|
|
#endif
|
|
}
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
__flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
|
|
nentries, hugepage_shift);
|
|
}
|
|
#endif
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
|
|
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
|
|
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
|
|
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
|
|
#endif
|
|
|
|
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
|
|
{
|
|
unsigned long tsb_reg, base, tsb_paddr;
|
|
unsigned long page_sz, tte;
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_nentries =
|
|
tsb_bytes / sizeof(struct tsb);
|
|
|
|
switch (tsb_idx) {
|
|
case MM_TSB_BASE:
|
|
base = TSBMAP_8K_BASE;
|
|
break;
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
case MM_TSB_HUGE:
|
|
base = TSBMAP_4M_BASE;
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
tte = pgprot_val(PAGE_KERNEL_LOCKED);
|
|
tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
|
|
BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
|
|
|
|
/* Use the smallest page size that can map the whole TSB
|
|
* in one TLB entry.
|
|
*/
|
|
switch (tsb_bytes) {
|
|
case 8192 << 0:
|
|
tsb_reg = 0x0UL;
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
base += (tsb_paddr & 8192);
|
|
#endif
|
|
page_sz = 8192;
|
|
break;
|
|
|
|
case 8192 << 1:
|
|
tsb_reg = 0x1UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 2:
|
|
tsb_reg = 0x2UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 3:
|
|
tsb_reg = 0x3UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 4:
|
|
tsb_reg = 0x4UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 5:
|
|
tsb_reg = 0x5UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 6:
|
|
tsb_reg = 0x6UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 7:
|
|
tsb_reg = 0x7UL;
|
|
page_sz = 4 * 1024 * 1024;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
|
|
current->comm, current->pid, tsb_bytes);
|
|
do_exit(SIGSEGV);
|
|
}
|
|
tte |= pte_sz_bits(page_sz);
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
/* Physical mapping, no locked TLB entry for TSB. */
|
|
tsb_reg |= tsb_paddr;
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
|
|
} else {
|
|
tsb_reg |= base;
|
|
tsb_reg |= (tsb_paddr & (page_sz - 1UL));
|
|
tte |= (tsb_paddr & ~(page_sz - 1UL));
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
|
|
}
|
|
|
|
/* Setup the Hypervisor TSB descriptor. */
|
|
if (tlb_type == hypervisor) {
|
|
struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
|
|
|
|
switch (tsb_idx) {
|
|
case MM_TSB_BASE:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_BASE;
|
|
break;
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
case MM_TSB_HUGE:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
}
|
|
hp->assoc = 1;
|
|
hp->num_ttes = tsb_bytes / 16;
|
|
hp->ctx_idx = 0;
|
|
switch (tsb_idx) {
|
|
case MM_TSB_BASE:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_BASE;
|
|
break;
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
case MM_TSB_HUGE:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
}
|
|
hp->tsb_base = tsb_paddr;
|
|
hp->resv = 0;
|
|
}
|
|
}
|
|
|
|
struct kmem_cache *pgtable_cache __read_mostly;
|
|
|
|
static struct kmem_cache *tsb_caches[8] __read_mostly;
|
|
|
|
static const char *tsb_cache_names[8] = {
|
|
"tsb_8KB",
|
|
"tsb_16KB",
|
|
"tsb_32KB",
|
|
"tsb_64KB",
|
|
"tsb_128KB",
|
|
"tsb_256KB",
|
|
"tsb_512KB",
|
|
"tsb_1MB",
|
|
};
|
|
|
|
void __init pgtable_cache_init(void)
|
|
{
|
|
unsigned long i;
|
|
|
|
pgtable_cache = kmem_cache_create("pgtable_cache",
|
|
PAGE_SIZE, PAGE_SIZE,
|
|
0,
|
|
_clear_page);
|
|
if (!pgtable_cache) {
|
|
prom_printf("pgtable_cache_init(): Could not create!\n");
|
|
prom_halt();
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
|
|
unsigned long size = 8192 << i;
|
|
const char *name = tsb_cache_names[i];
|
|
|
|
tsb_caches[i] = kmem_cache_create(name,
|
|
size, size,
|
|
0, NULL);
|
|
if (!tsb_caches[i]) {
|
|
prom_printf("Could not create %s cache\n", name);
|
|
prom_halt();
|
|
}
|
|
}
|
|
}
|
|
|
|
int sysctl_tsb_ratio = -2;
|
|
|
|
static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
|
|
{
|
|
unsigned long num_ents = (new_size / sizeof(struct tsb));
|
|
|
|
if (sysctl_tsb_ratio < 0)
|
|
return num_ents - (num_ents >> -sysctl_tsb_ratio);
|
|
else
|
|
return num_ents + (num_ents >> sysctl_tsb_ratio);
|
|
}
|
|
|
|
/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
|
|
* do_sparc64_fault() invokes this routine to try and grow it.
|
|
*
|
|
* When we reach the maximum TSB size supported, we stick ~0UL into
|
|
* tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
|
|
* will not trigger any longer.
|
|
*
|
|
* The TSB can be anywhere from 8K to 1MB in size, in increasing powers
|
|
* of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
|
|
* must be 512K aligned. It also must be physically contiguous, so we
|
|
* cannot use vmalloc().
|
|
*
|
|
* The idea here is to grow the TSB when the RSS of the process approaches
|
|
* the number of entries that the current TSB can hold at once. Currently,
|
|
* we trigger when the RSS hits 3/4 of the TSB capacity.
|
|
*/
|
|
void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
|
|
{
|
|
unsigned long max_tsb_size = 1 * 1024 * 1024;
|
|
unsigned long new_size, old_size, flags;
|
|
struct tsb *old_tsb, *new_tsb;
|
|
unsigned long new_cache_index, old_cache_index;
|
|
unsigned long new_rss_limit;
|
|
gfp_t gfp_flags;
|
|
|
|
if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
|
|
max_tsb_size = (PAGE_SIZE << MAX_ORDER);
|
|
|
|
new_cache_index = 0;
|
|
for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
|
|
new_rss_limit = tsb_size_to_rss_limit(new_size);
|
|
if (new_rss_limit > rss)
|
|
break;
|
|
new_cache_index++;
|
|
}
|
|
|
|
if (new_size == max_tsb_size)
|
|
new_rss_limit = ~0UL;
|
|
|
|
retry_tsb_alloc:
|
|
gfp_flags = GFP_KERNEL;
|
|
if (new_size > (PAGE_SIZE * 2))
|
|
gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
|
|
|
|
new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
|
|
gfp_flags, numa_node_id());
|
|
if (unlikely(!new_tsb)) {
|
|
/* Not being able to fork due to a high-order TSB
|
|
* allocation failure is very bad behavior. Just back
|
|
* down to a 0-order allocation and force no TSB
|
|
* growing for this address space.
|
|
*/
|
|
if (mm->context.tsb_block[tsb_index].tsb == NULL &&
|
|
new_cache_index > 0) {
|
|
new_cache_index = 0;
|
|
new_size = 8192;
|
|
new_rss_limit = ~0UL;
|
|
goto retry_tsb_alloc;
|
|
}
|
|
|
|
/* If we failed on a TSB grow, we are under serious
|
|
* memory pressure so don't try to grow any more.
|
|
*/
|
|
if (mm->context.tsb_block[tsb_index].tsb != NULL)
|
|
mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
|
|
return;
|
|
}
|
|
|
|
/* Mark all tags as invalid. */
|
|
tsb_init(new_tsb, new_size);
|
|
|
|
/* Ok, we are about to commit the changes. If we are
|
|
* growing an existing TSB the locking is very tricky,
|
|
* so WATCH OUT!
|
|
*
|
|
* We have to hold mm->context.lock while committing to the
|
|
* new TSB, this synchronizes us with processors in
|
|
* flush_tsb_user() and switch_mm() for this address space.
|
|
*
|
|
* But even with that lock held, processors run asynchronously
|
|
* accessing the old TSB via TLB miss handling. This is OK
|
|
* because those actions are just propagating state from the
|
|
* Linux page tables into the TSB, page table mappings are not
|
|
* being changed. If a real fault occurs, the processor will
|
|
* synchronize with us when it hits flush_tsb_user(), this is
|
|
* also true for the case where vmscan is modifying the page
|
|
* tables. The only thing we need to be careful with is to
|
|
* skip any locked TSB entries during copy_tsb().
|
|
*
|
|
* When we finish committing to the new TSB, we have to drop
|
|
* the lock and ask all other cpus running this address space
|
|
* to run tsb_context_switch() to see the new TSB table.
|
|
*/
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
old_tsb = mm->context.tsb_block[tsb_index].tsb;
|
|
old_cache_index =
|
|
(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
|
|
old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
|
|
sizeof(struct tsb));
|
|
|
|
|
|
/* Handle multiple threads trying to grow the TSB at the same time.
|
|
* One will get in here first, and bump the size and the RSS limit.
|
|
* The others will get in here next and hit this check.
|
|
*/
|
|
if (unlikely(old_tsb &&
|
|
(rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
|
|
return;
|
|
}
|
|
|
|
mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
|
|
|
|
if (old_tsb) {
|
|
extern void copy_tsb(unsigned long old_tsb_base,
|
|
unsigned long old_tsb_size,
|
|
unsigned long new_tsb_base,
|
|
unsigned long new_tsb_size);
|
|
unsigned long old_tsb_base = (unsigned long) old_tsb;
|
|
unsigned long new_tsb_base = (unsigned long) new_tsb;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
old_tsb_base = __pa(old_tsb_base);
|
|
new_tsb_base = __pa(new_tsb_base);
|
|
}
|
|
copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
|
|
}
|
|
|
|
mm->context.tsb_block[tsb_index].tsb = new_tsb;
|
|
setup_tsb_params(mm, tsb_index, new_size);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
/* If old_tsb is NULL, we're being invoked for the first time
|
|
* from init_new_context().
|
|
*/
|
|
if (old_tsb) {
|
|
/* Reload it on the local cpu. */
|
|
tsb_context_switch(mm);
|
|
|
|
/* Now force other processors to do the same. */
|
|
preempt_disable();
|
|
smp_tsb_sync(mm);
|
|
preempt_enable();
|
|
|
|
/* Now it is safe to free the old tsb. */
|
|
kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
|
|
}
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
unsigned long mm_rss = get_mm_rss(mm);
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
unsigned long saved_hugetlb_pte_count;
|
|
unsigned long saved_thp_pte_count;
|
|
#endif
|
|
unsigned int i;
|
|
|
|
spin_lock_init(&mm->context.lock);
|
|
|
|
mm->context.sparc64_ctx_val = 0UL;
|
|
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
/* We reset them to zero because the fork() page copying
|
|
* will re-increment the counters as the parent PTEs are
|
|
* copied into the child address space.
|
|
*/
|
|
saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
|
|
saved_thp_pte_count = mm->context.thp_pte_count;
|
|
mm->context.hugetlb_pte_count = 0;
|
|
mm->context.thp_pte_count = 0;
|
|
|
|
mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
|
|
#endif
|
|
|
|
/* copy_mm() copies over the parent's mm_struct before calling
|
|
* us, so we need to zero out the TSB pointer or else tsb_grow()
|
|
* will be confused and think there is an older TSB to free up.
|
|
*/
|
|
for (i = 0; i < MM_NUM_TSBS; i++)
|
|
mm->context.tsb_block[i].tsb = NULL;
|
|
|
|
/* If this is fork, inherit the parent's TSB size. We would
|
|
* grow it to that size on the first page fault anyways.
|
|
*/
|
|
tsb_grow(mm, MM_TSB_BASE, mm_rss);
|
|
|
|
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
|
|
tsb_grow(mm, MM_TSB_HUGE,
|
|
(saved_hugetlb_pte_count + saved_thp_pte_count) *
|
|
REAL_HPAGE_PER_HPAGE);
|
|
#endif
|
|
|
|
if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tsb_destroy_one(struct tsb_config *tp)
|
|
{
|
|
unsigned long cache_index;
|
|
|
|
if (!tp->tsb)
|
|
return;
|
|
cache_index = tp->tsb_reg_val & 0x7UL;
|
|
kmem_cache_free(tsb_caches[cache_index], tp->tsb);
|
|
tp->tsb = NULL;
|
|
tp->tsb_reg_val = 0UL;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long flags, i;
|
|
|
|
for (i = 0; i < MM_NUM_TSBS; i++)
|
|
tsb_destroy_one(&mm->context.tsb_block[i]);
|
|
|
|
spin_lock_irqsave(&ctx_alloc_lock, flags);
|
|
|
|
if (CTX_VALID(mm->context)) {
|
|
unsigned long nr = CTX_NRBITS(mm->context);
|
|
mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
|
|
}
|