Update for core intialization code. Initialize status register after receiving NMI for CPU wakeup. Add the low level L1D flush code before enabling threads in core. Also convert the ehb to _ehb so that it works under more GCC versions. Signed-off-by: Jayachandran C <jayachandranc@netlogicmicro.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/3755/ Patchwork: https://patchwork.linux-mips.org/patch/4095/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
320 lines
8.0 KiB
ArmAsm
320 lines
8.0 KiB
ArmAsm
/*
|
|
* Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
|
|
* reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the NetLogic
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
|
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
|
|
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/asm.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/regdef.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/stackframe.h>
|
|
#include <asm/asmmacro.h>
|
|
#include <asm/addrspace.h>
|
|
|
|
#include <asm/netlogic/common.h>
|
|
|
|
#include <asm/netlogic/xlp-hal/iomap.h>
|
|
#include <asm/netlogic/xlp-hal/xlp.h>
|
|
#include <asm/netlogic/xlp-hal/sys.h>
|
|
#include <asm/netlogic/xlp-hal/cpucontrol.h>
|
|
|
|
#define CP0_EBASE $15
|
|
#define SYS_CPU_COHERENT_BASE(node) CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \
|
|
XLP_IO_SYS_OFFSET(node) + XLP_IO_PCI_HDRSZ + \
|
|
SYS_CPU_NONCOHERENT_MODE * 4
|
|
|
|
#define XLP_AX_WORKAROUND /* enable Ax silicon workarounds */
|
|
|
|
/* Enable XLP features and workarounds in the LSU */
|
|
.macro xlp_config_lsu
|
|
li t0, LSU_DEFEATURE
|
|
mfcr t1, t0
|
|
|
|
lui t2, 0x4080 /* Enable Unaligned Access, L2HPE */
|
|
or t1, t1, t2
|
|
#ifdef XLP_AX_WORKAROUND
|
|
li t2, ~0xe /* S1RCM */
|
|
and t1, t1, t2
|
|
#endif
|
|
mtcr t1, t0
|
|
|
|
#ifdef XLP_AX_WORKAROUND
|
|
li t0, SCHED_DEFEATURE
|
|
lui t1, 0x0100 /* Disable BRU accepting ALU ops */
|
|
mtcr t1, t0
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* This is the code that will be copied to the reset entry point for
|
|
* XLR and XLP. The XLP cores start here when they are woken up. This
|
|
* is also the NMI entry point.
|
|
*/
|
|
.macro xlp_flush_l1_dcache
|
|
li t0, LSU_DEBUG_DATA0
|
|
li t1, LSU_DEBUG_ADDR
|
|
li t2, 0 /* index */
|
|
li t3, 0x1000 /* loop count */
|
|
1:
|
|
sll v0, t2, 5
|
|
mtcr zero, t0
|
|
ori v1, v0, 0x3 /* way0 | write_enable | write_active */
|
|
mtcr v1, t1
|
|
2:
|
|
mfcr v1, t1
|
|
andi v1, 0x1 /* wait for write_active == 0 */
|
|
bnez v1, 2b
|
|
nop
|
|
mtcr zero, t0
|
|
ori v1, v0, 0x7 /* way1 | write_enable | write_active */
|
|
mtcr v1, t1
|
|
3:
|
|
mfcr v1, t1
|
|
andi v1, 0x1 /* wait for write_active == 0 */
|
|
bnez v1, 3b
|
|
nop
|
|
addi t2, 1
|
|
bne t3, t2, 1b
|
|
nop
|
|
.endm
|
|
|
|
/*
|
|
* The cores can come start when they are woken up. This is also the NMI
|
|
* entry, so check that first.
|
|
*
|
|
* The data corresponding to reset/NMI is stored at RESET_DATA_PHYS
|
|
* location, this will have the thread mask (used when core is woken up)
|
|
* and the current NMI handler in case we reached here for an NMI.
|
|
*
|
|
* When a core or thread is newly woken up, it loops in a 'wait'. When
|
|
* the CPU really needs waking up, we send an NMI to it, with the NMI
|
|
* handler set to prom_boot_secondary_cpus
|
|
*/
|
|
|
|
.set noreorder
|
|
.set noat
|
|
.set arch=xlr /* for mfcr/mtcr, XLR is sufficient */
|
|
|
|
FEXPORT(nlm_reset_entry)
|
|
dmtc0 k0, $22, 6
|
|
dmtc0 k1, $22, 7
|
|
mfc0 k0, CP0_STATUS
|
|
li k1, 0x80000
|
|
and k1, k0, k1
|
|
beqz k1, 1f /* go to real reset entry */
|
|
nop
|
|
li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */
|
|
ld k0, BOOT_NMI_HANDLER(k1)
|
|
jr k0
|
|
nop
|
|
|
|
1: /* Entry point on core wakeup */
|
|
mfc0 t0, CP0_EBASE, 1
|
|
mfc0 t1, CP0_EBASE, 1
|
|
srl t1, 5
|
|
andi t1, 0x3 /* t1 <- node */
|
|
li t2, 0x40000
|
|
mul t3, t2, t1 /* t3 = node * 0x40000 */
|
|
srl t0, t0, 2
|
|
and t0, t0, 0x7 /* t0 <- core */
|
|
li t1, 0x1
|
|
sll t0, t1, t0
|
|
nor t0, t0, zero /* t0 <- ~(1 << core) */
|
|
li t2, SYS_CPU_COHERENT_BASE(0)
|
|
add t2, t2, t3 /* t2 <- SYS offset for node */
|
|
lw t1, 0(t2)
|
|
and t1, t1, t0
|
|
sw t1, 0(t2)
|
|
|
|
/* read back to ensure complete */
|
|
lw t1, 0(t2)
|
|
sync
|
|
|
|
/* Configure LSU on Non-0 Cores. */
|
|
xlp_config_lsu
|
|
/* FALL THROUGH */
|
|
|
|
/*
|
|
* Wake up sibling threads from the initial thread in
|
|
* a core.
|
|
*/
|
|
EXPORT(nlm_boot_siblings)
|
|
/* core L1D flush before enable threads */
|
|
xlp_flush_l1_dcache
|
|
/* Enable hw threads by writing to MAP_THREADMODE of the core */
|
|
li t0, CKSEG1ADDR(RESET_DATA_PHYS)
|
|
lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */
|
|
li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE)
|
|
mfcr t2, t0
|
|
or t2, t2, t1
|
|
mtcr t2, t0
|
|
|
|
/*
|
|
* The new hardware thread starts at the next instruction
|
|
* For all the cases other than core 0 thread 0, we will
|
|
* jump to the secondary wait function.
|
|
*/
|
|
mfc0 v0, CP0_EBASE, 1
|
|
andi v0, 0x7f /* v0 <- node/core */
|
|
|
|
/* Init MMU in the first thread after changing THREAD_MODE
|
|
* register (Ax Errata?)
|
|
*/
|
|
andi v1, v0, 0x3 /* v1 <- thread id */
|
|
bnez v1, 2f
|
|
nop
|
|
|
|
li t0, MMU_SETUP
|
|
li t1, 0
|
|
mtcr t1, t0
|
|
_ehb
|
|
|
|
2: beqz v0, 4f /* boot cpu (cpuid == 0)? */
|
|
nop
|
|
|
|
/* setup status reg */
|
|
move t1, zero
|
|
#ifdef CONFIG_64BIT
|
|
ori t1, ST0_KX
|
|
#endif
|
|
mtc0 t1, CP0_STATUS
|
|
/* mark CPU ready */
|
|
PTR_LA t1, nlm_cpu_ready
|
|
sll v1, v0, 2
|
|
PTR_ADDU t1, v1
|
|
li t2, 1
|
|
sw t2, 0(t1)
|
|
/* Wait until NMI hits */
|
|
3: wait
|
|
j 3b
|
|
nop
|
|
|
|
/*
|
|
* For the boot CPU, we have to restore registers and
|
|
* return
|
|
*/
|
|
4: dmfc0 t0, $4, 2 /* restore SP from UserLocal */
|
|
li t1, 0xfadebeef
|
|
dmtc0 t1, $4, 2 /* restore SP from UserLocal */
|
|
PTR_SUBU sp, t0, PT_SIZE
|
|
RESTORE_ALL
|
|
jr ra
|
|
nop
|
|
EXPORT(nlm_reset_entry_end)
|
|
|
|
FEXPORT(xlp_boot_core0_siblings) /* "Master" cpu starts from here */
|
|
xlp_config_lsu
|
|
dmtc0 sp, $4, 2 /* SP saved in UserLocal */
|
|
SAVE_ALL
|
|
sync
|
|
/* find the location to which nlm_boot_siblings was relocated */
|
|
li t0, CKSEG1ADDR(RESET_VEC_PHYS)
|
|
dla t1, nlm_reset_entry
|
|
dla t2, nlm_boot_siblings
|
|
dsubu t2, t1
|
|
daddu t2, t0
|
|
/* call it */
|
|
jr t2
|
|
nop
|
|
/* not reached */
|
|
|
|
__CPUINIT
|
|
NESTED(nlm_boot_secondary_cpus, 16, sp)
|
|
/* Initialize CP0 Status */
|
|
move t1, zero
|
|
#ifdef CONFIG_64BIT
|
|
ori t1, ST0_KX
|
|
#endif
|
|
mtc0 t1, CP0_STATUS
|
|
PTR_LA t1, nlm_next_sp
|
|
PTR_L sp, 0(t1)
|
|
PTR_LA t1, nlm_next_gp
|
|
PTR_L gp, 0(t1)
|
|
|
|
/* a0 has the processor id */
|
|
PTR_LA t0, nlm_early_init_secondary
|
|
jalr t0
|
|
nop
|
|
|
|
PTR_LA t0, smp_bootstrap
|
|
jr t0
|
|
nop
|
|
END(nlm_boot_secondary_cpus)
|
|
__FINIT
|
|
|
|
/*
|
|
* In case of RMIboot bootloader which is used on XLR boards, the CPUs
|
|
* be already woken up and waiting in bootloader code.
|
|
* This will get them out of the bootloader code and into linux. Needed
|
|
* because the bootloader area will be taken and initialized by linux.
|
|
*/
|
|
__CPUINIT
|
|
NESTED(nlm_rmiboot_preboot, 16, sp)
|
|
mfc0 t0, $15, 1 /* read ebase */
|
|
andi t0, 0x1f /* t0 has the processor_id() */
|
|
andi t2, t0, 0x3 /* thread num */
|
|
sll t0, 2 /* offset in cpu array */
|
|
|
|
PTR_LA t1, nlm_cpu_ready /* mark CPU ready */
|
|
PTR_ADDU t1, t0
|
|
li t3, 1
|
|
sw t3, 0(t1)
|
|
|
|
bnez t2, 1f /* skip thread programming */
|
|
nop /* for thread id != 0 */
|
|
|
|
/*
|
|
* XLR MMU setup only for first thread in core
|
|
*/
|
|
li t0, 0x400
|
|
mfcr t1, t0
|
|
li t2, 6 /* XLR thread mode mask */
|
|
nor t3, t2, zero
|
|
and t2, t1, t2 /* t2 - current thread mode */
|
|
li v0, CKSEG1ADDR(RESET_DATA_PHYS)
|
|
lw v1, BOOT_THREAD_MODE(v0) /* v1 - new thread mode */
|
|
sll v1, 1
|
|
beq v1, t2, 1f /* same as request value */
|
|
nop /* nothing to do */
|
|
|
|
and t2, t1, t3 /* mask out old thread mode */
|
|
or t1, t2, v1 /* put in new value */
|
|
mtcr t1, t0 /* update core control */
|
|
|
|
1: wait
|
|
j 1b
|
|
nop
|
|
END(nlm_rmiboot_preboot)
|
|
__FINIT
|