linux/drivers/media/video/omap24xxcam.c
Thomas Weber d1303567f7 [media] omap24xxcam: Fix compilation
Add linux/sched.h because of missing declaration of TASK_NORMAL.

This patch fixes the following error:

drivers/media/video/omap24xxcam.c: In function
'omap24xxcam_vbq_complete':
drivers/media/video/omap24xxcam.c:415: error: 'TASK_NORMAL' undeclared
(first use in this function)
drivers/media/video/omap24xxcam.c:415: error: (Each undeclared
identifier is reported only once
drivers/media/video/omap24xxcam.c:415: error: for each function it
appears in.)

Signed-off-by: Thomas Weber <weber@corscience.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-03-21 20:32:19 -03:00

1901 lines
44 KiB
C

/*
* drivers/media/video/omap24xxcam.c
*
* OMAP 2 camera block driver.
*
* Copyright (C) 2004 MontaVista Software, Inc.
* Copyright (C) 2004 Texas Instruments.
* Copyright (C) 2007-2008 Nokia Corporation.
*
* Contact: Sakari Ailus <sakari.ailus@nokia.com>
*
* Based on code from Andy Lowe <source@mvista.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/videodev2.h>
#include <linux/pci.h> /* needed for videobufs */
#include <linux/version.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ioctl.h>
#include "omap24xxcam.h"
#define OMAP24XXCAM_VERSION KERNEL_VERSION(0, 0, 0)
#define RESET_TIMEOUT_NS 10000
static void omap24xxcam_reset(struct omap24xxcam_device *cam);
static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam);
static void omap24xxcam_device_unregister(struct v4l2_int_device *s);
static int omap24xxcam_remove(struct platform_device *pdev);
/* module parameters */
static int video_nr = -1; /* video device minor (-1 ==> auto assign) */
/*
* Maximum amount of memory to use for capture buffers.
* Default is 4800KB, enough to double-buffer SXGA.
*/
static int capture_mem = 1280 * 960 * 2 * 2;
static struct v4l2_int_device omap24xxcam;
/*
*
* Clocks.
*
*/
static void omap24xxcam_clock_put(struct omap24xxcam_device *cam)
{
if (cam->ick != NULL && !IS_ERR(cam->ick))
clk_put(cam->ick);
if (cam->fck != NULL && !IS_ERR(cam->fck))
clk_put(cam->fck);
cam->ick = cam->fck = NULL;
}
static int omap24xxcam_clock_get(struct omap24xxcam_device *cam)
{
int rval = 0;
cam->fck = clk_get(cam->dev, "fck");
if (IS_ERR(cam->fck)) {
dev_err(cam->dev, "can't get camera fck");
rval = PTR_ERR(cam->fck);
omap24xxcam_clock_put(cam);
return rval;
}
cam->ick = clk_get(cam->dev, "ick");
if (IS_ERR(cam->ick)) {
dev_err(cam->dev, "can't get camera ick");
rval = PTR_ERR(cam->ick);
omap24xxcam_clock_put(cam);
}
return rval;
}
static void omap24xxcam_clock_on(struct omap24xxcam_device *cam)
{
clk_enable(cam->fck);
clk_enable(cam->ick);
}
static void omap24xxcam_clock_off(struct omap24xxcam_device *cam)
{
clk_disable(cam->fck);
clk_disable(cam->ick);
}
/*
*
* Camera core
*
*/
/*
* Set xclk.
*
* To disable xclk, use value zero.
*/
static void omap24xxcam_core_xclk_set(const struct omap24xxcam_device *cam,
u32 xclk)
{
if (xclk) {
u32 divisor = CAM_MCLK / xclk;
if (divisor == 1)
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK,
CC_CTRL_XCLK_DIV_BYPASS);
else
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK, divisor);
} else
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET,
CC_CTRL_XCLK, CC_CTRL_XCLK_DIV_STABLE_LOW);
}
static void omap24xxcam_core_hwinit(const struct omap24xxcam_device *cam)
{
/*
* Setting the camera core AUTOIDLE bit causes problems with frame
* synchronization, so we will clear the AUTOIDLE bit instead.
*/
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_SYSCONFIG,
CC_SYSCONFIG_AUTOIDLE);
/* program the camera interface DMA packet size */
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL_DMA,
CC_CTRL_DMA_EN | (DMA_THRESHOLD / 4 - 1));
/* enable camera core error interrupts */
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQENABLE,
CC_IRQENABLE_FW_ERR_IRQ
| CC_IRQENABLE_FSC_ERR_IRQ
| CC_IRQENABLE_SSC_ERR_IRQ
| CC_IRQENABLE_FIFO_OF_IRQ);
}
/*
* Enable the camera core.
*
* Data transfer to the camera DMA starts from next starting frame.
*/
static void omap24xxcam_core_enable(const struct omap24xxcam_device *cam)
{
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL,
cam->cc_ctrl);
}
/*
* Disable camera core.
*
* The data transfer will be stopped immediately (CC_CTRL_CC_RST). The
* core internal state machines will be reset. Use
* CC_CTRL_CC_FRAME_TRIG instead if you want to transfer the current
* frame completely.
*/
static void omap24xxcam_core_disable(const struct omap24xxcam_device *cam)
{
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_CTRL,
CC_CTRL_CC_RST);
}
/* Interrupt service routine for camera core interrupts. */
static void omap24xxcam_core_isr(struct omap24xxcam_device *cam)
{
u32 cc_irqstatus;
const u32 cc_irqstatus_err =
CC_IRQSTATUS_FW_ERR_IRQ
| CC_IRQSTATUS_FSC_ERR_IRQ
| CC_IRQSTATUS_SSC_ERR_IRQ
| CC_IRQSTATUS_FIFO_UF_IRQ
| CC_IRQSTATUS_FIFO_OF_IRQ;
cc_irqstatus = omap24xxcam_reg_in(cam->mmio_base + CC_REG_OFFSET,
CC_IRQSTATUS);
omap24xxcam_reg_out(cam->mmio_base + CC_REG_OFFSET, CC_IRQSTATUS,
cc_irqstatus);
if (cc_irqstatus & cc_irqstatus_err
&& !atomic_read(&cam->in_reset)) {
dev_dbg(cam->dev, "resetting camera, cc_irqstatus 0x%x\n",
cc_irqstatus);
omap24xxcam_reset(cam);
}
}
/*
*
* videobuf_buffer handling.
*
* Memory for mmapped videobuf_buffers is not allocated
* conventionally, but by several kmalloc allocations and then
* creating the scatterlist on our own. User-space buffers are handled
* normally.
*
*/
/*
* Free the memory-mapped buffer memory allocated for a
* videobuf_buffer and the associated scatterlist.
*/
static void omap24xxcam_vbq_free_mmap_buffer(struct videobuf_buffer *vb)
{
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
size_t alloc_size;
struct page *page;
int i;
if (dma->sglist == NULL)
return;
i = dma->sglen;
while (i) {
i--;
alloc_size = sg_dma_len(&dma->sglist[i]);
page = sg_page(&dma->sglist[i]);
do {
ClearPageReserved(page++);
} while (alloc_size -= PAGE_SIZE);
__free_pages(sg_page(&dma->sglist[i]),
get_order(sg_dma_len(&dma->sglist[i])));
}
kfree(dma->sglist);
dma->sglist = NULL;
}
/* Release all memory related to the videobuf_queue. */
static void omap24xxcam_vbq_free_mmap_buffers(struct videobuf_queue *vbq)
{
int i;
mutex_lock(&vbq->vb_lock);
for (i = 0; i < VIDEO_MAX_FRAME; i++) {
if (NULL == vbq->bufs[i])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[i]->memory)
continue;
vbq->ops->buf_release(vbq, vbq->bufs[i]);
omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]);
kfree(vbq->bufs[i]);
vbq->bufs[i] = NULL;
}
mutex_unlock(&vbq->vb_lock);
videobuf_mmap_free(vbq);
}
/*
* Allocate physically as contiguous as possible buffer for video
* frame and allocate and build DMA scatter-gather list for it.
*/
static int omap24xxcam_vbq_alloc_mmap_buffer(struct videobuf_buffer *vb)
{
unsigned int order;
size_t alloc_size, size = vb->bsize; /* vb->bsize is page aligned */
struct page *page;
int max_pages, err = 0, i = 0;
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
/*
* allocate maximum size scatter-gather list. Note this is
* overhead. We may not use as many entries as we allocate
*/
max_pages = vb->bsize >> PAGE_SHIFT;
dma->sglist = kcalloc(max_pages, sizeof(*dma->sglist), GFP_KERNEL);
if (dma->sglist == NULL) {
err = -ENOMEM;
goto out;
}
while (size) {
order = get_order(size);
/*
* do not over-allocate even if we would get larger
* contiguous chunk that way
*/
if ((PAGE_SIZE << order) > size)
order--;
/* try to allocate as many contiguous pages as possible */
page = alloc_pages(GFP_KERNEL | GFP_DMA, order);
/* if allocation fails, try to allocate smaller amount */
while (page == NULL) {
order--;
page = alloc_pages(GFP_KERNEL | GFP_DMA, order);
if (page == NULL && !order) {
err = -ENOMEM;
goto out;
}
}
size -= (PAGE_SIZE << order);
/* append allocated chunk of pages into scatter-gather list */
sg_set_page(&dma->sglist[i], page, PAGE_SIZE << order, 0);
dma->sglen++;
i++;
alloc_size = (PAGE_SIZE << order);
/* clear pages before giving them to user space */
memset(page_address(page), 0, alloc_size);
/* mark allocated pages reserved */
do {
SetPageReserved(page++);
} while (alloc_size -= PAGE_SIZE);
}
/*
* REVISIT: not fully correct to assign nr_pages == sglen but
* video-buf is passing nr_pages for e.g. unmap_sg calls
*/
dma->nr_pages = dma->sglen;
dma->direction = PCI_DMA_FROMDEVICE;
return 0;
out:
omap24xxcam_vbq_free_mmap_buffer(vb);
return err;
}
static int omap24xxcam_vbq_alloc_mmap_buffers(struct videobuf_queue *vbq,
unsigned int count)
{
int i, err = 0;
struct omap24xxcam_fh *fh =
container_of(vbq, struct omap24xxcam_fh, vbq);
mutex_lock(&vbq->vb_lock);
for (i = 0; i < count; i++) {
err = omap24xxcam_vbq_alloc_mmap_buffer(vbq->bufs[i]);
if (err)
goto out;
dev_dbg(fh->cam->dev, "sglen is %d for buffer %d\n",
videobuf_to_dma(vbq->bufs[i])->sglen, i);
}
mutex_unlock(&vbq->vb_lock);
return 0;
out:
while (i) {
i--;
omap24xxcam_vbq_free_mmap_buffer(vbq->bufs[i]);
}
mutex_unlock(&vbq->vb_lock);
return err;
}
/*
* This routine is called from interrupt context when a scatter-gather DMA
* transfer of a videobuf_buffer completes.
*/
static void omap24xxcam_vbq_complete(struct omap24xxcam_sgdma *sgdma,
u32 csr, void *arg)
{
struct omap24xxcam_device *cam =
container_of(sgdma, struct omap24xxcam_device, sgdma);
struct omap24xxcam_fh *fh = cam->streaming->private_data;
struct videobuf_buffer *vb = (struct videobuf_buffer *)arg;
const u32 csr_error = CAMDMA_CSR_MISALIGNED_ERR
| CAMDMA_CSR_SUPERVISOR_ERR | CAMDMA_CSR_SECURE_ERR
| CAMDMA_CSR_TRANS_ERR | CAMDMA_CSR_DROP;
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (--cam->sgdma_in_queue == 0)
omap24xxcam_core_disable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
do_gettimeofday(&vb->ts);
vb->field_count = atomic_add_return(2, &fh->field_count);
if (csr & csr_error) {
vb->state = VIDEOBUF_ERROR;
if (!atomic_read(&fh->cam->in_reset)) {
dev_dbg(cam->dev, "resetting camera, csr 0x%x\n", csr);
omap24xxcam_reset(cam);
}
} else
vb->state = VIDEOBUF_DONE;
wake_up(&vb->done);
}
static void omap24xxcam_vbq_release(struct videobuf_queue *vbq,
struct videobuf_buffer *vb)
{
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
/* wait for buffer, especially to get out of the sgdma queue */
videobuf_waiton(vbq, vb, 0, 0);
if (vb->memory == V4L2_MEMORY_MMAP) {
dma_unmap_sg(vbq->dev, dma->sglist, dma->sglen,
dma->direction);
dma->direction = DMA_NONE;
} else {
videobuf_dma_unmap(vbq->dev, videobuf_to_dma(vb));
videobuf_dma_free(videobuf_to_dma(vb));
}
vb->state = VIDEOBUF_NEEDS_INIT;
}
/*
* Limit the number of available kernel image capture buffers based on the
* number requested, the currently selected image size, and the maximum
* amount of memory permitted for kernel capture buffers.
*/
static int omap24xxcam_vbq_setup(struct videobuf_queue *vbq, unsigned int *cnt,
unsigned int *size)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
if (*cnt <= 0)
*cnt = VIDEO_MAX_FRAME; /* supply a default number of buffers */
if (*cnt > VIDEO_MAX_FRAME)
*cnt = VIDEO_MAX_FRAME;
*size = fh->pix.sizeimage;
/* accessing fh->cam->capture_mem is ok, it's constant */
if (*size * *cnt > fh->cam->capture_mem)
*cnt = fh->cam->capture_mem / *size;
return 0;
}
static int omap24xxcam_dma_iolock(struct videobuf_queue *vbq,
struct videobuf_dmabuf *dma)
{
int err = 0;
dma->direction = PCI_DMA_FROMDEVICE;
if (!dma_map_sg(vbq->dev, dma->sglist, dma->sglen, dma->direction)) {
kfree(dma->sglist);
dma->sglist = NULL;
dma->sglen = 0;
err = -EIO;
}
return err;
}
static int omap24xxcam_vbq_prepare(struct videobuf_queue *vbq,
struct videobuf_buffer *vb,
enum v4l2_field field)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
int err = 0;
/*
* Accessing pix here is okay since it's constant while
* streaming is on (and we only get called then).
*/
if (vb->baddr) {
/* This is a userspace buffer. */
if (fh->pix.sizeimage > vb->bsize) {
/* The buffer isn't big enough. */
err = -EINVAL;
} else
vb->size = fh->pix.sizeimage;
} else {
if (vb->state != VIDEOBUF_NEEDS_INIT) {
/*
* We have a kernel bounce buffer that has
* already been allocated.
*/
if (fh->pix.sizeimage > vb->size) {
/*
* The image size has been changed to
* a larger size since this buffer was
* allocated, so we need to free and
* reallocate it.
*/
omap24xxcam_vbq_release(vbq, vb);
vb->size = fh->pix.sizeimage;
}
} else {
/* We need to allocate a new kernel bounce buffer. */
vb->size = fh->pix.sizeimage;
}
}
if (err)
return err;
vb->width = fh->pix.width;
vb->height = fh->pix.height;
vb->field = field;
if (vb->state == VIDEOBUF_NEEDS_INIT) {
if (vb->memory == V4L2_MEMORY_MMAP)
/*
* we have built the scatter-gather list by ourself so
* do the scatter-gather mapping as well
*/
err = omap24xxcam_dma_iolock(vbq, videobuf_to_dma(vb));
else
err = videobuf_iolock(vbq, vb, NULL);
}
if (!err)
vb->state = VIDEOBUF_PREPARED;
else
omap24xxcam_vbq_release(vbq, vb);
return err;
}
static void omap24xxcam_vbq_queue(struct videobuf_queue *vbq,
struct videobuf_buffer *vb)
{
struct omap24xxcam_fh *fh = vbq->priv_data;
struct omap24xxcam_device *cam = fh->cam;
enum videobuf_state state = vb->state;
unsigned long flags;
int err;
/*
* FIXME: We're marking the buffer active since we have no
* pretty way of marking it active exactly when the
* scatter-gather transfer starts.
*/
vb->state = VIDEOBUF_ACTIVE;
err = omap24xxcam_sgdma_queue(&fh->cam->sgdma,
videobuf_to_dma(vb)->sglist,
videobuf_to_dma(vb)->sglen, vb->size,
omap24xxcam_vbq_complete, vb);
if (!err) {
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (++cam->sgdma_in_queue == 1
&& !atomic_read(&cam->in_reset))
omap24xxcam_core_enable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
} else {
/*
* Oops. We're not supposed to get any errors here.
* The only way we could get an error is if we ran out
* of scatter-gather DMA slots, but we are supposed to
* have at least as many scatter-gather DMA slots as
* video buffers so that can't happen.
*/
dev_err(cam->dev, "failed to queue a video buffer for dma!\n");
dev_err(cam->dev, "likely a bug in the driver!\n");
vb->state = state;
}
}
static struct videobuf_queue_ops omap24xxcam_vbq_ops = {
.buf_setup = omap24xxcam_vbq_setup,
.buf_prepare = omap24xxcam_vbq_prepare,
.buf_queue = omap24xxcam_vbq_queue,
.buf_release = omap24xxcam_vbq_release,
};
/*
*
* OMAP main camera system
*
*/
/*
* Reset camera block to power-on state.
*/
static void omap24xxcam_poweron_reset(struct omap24xxcam_device *cam)
{
int max_loop = RESET_TIMEOUT_NS;
/* Reset whole camera subsystem */
omap24xxcam_reg_out(cam->mmio_base,
CAM_SYSCONFIG,
CAM_SYSCONFIG_SOFTRESET);
/* Wait till it's finished */
while (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS)
& CAM_SYSSTATUS_RESETDONE)
&& --max_loop) {
ndelay(1);
}
if (!(omap24xxcam_reg_in(cam->mmio_base, CAM_SYSSTATUS)
& CAM_SYSSTATUS_RESETDONE))
dev_err(cam->dev, "camera soft reset timeout\n");
}
/*
* (Re)initialise the camera block.
*/
static void omap24xxcam_hwinit(struct omap24xxcam_device *cam)
{
omap24xxcam_poweron_reset(cam);
/* set the camera subsystem autoidle bit */
omap24xxcam_reg_out(cam->mmio_base, CAM_SYSCONFIG,
CAM_SYSCONFIG_AUTOIDLE);
/* set the camera MMU autoidle bit */
omap24xxcam_reg_out(cam->mmio_base,
CAMMMU_REG_OFFSET + CAMMMU_SYSCONFIG,
CAMMMU_SYSCONFIG_AUTOIDLE);
omap24xxcam_core_hwinit(cam);
omap24xxcam_dma_hwinit(&cam->sgdma.dma);
}
/*
* Callback for dma transfer stalling.
*/
static void omap24xxcam_stalled_dma_reset(unsigned long data)
{
struct omap24xxcam_device *cam = (struct omap24xxcam_device *)data;
if (!atomic_read(&cam->in_reset)) {
dev_dbg(cam->dev, "dma stalled, resetting camera\n");
omap24xxcam_reset(cam);
}
}
/*
* Stop capture. Mark we're doing a reset, stop DMA transfers and
* core. (No new scatter-gather transfers will be queued whilst
* in_reset is non-zero.)
*
* If omap24xxcam_capture_stop is called from several places at
* once, only the first call will have an effect. Similarly, the last
* call omap24xxcam_streaming_cont will have effect.
*
* Serialisation is ensured by using cam->core_enable_disable_lock.
*/
static void omap24xxcam_capture_stop(struct omap24xxcam_device *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (atomic_inc_return(&cam->in_reset) != 1) {
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
return;
}
omap24xxcam_core_disable(cam);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
omap24xxcam_sgdma_sync(&cam->sgdma);
}
/*
* Reset and continue streaming.
*
* Note: Resetting the camera FIFO via the CC_RST bit in the CC_CTRL
* register is supposed to be sufficient to recover from a camera
* interface error, but it doesn't seem to be enough. If we only do
* that then subsequent image captures are out of sync by either one
* or two times DMA_THRESHOLD bytes. Resetting and re-initializing the
* entire camera subsystem prevents the problem with frame
* synchronization.
*/
static void omap24xxcam_capture_cont(struct omap24xxcam_device *cam)
{
unsigned long flags;
spin_lock_irqsave(&cam->core_enable_disable_lock, flags);
if (atomic_read(&cam->in_reset) != 1)
goto out;
omap24xxcam_hwinit(cam);
omap24xxcam_sensor_if_enable(cam);
omap24xxcam_sgdma_process(&cam->sgdma);
if (cam->sgdma_in_queue)
omap24xxcam_core_enable(cam);
out:
atomic_dec(&cam->in_reset);
spin_unlock_irqrestore(&cam->core_enable_disable_lock, flags);
}
static ssize_t
omap24xxcam_streaming_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct omap24xxcam_device *cam = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", cam->streaming ? "active" : "inactive");
}
static DEVICE_ATTR(streaming, S_IRUGO, omap24xxcam_streaming_show, NULL);
/*
* Stop capture and restart it. I.e. reset the camera during use.
*/
static void omap24xxcam_reset(struct omap24xxcam_device *cam)
{
omap24xxcam_capture_stop(cam);
omap24xxcam_capture_cont(cam);
}
/*
* The main interrupt handler.
*/
static irqreturn_t omap24xxcam_isr(int irq, void *arg)
{
struct omap24xxcam_device *cam = (struct omap24xxcam_device *)arg;
u32 irqstatus;
unsigned int irqhandled = 0;
irqstatus = omap24xxcam_reg_in(cam->mmio_base, CAM_IRQSTATUS);
if (irqstatus &
(CAM_IRQSTATUS_DMA_IRQ2 | CAM_IRQSTATUS_DMA_IRQ1
| CAM_IRQSTATUS_DMA_IRQ0)) {
omap24xxcam_dma_isr(&cam->sgdma.dma);
irqhandled = 1;
}
if (irqstatus & CAM_IRQSTATUS_CC_IRQ) {
omap24xxcam_core_isr(cam);
irqhandled = 1;
}
if (irqstatus & CAM_IRQSTATUS_MMU_IRQ)
dev_err(cam->dev, "unhandled camera MMU interrupt!\n");
return IRQ_RETVAL(irqhandled);
}
/*
*
* Sensor handling.
*
*/
/*
* Enable the external sensor interface. Try to negotiate interface
* parameters with the sensor and start using the new ones. The calls
* to sensor_if_enable and sensor_if_disable need not to be balanced.
*/
static int omap24xxcam_sensor_if_enable(struct omap24xxcam_device *cam)
{
int rval;
struct v4l2_ifparm p;
rval = vidioc_int_g_ifparm(cam->sdev, &p);
if (rval) {
dev_err(cam->dev, "vidioc_int_g_ifparm failed with %d\n", rval);
return rval;
}
cam->if_type = p.if_type;
cam->cc_ctrl = CC_CTRL_CC_EN;
switch (p.if_type) {
case V4L2_IF_TYPE_BT656:
if (p.u.bt656.frame_start_on_rising_vs)
cam->cc_ctrl |= CC_CTRL_NOBT_SYNCHRO;
if (p.u.bt656.bt_sync_correct)
cam->cc_ctrl |= CC_CTRL_BT_CORRECT;
if (p.u.bt656.swap)
cam->cc_ctrl |= CC_CTRL_PAR_ORDERCAM;
if (p.u.bt656.latch_clk_inv)
cam->cc_ctrl |= CC_CTRL_PAR_CLK_POL;
if (p.u.bt656.nobt_hs_inv)
cam->cc_ctrl |= CC_CTRL_NOBT_HS_POL;
if (p.u.bt656.nobt_vs_inv)
cam->cc_ctrl |= CC_CTRL_NOBT_VS_POL;
switch (p.u.bt656.mode) {
case V4L2_IF_TYPE_BT656_MODE_NOBT_8BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT8;
break;
case V4L2_IF_TYPE_BT656_MODE_NOBT_10BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT10;
break;
case V4L2_IF_TYPE_BT656_MODE_NOBT_12BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_NOBT12;
break;
case V4L2_IF_TYPE_BT656_MODE_BT_8BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT8;
break;
case V4L2_IF_TYPE_BT656_MODE_BT_10BIT:
cam->cc_ctrl |= CC_CTRL_PAR_MODE_BT10;
break;
default:
dev_err(cam->dev,
"bt656 interface mode %d not supported\n",
p.u.bt656.mode);
return -EINVAL;
}
/*
* The clock rate that the sensor wants has changed.
* We have to adjust the xclk from OMAP 2 side to
* match the sensor's wish as closely as possible.
*/
if (p.u.bt656.clock_curr != cam->if_u.bt656.xclk) {
u32 xclk = p.u.bt656.clock_curr;
u32 divisor;
if (xclk == 0)
return -EINVAL;
if (xclk > CAM_MCLK)
xclk = CAM_MCLK;
divisor = CAM_MCLK / xclk;
if (divisor * xclk < CAM_MCLK)
divisor++;
if (CAM_MCLK / divisor < p.u.bt656.clock_min
&& divisor > 1)
divisor--;
if (divisor > 30)
divisor = 30;
xclk = CAM_MCLK / divisor;
if (xclk < p.u.bt656.clock_min
|| xclk > p.u.bt656.clock_max)
return -EINVAL;
cam->if_u.bt656.xclk = xclk;
}
omap24xxcam_core_xclk_set(cam, cam->if_u.bt656.xclk);
break;
default:
/* FIXME: how about other interfaces? */
dev_err(cam->dev, "interface type %d not supported\n",
p.if_type);
return -EINVAL;
}
return 0;
}
static void omap24xxcam_sensor_if_disable(const struct omap24xxcam_device *cam)
{
switch (cam->if_type) {
case V4L2_IF_TYPE_BT656:
omap24xxcam_core_xclk_set(cam, 0);
break;
}
}
/*
* Initialise the sensor hardware.
*/
static int omap24xxcam_sensor_init(struct omap24xxcam_device *cam)
{
int err = 0;
struct v4l2_int_device *sdev = cam->sdev;
omap24xxcam_clock_on(cam);
err = omap24xxcam_sensor_if_enable(cam);
if (err) {
dev_err(cam->dev, "sensor interface could not be enabled at "
"initialisation, %d\n", err);
cam->sdev = NULL;
goto out;
}
/* power up sensor during sensor initialization */
vidioc_int_s_power(sdev, 1);
err = vidioc_int_dev_init(sdev);
if (err) {
dev_err(cam->dev, "cannot initialize sensor, error %d\n", err);
/* Sensor init failed --- it's nonexistent to us! */
cam->sdev = NULL;
goto out;
}
dev_info(cam->dev, "sensor is %s\n", sdev->name);
out:
omap24xxcam_sensor_if_disable(cam);
omap24xxcam_clock_off(cam);
vidioc_int_s_power(sdev, 0);
return err;
}
static void omap24xxcam_sensor_exit(struct omap24xxcam_device *cam)
{
if (cam->sdev)
vidioc_int_dev_exit(cam->sdev);
}
static void omap24xxcam_sensor_disable(struct omap24xxcam_device *cam)
{
omap24xxcam_sensor_if_disable(cam);
omap24xxcam_clock_off(cam);
vidioc_int_s_power(cam->sdev, 0);
}
/*
* Power-up and configure camera sensor. It's ready for capturing now.
*/
static int omap24xxcam_sensor_enable(struct omap24xxcam_device *cam)
{
int rval;
omap24xxcam_clock_on(cam);
omap24xxcam_sensor_if_enable(cam);
rval = vidioc_int_s_power(cam->sdev, 1);
if (rval)
goto out;
rval = vidioc_int_init(cam->sdev);
if (rval)
goto out;
return 0;
out:
omap24xxcam_sensor_disable(cam);
return rval;
}
static void omap24xxcam_sensor_reset_work(struct work_struct *work)
{
struct omap24xxcam_device *cam =
container_of(work, struct omap24xxcam_device,
sensor_reset_work);
if (atomic_read(&cam->reset_disable))
return;
omap24xxcam_capture_stop(cam);
if (vidioc_int_reset(cam->sdev) == 0) {
vidioc_int_init(cam->sdev);
} else {
/* Can't reset it by vidioc_int_reset. */
omap24xxcam_sensor_disable(cam);
omap24xxcam_sensor_enable(cam);
}
omap24xxcam_capture_cont(cam);
}
/*
*
* IOCTL interface.
*
*/
static int vidioc_querycap(struct file *file, void *fh,
struct v4l2_capability *cap)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
strlcpy(cap->driver, CAM_NAME, sizeof(cap->driver));
strlcpy(cap->card, cam->vfd->name, sizeof(cap->card));
cap->version = OMAP24XXCAM_VERSION;
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
return 0;
}
static int vidioc_enum_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_fmtdesc *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
rval = vidioc_int_enum_fmt_cap(cam->sdev, f);
return rval;
}
static int vidioc_g_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_fmt_cap(cam->sdev, f);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
rval = vidioc_int_s_fmt_cap(cam->sdev, f);
out:
mutex_unlock(&cam->mutex);
if (!rval) {
mutex_lock(&ofh->vbq.vb_lock);
ofh->pix = f->fmt.pix;
mutex_unlock(&ofh->vbq.vb_lock);
}
memset(f, 0, sizeof(*f));
vidioc_g_fmt_vid_cap(file, fh, f);
return rval;
}
static int vidioc_try_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_try_fmt_cap(cam->sdev, f);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_reqbufs(struct file *file, void *fh,
struct v4l2_requestbuffers *b)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
mutex_unlock(&cam->mutex);
return -EBUSY;
}
omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq);
mutex_unlock(&cam->mutex);
rval = videobuf_reqbufs(&ofh->vbq, b);
/*
* Either videobuf_reqbufs failed or the buffers are not
* memory-mapped (which would need special attention).
*/
if (rval < 0 || b->memory != V4L2_MEMORY_MMAP)
goto out;
rval = omap24xxcam_vbq_alloc_mmap_buffers(&ofh->vbq, rval);
if (rval)
omap24xxcam_vbq_free_mmap_buffers(&ofh->vbq);
out:
return rval;
}
static int vidioc_querybuf(struct file *file, void *fh,
struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
return videobuf_querybuf(&ofh->vbq, b);
}
static int vidioc_qbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
return videobuf_qbuf(&ofh->vbq, b);
}
static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct videobuf_buffer *vb;
int rval;
videobuf_dqbuf_again:
rval = videobuf_dqbuf(&ofh->vbq, b, file->f_flags & O_NONBLOCK);
if (rval)
goto out;
vb = ofh->vbq.bufs[b->index];
mutex_lock(&cam->mutex);
/* _needs_reset returns -EIO if reset is required. */
rval = vidioc_int_g_needs_reset(cam->sdev, (void *)vb->baddr);
mutex_unlock(&cam->mutex);
if (rval == -EIO)
schedule_work(&cam->sensor_reset_work);
else
rval = 0;
out:
/*
* This is a hack. We don't want to show -EIO to the user
* space. Requeue the buffer and try again if we're not doing
* this in non-blocking mode.
*/
if (rval == -EIO) {
videobuf_qbuf(&ofh->vbq, b);
if (!(file->f_flags & O_NONBLOCK))
goto videobuf_dqbuf_again;
/*
* We don't have a videobuf_buffer now --- maybe next
* time...
*/
rval = -EAGAIN;
}
return rval;
}
static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
rval = omap24xxcam_sensor_if_enable(cam);
if (rval) {
dev_dbg(cam->dev, "vidioc_int_g_ifparm failed\n");
goto out;
}
rval = videobuf_streamon(&ofh->vbq);
if (!rval) {
cam->streaming = file;
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
}
out:
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct videobuf_queue *q = &ofh->vbq;
int rval;
atomic_inc(&cam->reset_disable);
flush_work_sync(&cam->sensor_reset_work);
rval = videobuf_streamoff(q);
if (!rval) {
mutex_lock(&cam->mutex);
cam->streaming = NULL;
mutex_unlock(&cam->mutex);
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
}
atomic_dec(&cam->reset_disable);
return rval;
}
static int vidioc_enum_input(struct file *file, void *fh,
struct v4l2_input *inp)
{
if (inp->index > 0)
return -EINVAL;
strlcpy(inp->name, "camera", sizeof(inp->name));
inp->type = V4L2_INPUT_TYPE_CAMERA;
return 0;
}
static int vidioc_g_input(struct file *file, void *fh, unsigned int *i)
{
*i = 0;
return 0;
}
static int vidioc_s_input(struct file *file, void *fh, unsigned int i)
{
if (i > 0)
return -EINVAL;
return 0;
}
static int vidioc_queryctrl(struct file *file, void *fh,
struct v4l2_queryctrl *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
rval = vidioc_int_queryctrl(cam->sdev, a);
return rval;
}
static int vidioc_g_ctrl(struct file *file, void *fh,
struct v4l2_control *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_ctrl(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_ctrl(struct file *file, void *fh,
struct v4l2_control *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_s_ctrl(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_g_parm(struct file *file, void *fh,
struct v4l2_streamparm *a) {
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
int rval;
mutex_lock(&cam->mutex);
rval = vidioc_int_g_parm(cam->sdev, a);
mutex_unlock(&cam->mutex);
return rval;
}
static int vidioc_s_parm(struct file *file, void *fh,
struct v4l2_streamparm *a)
{
struct omap24xxcam_fh *ofh = fh;
struct omap24xxcam_device *cam = ofh->cam;
struct v4l2_streamparm old_streamparm;
int rval;
mutex_lock(&cam->mutex);
if (cam->streaming) {
rval = -EBUSY;
goto out;
}
old_streamparm.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
rval = vidioc_int_g_parm(cam->sdev, &old_streamparm);
if (rval)
goto out;
rval = vidioc_int_s_parm(cam->sdev, a);
if (rval)
goto out;
rval = omap24xxcam_sensor_if_enable(cam);
/*
* Revert to old streaming parameters if enabling sensor
* interface with the new ones failed.
*/
if (rval)
vidioc_int_s_parm(cam->sdev, &old_streamparm);
out:
mutex_unlock(&cam->mutex);
return rval;
}
/*
*
* File operations.
*
*/
static unsigned int omap24xxcam_poll(struct file *file,
struct poll_table_struct *wait)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
struct videobuf_buffer *vb;
mutex_lock(&cam->mutex);
if (cam->streaming != file) {
mutex_unlock(&cam->mutex);
return POLLERR;
}
mutex_unlock(&cam->mutex);
mutex_lock(&fh->vbq.vb_lock);
if (list_empty(&fh->vbq.stream)) {
mutex_unlock(&fh->vbq.vb_lock);
return POLLERR;
}
vb = list_entry(fh->vbq.stream.next, struct videobuf_buffer, stream);
mutex_unlock(&fh->vbq.vb_lock);
poll_wait(file, &vb->done, wait);
if (vb->state == VIDEOBUF_DONE || vb->state == VIDEOBUF_ERROR)
return POLLIN | POLLRDNORM;
return 0;
}
static int omap24xxcam_mmap_buffers(struct file *file,
struct vm_area_struct *vma)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
struct videobuf_queue *vbq = &fh->vbq;
unsigned int first, last, size, i, j;
int err = 0;
mutex_lock(&cam->mutex);
if (cam->streaming) {
mutex_unlock(&cam->mutex);
return -EBUSY;
}
mutex_unlock(&cam->mutex);
mutex_lock(&vbq->vb_lock);
/* look for first buffer to map */
for (first = 0; first < VIDEO_MAX_FRAME; first++) {
if (NULL == vbq->bufs[first])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[first]->memory)
continue;
if (vbq->bufs[first]->boff == (vma->vm_pgoff << PAGE_SHIFT))
break;
}
/* look for last buffer to map */
for (size = 0, last = first; last < VIDEO_MAX_FRAME; last++) {
if (NULL == vbq->bufs[last])
continue;
if (V4L2_MEMORY_MMAP != vbq->bufs[last]->memory)
continue;
size += vbq->bufs[last]->bsize;
if (size == (vma->vm_end - vma->vm_start))
break;
}
size = 0;
for (i = first; i <= last && i < VIDEO_MAX_FRAME; i++) {
struct videobuf_dmabuf *dma = videobuf_to_dma(vbq->bufs[i]);
for (j = 0; j < dma->sglen; j++) {
err = remap_pfn_range(
vma, vma->vm_start + size,
page_to_pfn(sg_page(&dma->sglist[j])),
sg_dma_len(&dma->sglist[j]), vma->vm_page_prot);
if (err)
goto out;
size += sg_dma_len(&dma->sglist[j]);
}
}
out:
mutex_unlock(&vbq->vb_lock);
return err;
}
static int omap24xxcam_mmap(struct file *file, struct vm_area_struct *vma)
{
struct omap24xxcam_fh *fh = file->private_data;
int rval;
/* let the video-buf mapper check arguments and set-up structures */
rval = videobuf_mmap_mapper(&fh->vbq, vma);
if (rval)
return rval;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
/* do mapping to our allocated buffers */
rval = omap24xxcam_mmap_buffers(file, vma);
/*
* In case of error, free vma->vm_private_data allocated by
* videobuf_mmap_mapper.
*/
if (rval)
kfree(vma->vm_private_data);
return rval;
}
static int omap24xxcam_open(struct file *file)
{
struct omap24xxcam_device *cam = omap24xxcam.priv;
struct omap24xxcam_fh *fh;
struct v4l2_format format;
if (!cam || !cam->vfd)
return -ENODEV;
fh = kzalloc(sizeof(*fh), GFP_KERNEL);
if (fh == NULL)
return -ENOMEM;
mutex_lock(&cam->mutex);
if (cam->sdev == NULL || !try_module_get(cam->sdev->module)) {
mutex_unlock(&cam->mutex);
goto out_try_module_get;
}
if (atomic_inc_return(&cam->users) == 1) {
omap24xxcam_hwinit(cam);
if (omap24xxcam_sensor_enable(cam)) {
mutex_unlock(&cam->mutex);
goto out_omap24xxcam_sensor_enable;
}
}
mutex_unlock(&cam->mutex);
fh->cam = cam;
mutex_lock(&cam->mutex);
vidioc_int_g_fmt_cap(cam->sdev, &format);
mutex_unlock(&cam->mutex);
/* FIXME: how about fh->pix when there are more users? */
fh->pix = format.fmt.pix;
file->private_data = fh;
spin_lock_init(&fh->vbq_lock);
videobuf_queue_sg_init(&fh->vbq, &omap24xxcam_vbq_ops, NULL,
&fh->vbq_lock, V4L2_BUF_TYPE_VIDEO_CAPTURE,
V4L2_FIELD_NONE,
sizeof(struct videobuf_buffer), fh, NULL);
return 0;
out_omap24xxcam_sensor_enable:
omap24xxcam_poweron_reset(cam);
module_put(cam->sdev->module);
out_try_module_get:
kfree(fh);
return -ENODEV;
}
static int omap24xxcam_release(struct file *file)
{
struct omap24xxcam_fh *fh = file->private_data;
struct omap24xxcam_device *cam = fh->cam;
atomic_inc(&cam->reset_disable);
flush_work_sync(&cam->sensor_reset_work);
/* stop streaming capture */
videobuf_streamoff(&fh->vbq);
mutex_lock(&cam->mutex);
if (cam->streaming == file) {
cam->streaming = NULL;
mutex_unlock(&cam->mutex);
sysfs_notify(&cam->dev->kobj, NULL, "streaming");
} else {
mutex_unlock(&cam->mutex);
}
atomic_dec(&cam->reset_disable);
omap24xxcam_vbq_free_mmap_buffers(&fh->vbq);
/*
* Make sure the reset work we might have scheduled is not
* pending! It may be run *only* if we have users. (And it may
* not be scheduled anymore since streaming is already
* disabled.)
*/
flush_work_sync(&cam->sensor_reset_work);
mutex_lock(&cam->mutex);
if (atomic_dec_return(&cam->users) == 0) {
omap24xxcam_sensor_disable(cam);
omap24xxcam_poweron_reset(cam);
}
mutex_unlock(&cam->mutex);
file->private_data = NULL;
module_put(cam->sdev->module);
kfree(fh);
return 0;
}
static struct v4l2_file_operations omap24xxcam_fops = {
.ioctl = video_ioctl2,
.poll = omap24xxcam_poll,
.mmap = omap24xxcam_mmap,
.open = omap24xxcam_open,
.release = omap24xxcam_release,
};
/*
*
* Power management.
*
*/
#ifdef CONFIG_PM
static int omap24xxcam_suspend(struct platform_device *pdev, pm_message_t state)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (atomic_read(&cam->users) == 0)
return 0;
if (!atomic_read(&cam->reset_disable))
omap24xxcam_capture_stop(cam);
omap24xxcam_sensor_disable(cam);
omap24xxcam_poweron_reset(cam);
return 0;
}
static int omap24xxcam_resume(struct platform_device *pdev)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (atomic_read(&cam->users) == 0)
return 0;
omap24xxcam_hwinit(cam);
omap24xxcam_sensor_enable(cam);
if (!atomic_read(&cam->reset_disable))
omap24xxcam_capture_cont(cam);
return 0;
}
#endif /* CONFIG_PM */
static const struct v4l2_ioctl_ops omap24xxcam_ioctl_fops = {
.vidioc_querycap = vidioc_querycap,
.vidioc_enum_fmt_vid_cap = vidioc_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = vidioc_g_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = vidioc_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = vidioc_try_fmt_vid_cap,
.vidioc_reqbufs = vidioc_reqbufs,
.vidioc_querybuf = vidioc_querybuf,
.vidioc_qbuf = vidioc_qbuf,
.vidioc_dqbuf = vidioc_dqbuf,
.vidioc_streamon = vidioc_streamon,
.vidioc_streamoff = vidioc_streamoff,
.vidioc_enum_input = vidioc_enum_input,
.vidioc_g_input = vidioc_g_input,
.vidioc_s_input = vidioc_s_input,
.vidioc_queryctrl = vidioc_queryctrl,
.vidioc_g_ctrl = vidioc_g_ctrl,
.vidioc_s_ctrl = vidioc_s_ctrl,
.vidioc_g_parm = vidioc_g_parm,
.vidioc_s_parm = vidioc_s_parm,
};
/*
*
* Camera device (i.e. /dev/video).
*
*/
static int omap24xxcam_device_register(struct v4l2_int_device *s)
{
struct omap24xxcam_device *cam = s->u.slave->master->priv;
struct video_device *vfd;
int rval;
/* We already have a slave. */
if (cam->sdev)
return -EBUSY;
cam->sdev = s;
if (device_create_file(cam->dev, &dev_attr_streaming) != 0) {
dev_err(cam->dev, "could not register sysfs entry\n");
rval = -EBUSY;
goto err;
}
/* initialize the video_device struct */
vfd = cam->vfd = video_device_alloc();
if (!vfd) {
dev_err(cam->dev, "could not allocate video device struct\n");
rval = -ENOMEM;
goto err;
}
vfd->release = video_device_release;
vfd->parent = cam->dev;
strlcpy(vfd->name, CAM_NAME, sizeof(vfd->name));
vfd->fops = &omap24xxcam_fops;
vfd->ioctl_ops = &omap24xxcam_ioctl_fops;
omap24xxcam_hwinit(cam);
rval = omap24xxcam_sensor_init(cam);
if (rval)
goto err;
if (video_register_device(vfd, VFL_TYPE_GRABBER, video_nr) < 0) {
dev_err(cam->dev, "could not register V4L device\n");
rval = -EBUSY;
goto err;
}
omap24xxcam_poweron_reset(cam);
dev_info(cam->dev, "registered device %s\n",
video_device_node_name(vfd));
return 0;
err:
omap24xxcam_device_unregister(s);
return rval;
}
static void omap24xxcam_device_unregister(struct v4l2_int_device *s)
{
struct omap24xxcam_device *cam = s->u.slave->master->priv;
omap24xxcam_sensor_exit(cam);
if (cam->vfd) {
if (!video_is_registered(cam->vfd)) {
/*
* The device was never registered, so release the
* video_device struct directly.
*/
video_device_release(cam->vfd);
} else {
/*
* The unregister function will release the
* video_device struct as well as
* unregistering it.
*/
video_unregister_device(cam->vfd);
}
cam->vfd = NULL;
}
device_remove_file(cam->dev, &dev_attr_streaming);
cam->sdev = NULL;
}
static struct v4l2_int_master omap24xxcam_master = {
.attach = omap24xxcam_device_register,
.detach = omap24xxcam_device_unregister,
};
static struct v4l2_int_device omap24xxcam = {
.module = THIS_MODULE,
.name = CAM_NAME,
.type = v4l2_int_type_master,
.u = {
.master = &omap24xxcam_master
},
};
/*
*
* Driver initialisation and deinitialisation.
*
*/
static int __devinit omap24xxcam_probe(struct platform_device *pdev)
{
struct omap24xxcam_device *cam;
struct resource *mem;
int irq;
cam = kzalloc(sizeof(*cam), GFP_KERNEL);
if (!cam) {
dev_err(&pdev->dev, "could not allocate memory\n");
goto err;
}
platform_set_drvdata(pdev, cam);
cam->dev = &pdev->dev;
/*
* Impose a lower limit on the amount of memory allocated for
* capture. We require at least enough memory to double-buffer
* QVGA (300KB).
*/
if (capture_mem < 320 * 240 * 2 * 2)
capture_mem = 320 * 240 * 2 * 2;
cam->capture_mem = capture_mem;
/* request the mem region for the camera registers */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(cam->dev, "no mem resource?\n");
goto err;
}
if (!request_mem_region(mem->start, (mem->end - mem->start) + 1,
pdev->name)) {
dev_err(cam->dev,
"cannot reserve camera register I/O region\n");
goto err;
}
cam->mmio_base_phys = mem->start;
cam->mmio_size = (mem->end - mem->start) + 1;
/* map the region */
cam->mmio_base = (unsigned long)
ioremap_nocache(cam->mmio_base_phys, cam->mmio_size);
if (!cam->mmio_base) {
dev_err(cam->dev, "cannot map camera register I/O region\n");
goto err;
}
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(cam->dev, "no irq for camera?\n");
goto err;
}
/* install the interrupt service routine */
if (request_irq(irq, omap24xxcam_isr, 0, CAM_NAME, cam)) {
dev_err(cam->dev,
"could not install interrupt service routine\n");
goto err;
}
cam->irq = irq;
if (omap24xxcam_clock_get(cam))
goto err;
INIT_WORK(&cam->sensor_reset_work, omap24xxcam_sensor_reset_work);
mutex_init(&cam->mutex);
spin_lock_init(&cam->core_enable_disable_lock);
omap24xxcam_sgdma_init(&cam->sgdma,
cam->mmio_base + CAMDMA_REG_OFFSET,
omap24xxcam_stalled_dma_reset,
(unsigned long)cam);
omap24xxcam.priv = cam;
if (v4l2_int_device_register(&omap24xxcam))
goto err;
return 0;
err:
omap24xxcam_remove(pdev);
return -ENODEV;
}
static int omap24xxcam_remove(struct platform_device *pdev)
{
struct omap24xxcam_device *cam = platform_get_drvdata(pdev);
if (!cam)
return 0;
if (omap24xxcam.priv != NULL)
v4l2_int_device_unregister(&omap24xxcam);
omap24xxcam.priv = NULL;
omap24xxcam_clock_put(cam);
if (cam->irq) {
free_irq(cam->irq, cam);
cam->irq = 0;
}
if (cam->mmio_base) {
iounmap((void *)cam->mmio_base);
cam->mmio_base = 0;
}
if (cam->mmio_base_phys) {
release_mem_region(cam->mmio_base_phys, cam->mmio_size);
cam->mmio_base_phys = 0;
}
kfree(cam);
return 0;
}
static struct platform_driver omap24xxcam_driver = {
.probe = omap24xxcam_probe,
.remove = omap24xxcam_remove,
#ifdef CONFIG_PM
.suspend = omap24xxcam_suspend,
.resume = omap24xxcam_resume,
#endif
.driver = {
.name = CAM_NAME,
.owner = THIS_MODULE,
},
};
/*
*
* Module initialisation and deinitialisation
*
*/
static int __init omap24xxcam_init(void)
{
return platform_driver_register(&omap24xxcam_driver);
}
static void __exit omap24xxcam_cleanup(void)
{
platform_driver_unregister(&omap24xxcam_driver);
}
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@nokia.com>");
MODULE_DESCRIPTION("OMAP24xx Video for Linux camera driver");
MODULE_LICENSE("GPL");
module_param(video_nr, int, 0);
MODULE_PARM_DESC(video_nr,
"Minor number for video device (-1 ==> auto assign)");
module_param(capture_mem, int, 0);
MODULE_PARM_DESC(capture_mem, "Maximum amount of memory for capture "
"buffers (default 4800kiB)");
module_init(omap24xxcam_init);
module_exit(omap24xxcam_cleanup);