linux/drivers/scsi/esp.c
Thomas Gleixner 1d6f359a2e [PATCH] irq-flags: scsi: Use the new IRQF_ constants
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-02 13:58:53 -07:00

4398 lines
121 KiB
C

/* esp.c: ESP Sun SCSI driver.
*
* Copyright (C) 1995, 1998, 2006 David S. Miller (davem@davemloft.net)
*/
/* TODO:
*
* 1) Maybe disable parity checking in config register one for SCSI1
* targets. (Gilmore says parity error on the SBus can lock up
* old sun4c's)
* 2) Add support for DMA2 pipelining.
* 3) Add tagged queueing.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include "esp.h"
#include <asm/sbus.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/ptrace.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifndef __sparc_v9__
#include <asm/machines.h>
#include <asm/idprom.h>
#endif
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#define DRV_VERSION "1.101"
#define DEBUG_ESP
/* #define DEBUG_ESP_HME */
/* #define DEBUG_ESP_DATA */
/* #define DEBUG_ESP_QUEUE */
/* #define DEBUG_ESP_DISCONNECT */
/* #define DEBUG_ESP_STATUS */
/* #define DEBUG_ESP_PHASES */
/* #define DEBUG_ESP_WORKBUS */
/* #define DEBUG_STATE_MACHINE */
/* #define DEBUG_ESP_CMDS */
/* #define DEBUG_ESP_IRQS */
/* #define DEBUG_SDTR */
/* #define DEBUG_ESP_SG */
/* Use the following to sprinkle debugging messages in a way which
* suits you if combinations of the above become too verbose when
* trying to track down a specific problem.
*/
/* #define DEBUG_ESP_MISC */
#if defined(DEBUG_ESP)
#define ESPLOG(foo) printk foo
#else
#define ESPLOG(foo)
#endif /* (DEBUG_ESP) */
#if defined(DEBUG_ESP_HME)
#define ESPHME(foo) printk foo
#else
#define ESPHME(foo)
#endif
#if defined(DEBUG_ESP_DATA)
#define ESPDATA(foo) printk foo
#else
#define ESPDATA(foo)
#endif
#if defined(DEBUG_ESP_QUEUE)
#define ESPQUEUE(foo) printk foo
#else
#define ESPQUEUE(foo)
#endif
#if defined(DEBUG_ESP_DISCONNECT)
#define ESPDISC(foo) printk foo
#else
#define ESPDISC(foo)
#endif
#if defined(DEBUG_ESP_STATUS)
#define ESPSTAT(foo) printk foo
#else
#define ESPSTAT(foo)
#endif
#if defined(DEBUG_ESP_PHASES)
#define ESPPHASE(foo) printk foo
#else
#define ESPPHASE(foo)
#endif
#if defined(DEBUG_ESP_WORKBUS)
#define ESPBUS(foo) printk foo
#else
#define ESPBUS(foo)
#endif
#if defined(DEBUG_ESP_IRQS)
#define ESPIRQ(foo) printk foo
#else
#define ESPIRQ(foo)
#endif
#if defined(DEBUG_SDTR)
#define ESPSDTR(foo) printk foo
#else
#define ESPSDTR(foo)
#endif
#if defined(DEBUG_ESP_MISC)
#define ESPMISC(foo) printk foo
#else
#define ESPMISC(foo)
#endif
/* Command phase enumeration. */
enum {
not_issued = 0x00, /* Still in the issue_SC queue. */
/* Various forms of selecting a target. */
#define in_slct_mask 0x10
in_slct_norm = 0x10, /* ESP is arbitrating, normal selection */
in_slct_stop = 0x11, /* ESP will select, then stop with IRQ */
in_slct_msg = 0x12, /* select, then send a message */
in_slct_tag = 0x13, /* select and send tagged queue msg */
in_slct_sneg = 0x14, /* select and acquire sync capabilities */
/* Any post selection activity. */
#define in_phases_mask 0x20
in_datain = 0x20, /* Data is transferring from the bus */
in_dataout = 0x21, /* Data is transferring to the bus */
in_data_done = 0x22, /* Last DMA data operation done (maybe) */
in_msgin = 0x23, /* Eating message from target */
in_msgincont = 0x24, /* Eating more msg bytes from target */
in_msgindone = 0x25, /* Decide what to do with what we got */
in_msgout = 0x26, /* Sending message to target */
in_msgoutdone = 0x27, /* Done sending msg out */
in_cmdbegin = 0x28, /* Sending cmd after abnormal selection */
in_cmdend = 0x29, /* Done sending slow cmd */
in_status = 0x2a, /* Was in status phase, finishing cmd */
in_freeing = 0x2b, /* freeing the bus for cmd cmplt or disc */
in_the_dark = 0x2c, /* Don't know what bus phase we are in */
/* Special states, ie. not normal bus transitions... */
#define in_spec_mask 0x80
in_abortone = 0x80, /* Aborting one command currently */
in_abortall = 0x81, /* Blowing away all commands we have */
in_resetdev = 0x82, /* SCSI target reset in progress */
in_resetbus = 0x83, /* SCSI bus reset in progress */
in_tgterror = 0x84, /* Target did something stupid */
};
enum {
/* Zero has special meaning, see skipahead[12]. */
/*0*/ do_never,
/*1*/ do_phase_determine,
/*2*/ do_reset_bus,
/*3*/ do_reset_complete,
/*4*/ do_work_bus,
/*5*/ do_intr_end
};
/* Forward declarations. */
static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs);
/* Debugging routines */
struct esp_cmdstrings {
u8 cmdchar;
char *text;
} esp_cmd_strings[] = {
/* Miscellaneous */
{ ESP_CMD_NULL, "ESP_NOP", },
{ ESP_CMD_FLUSH, "FIFO_FLUSH", },
{ ESP_CMD_RC, "RSTESP", },
{ ESP_CMD_RS, "RSTSCSI", },
/* Disconnected State Group */
{ ESP_CMD_RSEL, "RESLCTSEQ", },
{ ESP_CMD_SEL, "SLCTNATN", },
{ ESP_CMD_SELA, "SLCTATN", },
{ ESP_CMD_SELAS, "SLCTATNSTOP", },
{ ESP_CMD_ESEL, "ENSLCTRESEL", },
{ ESP_CMD_DSEL, "DISSELRESEL", },
{ ESP_CMD_SA3, "SLCTATN3", },
{ ESP_CMD_RSEL3, "RESLCTSEQ", },
/* Target State Group */
{ ESP_CMD_SMSG, "SNDMSG", },
{ ESP_CMD_SSTAT, "SNDSTATUS", },
{ ESP_CMD_SDATA, "SNDDATA", },
{ ESP_CMD_DSEQ, "DISCSEQ", },
{ ESP_CMD_TSEQ, "TERMSEQ", },
{ ESP_CMD_TCCSEQ, "TRGTCMDCOMPSEQ", },
{ ESP_CMD_DCNCT, "DISC", },
{ ESP_CMD_RMSG, "RCVMSG", },
{ ESP_CMD_RCMD, "RCVCMD", },
{ ESP_CMD_RDATA, "RCVDATA", },
{ ESP_CMD_RCSEQ, "RCVCMDSEQ", },
/* Initiator State Group */
{ ESP_CMD_TI, "TRANSINFO", },
{ ESP_CMD_ICCSEQ, "INICMDSEQCOMP", },
{ ESP_CMD_MOK, "MSGACCEPTED", },
{ ESP_CMD_TPAD, "TPAD", },
{ ESP_CMD_SATN, "SATN", },
{ ESP_CMD_RATN, "RATN", },
};
#define NUM_ESP_COMMANDS ((sizeof(esp_cmd_strings)) / (sizeof(struct esp_cmdstrings)))
/* Print textual representation of an ESP command */
static inline void esp_print_cmd(u8 espcmd)
{
u8 dma_bit = espcmd & ESP_CMD_DMA;
int i;
espcmd &= ~dma_bit;
for (i = 0; i < NUM_ESP_COMMANDS; i++)
if (esp_cmd_strings[i].cmdchar == espcmd)
break;
if (i == NUM_ESP_COMMANDS)
printk("ESP_Unknown");
else
printk("%s%s", esp_cmd_strings[i].text,
((dma_bit) ? "+DMA" : ""));
}
/* Print the status register's value */
static inline void esp_print_statreg(u8 statreg)
{
u8 phase;
printk("STATUS<");
phase = statreg & ESP_STAT_PMASK;
printk("%s,", (phase == ESP_DOP ? "DATA-OUT" :
(phase == ESP_DIP ? "DATA-IN" :
(phase == ESP_CMDP ? "COMMAND" :
(phase == ESP_STATP ? "STATUS" :
(phase == ESP_MOP ? "MSG-OUT" :
(phase == ESP_MIP ? "MSG_IN" :
"unknown")))))));
if (statreg & ESP_STAT_TDONE)
printk("TRANS_DONE,");
if (statreg & ESP_STAT_TCNT)
printk("TCOUNT_ZERO,");
if (statreg & ESP_STAT_PERR)
printk("P_ERROR,");
if (statreg & ESP_STAT_SPAM)
printk("SPAM,");
if (statreg & ESP_STAT_INTR)
printk("IRQ,");
printk(">");
}
/* Print the interrupt register's value */
static inline void esp_print_ireg(u8 intreg)
{
printk("INTREG< ");
if (intreg & ESP_INTR_S)
printk("SLCT_NATN ");
if (intreg & ESP_INTR_SATN)
printk("SLCT_ATN ");
if (intreg & ESP_INTR_RSEL)
printk("RSLCT ");
if (intreg & ESP_INTR_FDONE)
printk("FDONE ");
if (intreg & ESP_INTR_BSERV)
printk("BSERV ");
if (intreg & ESP_INTR_DC)
printk("DISCNCT ");
if (intreg & ESP_INTR_IC)
printk("ILL_CMD ");
if (intreg & ESP_INTR_SR)
printk("SCSI_BUS_RESET ");
printk(">");
}
/* Print the sequence step registers contents */
static inline void esp_print_seqreg(u8 stepreg)
{
stepreg &= ESP_STEP_VBITS;
printk("STEP<%s>",
(stepreg == ESP_STEP_ASEL ? "SLCT_ARB_CMPLT" :
(stepreg == ESP_STEP_SID ? "1BYTE_MSG_SENT" :
(stepreg == ESP_STEP_NCMD ? "NOT_IN_CMD_PHASE" :
(stepreg == ESP_STEP_PPC ? "CMD_BYTES_LOST" :
(stepreg == ESP_STEP_FINI4 ? "CMD_SENT_OK" :
"UNKNOWN"))))));
}
static char *phase_string(int phase)
{
switch (phase) {
case not_issued:
return "UNISSUED";
case in_slct_norm:
return "SLCTNORM";
case in_slct_stop:
return "SLCTSTOP";
case in_slct_msg:
return "SLCTMSG";
case in_slct_tag:
return "SLCTTAG";
case in_slct_sneg:
return "SLCTSNEG";
case in_datain:
return "DATAIN";
case in_dataout:
return "DATAOUT";
case in_data_done:
return "DATADONE";
case in_msgin:
return "MSGIN";
case in_msgincont:
return "MSGINCONT";
case in_msgindone:
return "MSGINDONE";
case in_msgout:
return "MSGOUT";
case in_msgoutdone:
return "MSGOUTDONE";
case in_cmdbegin:
return "CMDBEGIN";
case in_cmdend:
return "CMDEND";
case in_status:
return "STATUS";
case in_freeing:
return "FREEING";
case in_the_dark:
return "CLUELESS";
case in_abortone:
return "ABORTONE";
case in_abortall:
return "ABORTALL";
case in_resetdev:
return "RESETDEV";
case in_resetbus:
return "RESETBUS";
case in_tgterror:
return "TGTERROR";
default:
return "UNKNOWN";
};
}
#ifdef DEBUG_STATE_MACHINE
static inline void esp_advance_phase(struct scsi_cmnd *s, int newphase)
{
ESPLOG(("<%s>", phase_string(newphase)));
s->SCp.sent_command = s->SCp.phase;
s->SCp.phase = newphase;
}
#else
#define esp_advance_phase(__s, __newphase) \
(__s)->SCp.sent_command = (__s)->SCp.phase; \
(__s)->SCp.phase = (__newphase);
#endif
#ifdef DEBUG_ESP_CMDS
static inline void esp_cmd(struct esp *esp, u8 cmd)
{
esp->espcmdlog[esp->espcmdent] = cmd;
esp->espcmdent = (esp->espcmdent + 1) & 31;
sbus_writeb(cmd, esp->eregs + ESP_CMD);
}
#else
#define esp_cmd(__esp, __cmd) \
sbus_writeb((__cmd), ((__esp)->eregs) + ESP_CMD)
#endif
#define ESP_INTSOFF(__dregs) \
sbus_writel(sbus_readl((__dregs)+DMA_CSR)&~(DMA_INT_ENAB), (__dregs)+DMA_CSR)
#define ESP_INTSON(__dregs) \
sbus_writel(sbus_readl((__dregs)+DMA_CSR)|DMA_INT_ENAB, (__dregs)+DMA_CSR)
#define ESP_IRQ_P(__dregs) \
(sbus_readl((__dregs)+DMA_CSR) & (DMA_HNDL_INTR|DMA_HNDL_ERROR))
/* How we use the various Linux SCSI data structures for operation.
*
* struct scsi_cmnd:
*
* We keep track of the synchronous capabilities of a target
* in the device member, using sync_min_period and
* sync_max_offset. These are the values we directly write
* into the ESP registers while running a command. If offset
* is zero the ESP will use asynchronous transfers.
* If the borken flag is set we assume we shouldn't even bother
* trying to negotiate for synchronous transfer as this target
* is really stupid. If we notice the target is dropping the
* bus, and we have been allowing it to disconnect, we clear
* the disconnect flag.
*/
/* Manipulation of the ESP command queues. Thanks to the aha152x driver
* and its author, Juergen E. Fischer, for the methods used here.
* Note that these are per-ESP queues, not global queues like
* the aha152x driver uses.
*/
static inline void append_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC)
{
struct scsi_cmnd *end;
new_SC->host_scribble = (unsigned char *) NULL;
if (!*SC)
*SC = new_SC;
else {
for (end=*SC;end->host_scribble;end=(struct scsi_cmnd *)end->host_scribble)
;
end->host_scribble = (unsigned char *) new_SC;
}
}
static inline void prepend_SC(struct scsi_cmnd **SC, struct scsi_cmnd *new_SC)
{
new_SC->host_scribble = (unsigned char *) *SC;
*SC = new_SC;
}
static inline struct scsi_cmnd *remove_first_SC(struct scsi_cmnd **SC)
{
struct scsi_cmnd *ptr;
ptr = *SC;
if (ptr)
*SC = (struct scsi_cmnd *) (*SC)->host_scribble;
return ptr;
}
static inline struct scsi_cmnd *remove_SC(struct scsi_cmnd **SC, int target, int lun)
{
struct scsi_cmnd *ptr, *prev;
for (ptr = *SC, prev = NULL;
ptr && ((ptr->device->id != target) || (ptr->device->lun != lun));
prev = ptr, ptr = (struct scsi_cmnd *) ptr->host_scribble)
;
if (ptr) {
if (prev)
prev->host_scribble=ptr->host_scribble;
else
*SC=(struct scsi_cmnd *)ptr->host_scribble;
}
return ptr;
}
/* Resetting various pieces of the ESP scsi driver chipset/buses. */
static void esp_reset_dma(struct esp *esp)
{
int can_do_burst16, can_do_burst32, can_do_burst64;
int can_do_sbus64;
u32 tmp;
can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
can_do_burst64 = 0;
can_do_sbus64 = 0;
if (sbus_can_dma_64bit(esp->sdev))
can_do_sbus64 = 1;
if (sbus_can_burst64(esp->sdev))
can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
/* Punt the DVMA into a known state. */
if (esp->dma->revision != dvmahme) {
tmp = sbus_readl(esp->dregs + DMA_CSR);
sbus_writel(tmp | DMA_RST_SCSI, esp->dregs + DMA_CSR);
sbus_writel(tmp & ~DMA_RST_SCSI, esp->dregs + DMA_CSR);
}
switch (esp->dma->revision) {
case dvmahme:
/* This is the HME DVMA gate array. */
sbus_writel(DMA_RESET_FAS366, esp->dregs + DMA_CSR);
sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR);
esp->prev_hme_dmacsr = (DMA_PARITY_OFF|DMA_2CLKS|DMA_SCSI_DISAB|DMA_INT_ENAB);
esp->prev_hme_dmacsr &= ~(DMA_ENABLE|DMA_ST_WRITE|DMA_BRST_SZ);
if (can_do_burst64)
esp->prev_hme_dmacsr |= DMA_BRST64;
else if (can_do_burst32)
esp->prev_hme_dmacsr |= DMA_BRST32;
if (can_do_sbus64) {
esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
sbus_set_sbus64(esp->sdev, esp->bursts);
}
/* This chip is horrible. */
while (sbus_readl(esp->dregs + DMA_CSR) & DMA_PEND_READ)
udelay(1);
sbus_writel(0, esp->dregs + DMA_CSR);
sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
sbus_writel(0, esp->dregs + DMA_ADDR);
break;
case dvmarev2:
/* This is the gate array found in the sun4m
* NCR SBUS I/O subsystem.
*/
if (esp->erev != esp100) {
tmp = sbus_readl(esp->dregs + DMA_CSR);
sbus_writel(tmp | DMA_3CLKS, esp->dregs + DMA_CSR);
}
break;
case dvmarev3:
tmp = sbus_readl(esp->dregs + DMA_CSR);
tmp &= ~DMA_3CLKS;
tmp |= DMA_2CLKS;
if (can_do_burst32) {
tmp &= ~DMA_BRST_SZ;
tmp |= DMA_BRST32;
}
sbus_writel(tmp, esp->dregs + DMA_CSR);
break;
case dvmaesc1:
/* This is the DMA unit found on SCSI/Ether cards. */
tmp = sbus_readl(esp->dregs + DMA_CSR);
tmp |= DMA_ADD_ENABLE;
tmp &= ~DMA_BCNT_ENAB;
if (!can_do_burst32 && can_do_burst16) {
tmp |= DMA_ESC_BURST;
} else {
tmp &= ~(DMA_ESC_BURST);
}
sbus_writel(tmp, esp->dregs + DMA_CSR);
break;
default:
break;
};
ESP_INTSON(esp->dregs);
}
/* Reset the ESP chip, _not_ the SCSI bus. */
static void __init esp_reset_esp(struct esp *esp)
{
u8 family_code, version;
int i;
/* Now reset the ESP chip */
esp_cmd(esp, ESP_CMD_RC);
esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
/* Reload the configuration registers */
sbus_writeb(esp->cfact, esp->eregs + ESP_CFACT);
esp->prev_stp = 0;
sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP);
esp->prev_soff = 0;
sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF);
sbus_writeb(esp->neg_defp, esp->eregs + ESP_TIMEO);
/* This is the only point at which it is reliable to read
* the ID-code for a fast ESP chip variants.
*/
esp->max_period = ((35 * esp->ccycle) / 1000);
if (esp->erev == fast) {
version = sbus_readb(esp->eregs + ESP_UID);
family_code = (version & 0xf8) >> 3;
if (family_code == 0x02)
esp->erev = fas236;
else if (family_code == 0x0a)
esp->erev = fashme; /* Version is usually '5'. */
else
esp->erev = fas100a;
ESPMISC(("esp%d: FAST chip is %s (family=%d, version=%d)\n",
esp->esp_id,
(esp->erev == fas236) ? "fas236" :
((esp->erev == fas100a) ? "fas100a" :
"fasHME"), family_code, (version & 7)));
esp->min_period = ((4 * esp->ccycle) / 1000);
} else {
esp->min_period = ((5 * esp->ccycle) / 1000);
}
esp->max_period = (esp->max_period + 3)>>2;
esp->min_period = (esp->min_period + 3)>>2;
sbus_writeb(esp->config1, esp->eregs + ESP_CFG1);
switch (esp->erev) {
case esp100:
/* nothing to do */
break;
case esp100a:
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
break;
case esp236:
/* Slow 236 */
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
esp->prev_cfg3 = esp->config3[0];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
break;
case fashme:
esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
/* fallthrough... */
case fas236:
/* Fast 236 or HME */
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
for (i = 0; i < 16; i++) {
if (esp->erev == fashme) {
u8 cfg3;
cfg3 = ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
if (esp->scsi_id >= 8)
cfg3 |= ESP_CONFIG3_IDBIT3;
esp->config3[i] |= cfg3;
} else {
esp->config3[i] |= ESP_CONFIG3_FCLK;
}
}
esp->prev_cfg3 = esp->config3[0];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
if (esp->erev == fashme) {
esp->radelay = 80;
} else {
if (esp->diff)
esp->radelay = 0;
else
esp->radelay = 96;
}
break;
case fas100a:
/* Fast 100a */
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
for (i = 0; i < 16; i++)
esp->config3[i] |= ESP_CONFIG3_FCLOCK;
esp->prev_cfg3 = esp->config3[0];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
esp->radelay = 32;
break;
default:
panic("esp: what could it be... I wonder...");
break;
};
/* Eat any bitrot in the chip */
sbus_readb(esp->eregs + ESP_INTRPT);
udelay(100);
}
/* This places the ESP into a known state at boot time. */
static void __init esp_bootup_reset(struct esp *esp)
{
u8 tmp;
/* Reset the DMA */
esp_reset_dma(esp);
/* Reset the ESP */
esp_reset_esp(esp);
/* Reset the SCSI bus, but tell ESP not to generate an irq */
tmp = sbus_readb(esp->eregs + ESP_CFG1);
tmp |= ESP_CONFIG1_SRRDISAB;
sbus_writeb(tmp, esp->eregs + ESP_CFG1);
esp_cmd(esp, ESP_CMD_RS);
udelay(400);
sbus_writeb(esp->config1, esp->eregs + ESP_CFG1);
/* Eat any bitrot in the chip and we are done... */
sbus_readb(esp->eregs + ESP_INTRPT);
}
static int __init esp_find_dvma(struct esp *esp, struct sbus_dev *dma_sdev)
{
struct sbus_dev *sdev = esp->sdev;
struct sbus_dma *dma;
if (dma_sdev != NULL) {
for_each_dvma(dma) {
if (dma->sdev == dma_sdev)
break;
}
} else {
for_each_dvma(dma) {
/* If allocated already, can't use it. */
if (dma->allocated)
continue;
if (dma->sdev == NULL)
break;
/* If bus + slot are the same and it has the
* correct OBP name, it's ours.
*/
if (sdev->bus == dma->sdev->bus &&
sdev->slot == dma->sdev->slot &&
(!strcmp(dma->sdev->prom_name, "dma") ||
!strcmp(dma->sdev->prom_name, "espdma")))
break;
}
}
/* If we don't know how to handle the dvma,
* do not use this device.
*/
if (dma == NULL) {
printk("Cannot find dvma for ESP%d's SCSI\n", esp->esp_id);
return -1;
}
if (dma->allocated) {
printk("esp%d: can't use my espdma\n", esp->esp_id);
return -1;
}
dma->allocated = 1;
esp->dma = dma;
esp->dregs = dma->regs;
return 0;
}
static int __init esp_map_regs(struct esp *esp, int hme)
{
struct sbus_dev *sdev = esp->sdev;
struct resource *res;
/* On HME, two reg sets exist, first is DVMA,
* second is ESP registers.
*/
if (hme)
res = &sdev->resource[1];
else
res = &sdev->resource[0];
esp->eregs = sbus_ioremap(res, 0, ESP_REG_SIZE, "ESP Registers");
if (esp->eregs == 0)
return -1;
return 0;
}
static int __init esp_map_cmdarea(struct esp *esp)
{
struct sbus_dev *sdev = esp->sdev;
esp->esp_command = sbus_alloc_consistent(sdev, 16,
&esp->esp_command_dvma);
if (esp->esp_command == NULL ||
esp->esp_command_dvma == 0)
return -1;
return 0;
}
static int __init esp_register_irq(struct esp *esp)
{
esp->ehost->irq = esp->irq = esp->sdev->irqs[0];
/* We used to try various overly-clever things to
* reduce the interrupt processing overhead on
* sun4c/sun4m when multiple ESP's shared the
* same IRQ. It was too complex and messy to
* sanely maintain.
*/
if (request_irq(esp->ehost->irq, esp_intr,
IRQF_SHARED, "ESP SCSI", esp)) {
printk("esp%d: Cannot acquire irq line\n",
esp->esp_id);
return -1;
}
printk("esp%d: IRQ %d ", esp->esp_id,
esp->ehost->irq);
return 0;
}
static void __init esp_get_scsi_id(struct esp *esp)
{
struct sbus_dev *sdev = esp->sdev;
struct device_node *dp = sdev->ofdev.node;
esp->scsi_id = of_getintprop_default(dp,
"initiator-id",
-1);
if (esp->scsi_id == -1)
esp->scsi_id = of_getintprop_default(dp,
"scsi-initiator-id",
-1);
if (esp->scsi_id == -1)
esp->scsi_id = (sdev->bus == NULL) ? 7 :
of_getintprop_default(sdev->bus->ofdev.node,
"scsi-initiator-id",
7);
esp->ehost->this_id = esp->scsi_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
}
static void __init esp_get_clock_params(struct esp *esp)
{
struct sbus_dev *sdev = esp->sdev;
int prom_node = esp->prom_node;
int sbus_prom_node;
unsigned int fmhz;
u8 ccf;
if (sdev != NULL && sdev->bus != NULL)
sbus_prom_node = sdev->bus->prom_node;
else
sbus_prom_node = 0;
/* This is getting messy but it has to be done
* correctly or else you get weird behavior all
* over the place. We are trying to basically
* figure out three pieces of information.
*
* a) Clock Conversion Factor
*
* This is a representation of the input
* crystal clock frequency going into the
* ESP on this machine. Any operation whose
* timing is longer than 400ns depends on this
* value being correct. For example, you'll
* get blips for arbitration/selection during
* high load or with multiple targets if this
* is not set correctly.
*
* b) Selection Time-Out
*
* The ESP isn't very bright and will arbitrate
* for the bus and try to select a target
* forever if you let it. This value tells
* the ESP when it has taken too long to
* negotiate and that it should interrupt
* the CPU so we can see what happened.
* The value is computed as follows (from
* NCR/Symbios chip docs).
*
* (Time Out Period) * (Input Clock)
* STO = ----------------------------------
* (8192) * (Clock Conversion Factor)
*
* You usually want the time out period to be
* around 250ms, I think we'll set it a little
* bit higher to account for fully loaded SCSI
* bus's and slow devices that don't respond so
* quickly to selection attempts. (yeah, I know
* this is out of spec. but there is a lot of
* buggy pieces of firmware out there so bite me)
*
* c) Imperical constants for synchronous offset
* and transfer period register values
*
* This entails the smallest and largest sync
* period we could ever handle on this ESP.
*/
fmhz = prom_getintdefault(prom_node, "clock-frequency", -1);
if (fmhz == -1)
fmhz = (!sbus_prom_node) ? 0 :
prom_getintdefault(sbus_prom_node, "clock-frequency", -1);
if (fmhz <= (5000000))
ccf = 0;
else
ccf = (((5000000 - 1) + (fmhz))/(5000000));
if (!ccf || ccf > 8) {
/* If we can't find anything reasonable,
* just assume 20MHZ. This is the clock
* frequency of the older sun4c's where I've
* been unable to find the clock-frequency
* PROM property. All other machines provide
* useful values it seems.
*/
ccf = ESP_CCF_F4;
fmhz = (20000000);
}
if (ccf == (ESP_CCF_F7 + 1))
esp->cfact = ESP_CCF_F0;
else if (ccf == ESP_CCF_NEVER)
esp->cfact = ESP_CCF_F2;
else
esp->cfact = ccf;
esp->raw_cfact = ccf;
esp->cfreq = fmhz;
esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz);
esp->ctick = ESP_TICK(ccf, esp->ccycle);
esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf);
esp->sync_defp = SYNC_DEFP_SLOW;
printk("SCSI ID %d Clk %dMHz CCYC=%d CCF=%d TOut %d ",
esp->scsi_id, (fmhz / 1000000),
(int)esp->ccycle, (int)ccf, (int) esp->neg_defp);
}
static void __init esp_get_bursts(struct esp *esp, struct sbus_dev *dma)
{
struct sbus_dev *sdev = esp->sdev;
u8 bursts;
bursts = prom_getintdefault(esp->prom_node, "burst-sizes", 0xff);
if (dma) {
u8 tmp = prom_getintdefault(dma->prom_node,
"burst-sizes", 0xff);
if (tmp != 0xff)
bursts &= tmp;
}
if (sdev->bus) {
u8 tmp = prom_getintdefault(sdev->bus->prom_node,
"burst-sizes", 0xff);
if (tmp != 0xff)
bursts &= tmp;
}
if (bursts == 0xff ||
(bursts & DMA_BURST16) == 0 ||
(bursts & DMA_BURST32) == 0)
bursts = (DMA_BURST32 - 1);
esp->bursts = bursts;
}
static void __init esp_get_revision(struct esp *esp)
{
u8 tmp;
esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
tmp = sbus_readb(esp->eregs + ESP_CFG2);
tmp &= ~ESP_CONFIG2_MAGIC;
if (tmp != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
/* If what we write to cfg2 does not come back, cfg2
* is not implemented, therefore this must be a plain
* esp100.
*/
esp->erev = esp100;
printk("NCR53C90(esp100)\n");
} else {
esp->config2 = 0;
esp->prev_cfg3 = esp->config3[0] = 5;
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
sbus_writeb(0, esp->eregs + ESP_CFG3);
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
tmp = sbus_readb(esp->eregs + ESP_CFG3);
if (tmp != 5) {
/* The cfg2 register is implemented, however
* cfg3 is not, must be esp100a.
*/
esp->erev = esp100a;
printk("NCR53C90A(esp100a)\n");
} else {
int target;
for (target = 0; target < 16; target++)
esp->config3[target] = 0;
esp->prev_cfg3 = 0;
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
/* All of cfg{1,2,3} implemented, must be one of
* the fas variants, figure out which one.
*/
if (esp->raw_cfact > ESP_CCF_F5) {
esp->erev = fast;
esp->sync_defp = SYNC_DEFP_FAST;
printk("NCR53C9XF(espfast)\n");
} else {
esp->erev = esp236;
printk("NCR53C9x(esp236)\n");
}
esp->config2 = 0;
sbus_writeb(esp->config2, esp->eregs + ESP_CFG2);
}
}
}
static void __init esp_init_swstate(struct esp *esp)
{
int i;
/* Command queues... */
esp->current_SC = NULL;
esp->disconnected_SC = NULL;
esp->issue_SC = NULL;
/* Target and current command state... */
esp->targets_present = 0;
esp->resetting_bus = 0;
esp->snip = 0;
init_waitqueue_head(&esp->reset_queue);
/* Debugging... */
for(i = 0; i < 32; i++)
esp->espcmdlog[i] = 0;
esp->espcmdent = 0;
/* MSG phase state... */
for(i = 0; i < 16; i++) {
esp->cur_msgout[i] = 0;
esp->cur_msgin[i] = 0;
}
esp->prevmsgout = esp->prevmsgin = 0;
esp->msgout_len = esp->msgin_len = 0;
/* Clear the one behind caches to hold unmatchable values. */
esp->prev_soff = esp->prev_stp = esp->prev_cfg3 = 0xff;
esp->prev_hme_dmacsr = 0xffffffff;
}
static int __init detect_one_esp(struct scsi_host_template *tpnt,
struct device *dev,
struct sbus_dev *esp_dev,
struct sbus_dev *espdma,
struct sbus_bus *sbus,
int hme)
{
static int instance;
struct Scsi_Host *esp_host = scsi_host_alloc(tpnt, sizeof(struct esp));
struct esp *esp;
if (!esp_host)
return -ENOMEM;
if (hme)
esp_host->max_id = 16;
esp = (struct esp *) esp_host->hostdata;
esp->ehost = esp_host;
esp->sdev = esp_dev;
esp->esp_id = instance;
esp->prom_node = esp_dev->prom_node;
prom_getstring(esp->prom_node, "name", esp->prom_name,
sizeof(esp->prom_name));
if (esp_find_dvma(esp, espdma) < 0)
goto fail_unlink;
if (esp_map_regs(esp, hme) < 0) {
printk("ESP registers unmappable");
goto fail_dvma_release;
}
if (esp_map_cmdarea(esp) < 0) {
printk("ESP DVMA transport area unmappable");
goto fail_unmap_regs;
}
if (esp_register_irq(esp) < 0)
goto fail_unmap_cmdarea;
esp_get_scsi_id(esp);
esp->diff = prom_getbool(esp->prom_node, "differential");
if (esp->diff)
printk("Differential ");
esp_get_clock_params(esp);
esp_get_bursts(esp, espdma);
esp_get_revision(esp);
esp_init_swstate(esp);
esp_bootup_reset(esp);
if (scsi_add_host(esp_host, dev))
goto fail_free_irq;
dev_set_drvdata(&esp_dev->ofdev.dev, esp);
scsi_scan_host(esp_host);
instance++;
return 0;
fail_free_irq:
free_irq(esp->ehost->irq, esp);
fail_unmap_cmdarea:
sbus_free_consistent(esp->sdev, 16,
(void *) esp->esp_command,
esp->esp_command_dvma);
fail_unmap_regs:
sbus_iounmap(esp->eregs, ESP_REG_SIZE);
fail_dvma_release:
esp->dma->allocated = 0;
fail_unlink:
scsi_host_put(esp_host);
return -1;
}
/* Detecting ESP chips on the machine. This is the simple and easy
* version.
*/
static int __devexit esp_remove_common(struct esp *esp)
{
unsigned int irq = esp->ehost->irq;
scsi_remove_host(esp->ehost);
ESP_INTSOFF(esp->dregs);
#if 0
esp_reset_dma(esp);
esp_reset_esp(esp);
#endif
free_irq(irq, esp);
sbus_free_consistent(esp->sdev, 16,
(void *) esp->esp_command, esp->esp_command_dvma);
sbus_iounmap(esp->eregs, ESP_REG_SIZE);
esp->dma->allocated = 0;
scsi_host_put(esp->ehost);
return 0;
}
#ifdef CONFIG_SUN4
#include <asm/sun4paddr.h>
static struct sbus_dev sun4_esp_dev;
static int __init esp_sun4_probe(struct scsi_host_template *tpnt)
{
if (sun4_esp_physaddr) {
memset(&sun4_esp_dev, 0, sizeof(esp_dev));
sun4_esp_dev.reg_addrs[0].phys_addr = sun4_esp_physaddr;
sun4_esp_dev.irqs[0] = 4;
sun4_esp_dev.resource[0].start = sun4_esp_physaddr;
sun4_esp_dev.resource[0].end =
sun4_esp_physaddr + ESP_REG_SIZE - 1;
sun4_esp_dev.resource[0].flags = IORESOURCE_IO;
return detect_one_esp(tpnt, NULL,
&sun4_esp_dev, NULL, NULL, 0);
}
return 0;
}
static int __devexit esp_sun4_remove(void)
{
struct esp *esp = dev_get_drvdata(&dev->dev);
return esp_remove_common(esp);
}
#else /* !CONFIG_SUN4 */
static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match)
{
struct sbus_dev *sdev = to_sbus_device(&dev->dev);
struct device_node *dp = dev->node;
struct sbus_dev *dma_sdev = NULL;
int hme = 0;
if (dp->parent &&
(!strcmp(dp->parent->name, "espdma") ||
!strcmp(dp->parent->name, "dma")))
dma_sdev = sdev->parent;
else if (!strcmp(dp->name, "SUNW,fas")) {
dma_sdev = sdev;
hme = 1;
}
return detect_one_esp(match->data, &dev->dev,
sdev, dma_sdev, sdev->bus, hme);
}
static int __devexit esp_sbus_remove(struct of_device *dev)
{
struct esp *esp = dev_get_drvdata(&dev->dev);
return esp_remove_common(esp);
}
#endif /* !CONFIG_SUN4 */
/* The info function will return whatever useful
* information the developer sees fit. If not provided, then
* the name field will be used instead.
*/
static const char *esp_info(struct Scsi_Host *host)
{
struct esp *esp;
esp = (struct esp *) host->hostdata;
switch (esp->erev) {
case esp100:
return "Sparc ESP100 (NCR53C90)";
case esp100a:
return "Sparc ESP100A (NCR53C90A)";
case esp236:
return "Sparc ESP236";
case fas236:
return "Sparc ESP236-FAST";
case fashme:
return "Sparc ESP366-HME";
case fas100a:
return "Sparc ESP100A-FAST";
default:
return "Bogon ESP revision";
};
}
/* From Wolfgang Stanglmeier's NCR scsi driver. */
struct info_str
{
char *buffer;
int length;
int offset;
int pos;
};
static void copy_mem_info(struct info_str *info, char *data, int len)
{
if (info->pos + len > info->length)
len = info->length - info->pos;
if (info->pos + len < info->offset) {
info->pos += len;
return;
}
if (info->pos < info->offset) {
data += (info->offset - info->pos);
len -= (info->offset - info->pos);
}
if (len > 0) {
memcpy(info->buffer + info->pos, data, len);
info->pos += len;
}
}
static int copy_info(struct info_str *info, char *fmt, ...)
{
va_list args;
char buf[81];
int len;
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
copy_mem_info(info, buf, len);
return len;
}
static int esp_host_info(struct esp *esp, char *ptr, off_t offset, int len)
{
struct scsi_device *sdev;
struct info_str info;
int i;
info.buffer = ptr;
info.length = len;
info.offset = offset;
info.pos = 0;
copy_info(&info, "Sparc ESP Host Adapter:\n");
copy_info(&info, "\tPROM node\t\t%08x\n", (unsigned int) esp->prom_node);
copy_info(&info, "\tPROM name\t\t%s\n", esp->prom_name);
copy_info(&info, "\tESP Model\t\t");
switch (esp->erev) {
case esp100:
copy_info(&info, "ESP100\n");
break;
case esp100a:
copy_info(&info, "ESP100A\n");
break;
case esp236:
copy_info(&info, "ESP236\n");
break;
case fas236:
copy_info(&info, "FAS236\n");
break;
case fas100a:
copy_info(&info, "FAS100A\n");
break;
case fast:
copy_info(&info, "FAST\n");
break;
case fashme:
copy_info(&info, "Happy Meal FAS\n");
break;
case espunknown:
default:
copy_info(&info, "Unknown!\n");
break;
};
copy_info(&info, "\tDMA Revision\t\t");
switch (esp->dma->revision) {
case dvmarev0:
copy_info(&info, "Rev 0\n");
break;
case dvmaesc1:
copy_info(&info, "ESC Rev 1\n");
break;
case dvmarev1:
copy_info(&info, "Rev 1\n");
break;
case dvmarev2:
copy_info(&info, "Rev 2\n");
break;
case dvmarev3:
copy_info(&info, "Rev 3\n");
break;
case dvmarevplus:
copy_info(&info, "Rev 1+\n");
break;
case dvmahme:
copy_info(&info, "Rev HME/FAS\n");
break;
default:
copy_info(&info, "Unknown!\n");
break;
};
copy_info(&info, "\tLive Targets\t\t[ ");
for (i = 0; i < 15; i++) {
if (esp->targets_present & (1 << i))
copy_info(&info, "%d ", i);
}
copy_info(&info, "]\n\n");
/* Now describe the state of each existing target. */
copy_info(&info, "Target #\tconfig3\t\tSync Capabilities\tDisconnect\tWide\n");
shost_for_each_device(sdev, esp->ehost) {
struct esp_device *esp_dev = sdev->hostdata;
uint id = sdev->id;
if (!(esp->targets_present & (1 << id)))
continue;
copy_info(&info, "%d\t\t", id);
copy_info(&info, "%08lx\t", esp->config3[id]);
copy_info(&info, "[%02lx,%02lx]\t\t\t",
esp_dev->sync_max_offset,
esp_dev->sync_min_period);
copy_info(&info, "%s\t\t",
esp_dev->disconnect ? "yes" : "no");
copy_info(&info, "%s\n",
(esp->config3[id] & ESP_CONFIG3_EWIDE) ? "yes" : "no");
}
return info.pos > info.offset? info.pos - info.offset : 0;
}
/* ESP proc filesystem code. */
static int esp_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset,
int length, int inout)
{
struct esp *esp = (struct esp *) host->hostdata;
if (inout)
return -EINVAL; /* not yet */
if (start)
*start = buffer;
return esp_host_info(esp, buffer, offset, length);
}
static void esp_get_dmabufs(struct esp *esp, struct scsi_cmnd *sp)
{
if (sp->use_sg == 0) {
sp->SCp.this_residual = sp->request_bufflen;
sp->SCp.buffer = (struct scatterlist *) sp->request_buffer;
sp->SCp.buffers_residual = 0;
if (sp->request_bufflen) {
sp->SCp.have_data_in = sbus_map_single(esp->sdev, sp->SCp.buffer,
sp->SCp.this_residual,
sp->sc_data_direction);
sp->SCp.ptr = (char *) ((unsigned long)sp->SCp.have_data_in);
} else {
sp->SCp.ptr = NULL;
}
} else {
sp->SCp.buffer = (struct scatterlist *) sp->buffer;
sp->SCp.buffers_residual = sbus_map_sg(esp->sdev,
sp->SCp.buffer,
sp->use_sg,
sp->sc_data_direction);
sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer);
sp->SCp.ptr = (char *) ((unsigned long)sg_dma_address(sp->SCp.buffer));
}
}
static void esp_release_dmabufs(struct esp *esp, struct scsi_cmnd *sp)
{
if (sp->use_sg) {
sbus_unmap_sg(esp->sdev, sp->buffer, sp->use_sg,
sp->sc_data_direction);
} else if (sp->request_bufflen) {
sbus_unmap_single(esp->sdev,
sp->SCp.have_data_in,
sp->request_bufflen,
sp->sc_data_direction);
}
}
static void esp_restore_pointers(struct esp *esp, struct scsi_cmnd *sp)
{
struct esp_pointers *ep = &esp->data_pointers[sp->device->id];
sp->SCp.ptr = ep->saved_ptr;
sp->SCp.buffer = ep->saved_buffer;
sp->SCp.this_residual = ep->saved_this_residual;
sp->SCp.buffers_residual = ep->saved_buffers_residual;
}
static void esp_save_pointers(struct esp *esp, struct scsi_cmnd *sp)
{
struct esp_pointers *ep = &esp->data_pointers[sp->device->id];
ep->saved_ptr = sp->SCp.ptr;
ep->saved_buffer = sp->SCp.buffer;
ep->saved_this_residual = sp->SCp.this_residual;
ep->saved_buffers_residual = sp->SCp.buffers_residual;
}
/* Some rules:
*
* 1) Never ever panic while something is live on the bus.
* If there is to be any chance of syncing the disks this
* rule is to be obeyed.
*
* 2) Any target that causes a foul condition will no longer
* have synchronous transfers done to it, no questions
* asked.
*
* 3) Keep register accesses to a minimum. Think about some
* day when we have Xbus machines this is running on and
* the ESP chip is on the other end of the machine on a
* different board from the cpu where this is running.
*/
/* Fire off a command. We assume the bus is free and that the only
* case where we could see an interrupt is where we have disconnected
* commands active and they are trying to reselect us.
*/
static inline void esp_check_cmd(struct esp *esp, struct scsi_cmnd *sp)
{
switch (sp->cmd_len) {
case 6:
case 10:
case 12:
esp->esp_slowcmd = 0;
break;
default:
esp->esp_slowcmd = 1;
esp->esp_scmdleft = sp->cmd_len;
esp->esp_scmdp = &sp->cmnd[0];
break;
};
}
static inline void build_sync_nego_msg(struct esp *esp, int period, int offset)
{
esp->cur_msgout[0] = EXTENDED_MESSAGE;
esp->cur_msgout[1] = 3;
esp->cur_msgout[2] = EXTENDED_SDTR;
esp->cur_msgout[3] = period;
esp->cur_msgout[4] = offset;
esp->msgout_len = 5;
}
/* SIZE is in bits, currently HME only supports 16 bit wide transfers. */
static inline void build_wide_nego_msg(struct esp *esp, int size)
{
esp->cur_msgout[0] = EXTENDED_MESSAGE;
esp->cur_msgout[1] = 2;
esp->cur_msgout[2] = EXTENDED_WDTR;
switch (size) {
case 32:
esp->cur_msgout[3] = 2;
break;
case 16:
esp->cur_msgout[3] = 1;
break;
case 8:
default:
esp->cur_msgout[3] = 0;
break;
};
esp->msgout_len = 4;
}
static void esp_exec_cmd(struct esp *esp)
{
struct scsi_cmnd *SCptr;
struct scsi_device *SDptr;
struct esp_device *esp_dev;
volatile u8 *cmdp = esp->esp_command;
u8 the_esp_command;
int lun, target;
int i;
/* Hold off if we have disconnected commands and
* an IRQ is showing...
*/
if (esp->disconnected_SC && ESP_IRQ_P(esp->dregs))
return;
/* Grab first member of the issue queue. */
SCptr = esp->current_SC = remove_first_SC(&esp->issue_SC);
/* Safe to panic here because current_SC is null. */
if (!SCptr)
panic("esp: esp_exec_cmd and issue queue is NULL");
SDptr = SCptr->device;
esp_dev = SDptr->hostdata;
lun = SCptr->device->lun;
target = SCptr->device->id;
esp->snip = 0;
esp->msgout_len = 0;
/* Send it out whole, or piece by piece? The ESP
* only knows how to automatically send out 6, 10,
* and 12 byte commands. I used to think that the
* Linux SCSI code would never throw anything other
* than that to us, but then again there is the
* SCSI generic driver which can send us anything.
*/
esp_check_cmd(esp, SCptr);
/* If arbitration/selection is successful, the ESP will leave
* ATN asserted, causing the target to go into message out
* phase. The ESP will feed the target the identify and then
* the target can only legally go to one of command,
* datain/out, status, or message in phase, or stay in message
* out phase (should we be trying to send a sync negotiation
* message after the identify). It is not allowed to drop
* BSY, but some buggy targets do and we check for this
* condition in the selection complete code. Most of the time
* we'll make the command bytes available to the ESP and it
* will not interrupt us until it finishes command phase, we
* cannot do this for command sizes the ESP does not
* understand and in this case we'll get interrupted right
* when the target goes into command phase.
*
* It is absolutely _illegal_ in the presence of SCSI-2 devices
* to use the ESP select w/o ATN command. When SCSI-2 devices are
* present on the bus we _must_ always go straight to message out
* phase with an identify message for the target. Being that
* selection attempts in SCSI-1 w/o ATN was an option, doing SCSI-2
* selections should not confuse SCSI-1 we hope.
*/
if (esp_dev->sync) {
/* this targets sync is known */
#ifndef __sparc_v9__
do_sync_known:
#endif
if (esp_dev->disconnect)
*cmdp++ = IDENTIFY(1, lun);
else
*cmdp++ = IDENTIFY(0, lun);
if (esp->esp_slowcmd) {
the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA);
esp_advance_phase(SCptr, in_slct_stop);
} else {
the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA);
esp_advance_phase(SCptr, in_slct_norm);
}
} else if (!(esp->targets_present & (1<<target)) || !(esp_dev->disconnect)) {
/* After the bootup SCSI code sends both the
* TEST_UNIT_READY and INQUIRY commands we want
* to at least attempt allowing the device to
* disconnect.
*/
ESPMISC(("esp: Selecting device for first time. target=%d "
"lun=%d\n", target, SCptr->device->lun));
if (!SDptr->borken && !esp_dev->disconnect)
esp_dev->disconnect = 1;
*cmdp++ = IDENTIFY(0, lun);
esp->prevmsgout = NOP;
esp_advance_phase(SCptr, in_slct_norm);
the_esp_command = (ESP_CMD_SELA | ESP_CMD_DMA);
/* Take no chances... */
esp_dev->sync_max_offset = 0;
esp_dev->sync_min_period = 0;
} else {
/* Sorry, I have had way too many problems with
* various CDROM devices on ESP. -DaveM
*/
int cdrom_hwbug_wkaround = 0;
#ifndef __sparc_v9__
/* Never allow disconnects or synchronous transfers on
* SparcStation1 and SparcStation1+. Allowing those
* to be enabled seems to lockup the machine completely.
*/
if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) ||
(idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) {
/* But we are nice and allow tapes and removable
* disks (but not CDROMs) to disconnect.
*/
if(SDptr->type == TYPE_TAPE ||
(SDptr->type != TYPE_ROM && SDptr->removable))
esp_dev->disconnect = 1;
else
esp_dev->disconnect = 0;
esp_dev->sync_max_offset = 0;
esp_dev->sync_min_period = 0;
esp_dev->sync = 1;
esp->snip = 0;
goto do_sync_known;
}
#endif /* !(__sparc_v9__) */
/* We've talked to this guy before,
* but never negotiated. Let's try,
* need to attempt WIDE first, before
* sync nego, as per SCSI 2 standard.
*/
if (esp->erev == fashme && !esp_dev->wide) {
if (!SDptr->borken &&
SDptr->type != TYPE_ROM &&
SDptr->removable == 0) {
build_wide_nego_msg(esp, 16);
esp_dev->wide = 1;
esp->wnip = 1;
goto after_nego_msg_built;
} else {
esp_dev->wide = 1;
/* Fall through and try sync. */
}
}
if (!SDptr->borken) {
if ((SDptr->type == TYPE_ROM)) {
/* Nice try sucker... */
ESPMISC(("esp%d: Disabling sync for buggy "
"CDROM.\n", esp->esp_id));
cdrom_hwbug_wkaround = 1;
build_sync_nego_msg(esp, 0, 0);
} else if (SDptr->removable != 0) {
ESPMISC(("esp%d: Not negotiating sync/wide but "
"allowing disconnect for removable media.\n",
esp->esp_id));
build_sync_nego_msg(esp, 0, 0);
} else {
build_sync_nego_msg(esp, esp->sync_defp, 15);
}
} else {
build_sync_nego_msg(esp, 0, 0);
}
esp_dev->sync = 1;
esp->snip = 1;
after_nego_msg_built:
/* A fix for broken SCSI1 targets, when they disconnect
* they lock up the bus and confuse ESP. So disallow
* disconnects for SCSI1 targets for now until we
* find a better fix.
*
* Addendum: This is funny, I figured out what was going
* on. The blotzed SCSI1 target would disconnect,
* one of the other SCSI2 targets or both would be
* disconnected as well. The SCSI1 target would
* stay disconnected long enough that we start
* up a command on one of the SCSI2 targets. As
* the ESP is arbitrating for the bus the SCSI1
* target begins to arbitrate as well to reselect
* the ESP. The SCSI1 target refuses to drop it's
* ID bit on the data bus even though the ESP is
* at ID 7 and is the obvious winner for any
* arbitration. The ESP is a poor sport and refuses
* to lose arbitration, it will continue indefinitely
* trying to arbitrate for the bus and can only be
* stopped via a chip reset or SCSI bus reset.
* Therefore _no_ disconnects for SCSI1 targets
* thank you very much. ;-)
*/
if(((SDptr->scsi_level < 3) &&
(SDptr->type != TYPE_TAPE) &&
SDptr->removable == 0) ||
cdrom_hwbug_wkaround || SDptr->borken) {
ESPMISC((KERN_INFO "esp%d: Disabling DISCONNECT for target %d "
"lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun));
esp_dev->disconnect = 0;
*cmdp++ = IDENTIFY(0, lun);
} else {
*cmdp++ = IDENTIFY(1, lun);
}
/* ESP fifo is only so big...
* Make this look like a slow command.
*/
esp->esp_slowcmd = 1;
esp->esp_scmdleft = SCptr->cmd_len;
esp->esp_scmdp = &SCptr->cmnd[0];
the_esp_command = (ESP_CMD_SELAS | ESP_CMD_DMA);
esp_advance_phase(SCptr, in_slct_msg);
}
if (!esp->esp_slowcmd)
for (i = 0; i < SCptr->cmd_len; i++)
*cmdp++ = SCptr->cmnd[i];
/* HME sucks... */
if (esp->erev == fashme)
sbus_writeb((target & 0xf) | (ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT),
esp->eregs + ESP_BUSID);
else
sbus_writeb(target & 7, esp->eregs + ESP_BUSID);
if (esp->prev_soff != esp_dev->sync_max_offset ||
esp->prev_stp != esp_dev->sync_min_period ||
(esp->erev > esp100a &&
esp->prev_cfg3 != esp->config3[target])) {
esp->prev_soff = esp_dev->sync_max_offset;
esp->prev_stp = esp_dev->sync_min_period;
sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF);
sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP);
if (esp->erev > esp100a) {
esp->prev_cfg3 = esp->config3[target];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
}
}
i = (cmdp - esp->esp_command);
if (esp->erev == fashme) {
esp_cmd(esp, ESP_CMD_FLUSH); /* Grrr! */
/* Set up the DMA and HME counters */
sbus_writeb(i, esp->eregs + ESP_TCLOW);
sbus_writeb(0, esp->eregs + ESP_TCMED);
sbus_writeb(0, esp->eregs + FAS_RLO);
sbus_writeb(0, esp->eregs + FAS_RHI);
esp_cmd(esp, the_esp_command);
/* Talk about touchy hardware... */
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_SCSI_DISAB | DMA_ENABLE)) &
~(DMA_ST_WRITE));
sbus_writel(16, esp->dregs + DMA_COUNT);
sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR);
sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR);
} else {
u32 tmp;
/* Set up the DMA and ESP counters */
sbus_writeb(i, esp->eregs + ESP_TCLOW);
sbus_writeb(0, esp->eregs + ESP_TCMED);
tmp = sbus_readl(esp->dregs + DMA_CSR);
tmp &= ~DMA_ST_WRITE;
tmp |= DMA_ENABLE;
sbus_writel(tmp, esp->dregs + DMA_CSR);
if (esp->dma->revision == dvmaesc1) {
if (i) /* Workaround ESC gate array SBUS rerun bug. */
sbus_writel(PAGE_SIZE, esp->dregs + DMA_COUNT);
}
sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR);
/* Tell ESP to "go". */
esp_cmd(esp, the_esp_command);
}
}
/* Queue a SCSI command delivered from the mid-level Linux SCSI code. */
static int esp_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *))
{
struct esp *esp;
/* Set up func ptr and initial driver cmd-phase. */
SCpnt->scsi_done = done;
SCpnt->SCp.phase = not_issued;
/* We use the scratch area. */
ESPQUEUE(("esp_queue: target=%d lun=%d ", SCpnt->device->id, SCpnt->device->lun));
ESPDISC(("N<%02x,%02x>", SCpnt->device->id, SCpnt->device->lun));
esp = (struct esp *) SCpnt->device->host->hostdata;
esp_get_dmabufs(esp, SCpnt);
esp_save_pointers(esp, SCpnt); /* FIXME for tag queueing */
SCpnt->SCp.Status = CHECK_CONDITION;
SCpnt->SCp.Message = 0xff;
SCpnt->SCp.sent_command = 0;
/* Place into our queue. */
if (SCpnt->cmnd[0] == REQUEST_SENSE) {
ESPQUEUE(("RQSENSE\n"));
prepend_SC(&esp->issue_SC, SCpnt);
} else {
ESPQUEUE(("\n"));
append_SC(&esp->issue_SC, SCpnt);
}
/* Run it now if we can. */
if (!esp->current_SC && !esp->resetting_bus)
esp_exec_cmd(esp);
return 0;
}
/* Dump driver state. */
static void esp_dump_cmd(struct scsi_cmnd *SCptr)
{
ESPLOG(("[tgt<%02x> lun<%02x> "
"pphase<%s> cphase<%s>]",
SCptr->device->id, SCptr->device->lun,
phase_string(SCptr->SCp.sent_command),
phase_string(SCptr->SCp.phase)));
}
static void esp_dump_state(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
#ifdef DEBUG_ESP_CMDS
int i;
#endif
ESPLOG(("esp%d: dumping state\n", esp->esp_id));
ESPLOG(("esp%d: dma -- cond_reg<%08x> addr<%08x>\n",
esp->esp_id,
sbus_readl(esp->dregs + DMA_CSR),
sbus_readl(esp->dregs + DMA_ADDR)));
ESPLOG(("esp%d: SW [sreg<%02x> sstep<%02x> ireg<%02x>]\n",
esp->esp_id, esp->sreg, esp->seqreg, esp->ireg));
ESPLOG(("esp%d: HW reread [sreg<%02x> sstep<%02x> ireg<%02x>]\n",
esp->esp_id,
sbus_readb(esp->eregs + ESP_STATUS),
sbus_readb(esp->eregs + ESP_SSTEP),
sbus_readb(esp->eregs + ESP_INTRPT)));
#ifdef DEBUG_ESP_CMDS
printk("esp%d: last ESP cmds [", esp->esp_id);
i = (esp->espcmdent - 1) & 31;
printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">");
i = (i - 1) & 31;
printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">");
i = (i - 1) & 31;
printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">");
i = (i - 1) & 31;
printk("<"); esp_print_cmd(esp->espcmdlog[i]); printk(">");
printk("]\n");
#endif /* (DEBUG_ESP_CMDS) */
if (SCptr) {
ESPLOG(("esp%d: current command ", esp->esp_id));
esp_dump_cmd(SCptr);
}
ESPLOG(("\n"));
SCptr = esp->disconnected_SC;
ESPLOG(("esp%d: disconnected ", esp->esp_id));
while (SCptr) {
esp_dump_cmd(SCptr);
SCptr = (struct scsi_cmnd *) SCptr->host_scribble;
}
ESPLOG(("\n"));
}
/* Abort a command. The host_lock is acquired by caller. */
static int esp_abort(struct scsi_cmnd *SCptr)
{
struct esp *esp = (struct esp *) SCptr->device->host->hostdata;
int don;
ESPLOG(("esp%d: Aborting command\n", esp->esp_id));
esp_dump_state(esp);
/* Wheee, if this is the current command on the bus, the
* best we can do is assert ATN and wait for msgout phase.
* This should even fix a hung SCSI bus when we lose state
* in the driver and timeout because the eventual phase change
* will cause the ESP to (eventually) give an interrupt.
*/
if (esp->current_SC == SCptr) {
esp->cur_msgout[0] = ABORT;
esp->msgout_len = 1;
esp->msgout_ctr = 0;
esp_cmd(esp, ESP_CMD_SATN);
return SUCCESS;
}
/* If it is still in the issue queue then we can safely
* call the completion routine and report abort success.
*/
don = (sbus_readl(esp->dregs + DMA_CSR) & DMA_INT_ENAB);
if (don) {
ESP_INTSOFF(esp->dregs);
}
if (esp->issue_SC) {
struct scsi_cmnd **prev, *this;
for (prev = (&esp->issue_SC), this = esp->issue_SC;
this != NULL;
prev = (struct scsi_cmnd **) &(this->host_scribble),
this = (struct scsi_cmnd *) this->host_scribble) {
if (this == SCptr) {
*prev = (struct scsi_cmnd *) this->host_scribble;
this->host_scribble = NULL;
esp_release_dmabufs(esp, this);
this->result = DID_ABORT << 16;
this->scsi_done(this);
if (don)
ESP_INTSON(esp->dregs);
return SUCCESS;
}
}
}
/* Yuck, the command to abort is disconnected, it is not
* worth trying to abort it now if something else is live
* on the bus at this time. So, we let the SCSI code wait
* a little bit and try again later.
*/
if (esp->current_SC) {
if (don)
ESP_INTSON(esp->dregs);
return FAILED;
}
/* It's disconnected, we have to reconnect to re-establish
* the nexus and tell the device to abort. However, we really
* cannot 'reconnect' per se. Don't try to be fancy, just
* indicate failure, which causes our caller to reset the whole
* bus.
*/
if (don)
ESP_INTSON(esp->dregs);
return FAILED;
}
/* We've sent ESP_CMD_RS to the ESP, the interrupt had just
* arrived indicating the end of the SCSI bus reset. Our job
* is to clean out the command queues and begin re-execution
* of SCSI commands once more.
*/
static int esp_finish_reset(struct esp *esp)
{
struct scsi_cmnd *sp = esp->current_SC;
/* Clean up currently executing command, if any. */
if (sp != NULL) {
esp->current_SC = NULL;
esp_release_dmabufs(esp, sp);
sp->result = (DID_RESET << 16);
sp->scsi_done(sp);
}
/* Clean up disconnected queue, they have been invalidated
* by the bus reset.
*/
if (esp->disconnected_SC) {
while ((sp = remove_first_SC(&esp->disconnected_SC)) != NULL) {
esp_release_dmabufs(esp, sp);
sp->result = (DID_RESET << 16);
sp->scsi_done(sp);
}
}
/* SCSI bus reset is complete. */
esp->resetting_bus = 0;
wake_up(&esp->reset_queue);
/* Ok, now it is safe to get commands going once more. */
if (esp->issue_SC)
esp_exec_cmd(esp);
return do_intr_end;
}
static int esp_do_resetbus(struct esp *esp)
{
ESPLOG(("esp%d: Resetting scsi bus\n", esp->esp_id));
esp->resetting_bus = 1;
esp_cmd(esp, ESP_CMD_RS);
return do_intr_end;
}
/* Reset ESP chip, reset hanging bus, then kill active and
* disconnected commands for targets without soft reset.
*
* The host_lock is acquired by caller.
*/
static int esp_reset(struct scsi_cmnd *SCptr)
{
struct esp *esp = (struct esp *) SCptr->device->host->hostdata;
spin_lock_irq(esp->ehost->host_lock);
(void) esp_do_resetbus(esp);
spin_unlock_irq(esp->ehost->host_lock);
wait_event(esp->reset_queue, (esp->resetting_bus == 0));
return SUCCESS;
}
/* Internal ESP done function. */
static void esp_done(struct esp *esp, int error)
{
struct scsi_cmnd *done_SC = esp->current_SC;
esp->current_SC = NULL;
esp_release_dmabufs(esp, done_SC);
done_SC->result = error;
done_SC->scsi_done(done_SC);
/* Bus is free, issue any commands in the queue. */
if (esp->issue_SC && !esp->current_SC)
esp_exec_cmd(esp);
}
/* Wheee, ESP interrupt engine. */
/* Forward declarations. */
static int esp_do_phase_determine(struct esp *esp);
static int esp_do_data_finale(struct esp *esp);
static int esp_select_complete(struct esp *esp);
static int esp_do_status(struct esp *esp);
static int esp_do_msgin(struct esp *esp);
static int esp_do_msgindone(struct esp *esp);
static int esp_do_msgout(struct esp *esp);
static int esp_do_cmdbegin(struct esp *esp);
#define sreg_datainp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DIP)
#define sreg_dataoutp(__sreg) (((__sreg) & ESP_STAT_PMASK) == ESP_DOP)
/* Read any bytes found in the FAS366 fifo, storing them into
* the ESP driver software state structure.
*/
static void hme_fifo_read(struct esp *esp)
{
u8 count = 0;
u8 status = esp->sreg;
/* Cannot safely frob the fifo for these following cases, but
* we must always read the fifo when the reselect interrupt
* is pending.
*/
if (((esp->ireg & ESP_INTR_RSEL) == 0) &&
(sreg_datainp(status) ||
sreg_dataoutp(status) ||
(esp->current_SC &&
esp->current_SC->SCp.phase == in_data_done))) {
ESPHME(("<wkaround_skipped>"));
} else {
unsigned long fcnt = sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES;
/* The HME stores bytes in multiples of 2 in the fifo. */
ESPHME(("hme_fifo[fcnt=%d", (int)fcnt));
while (fcnt) {
esp->hme_fifo_workaround_buffer[count++] =
sbus_readb(esp->eregs + ESP_FDATA);
esp->hme_fifo_workaround_buffer[count++] =
sbus_readb(esp->eregs + ESP_FDATA);
ESPHME(("<%02x,%02x>", esp->hme_fifo_workaround_buffer[count-2], esp->hme_fifo_workaround_buffer[count-1]));
fcnt--;
}
if (sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_F1BYTE) {
ESPHME(("<poke_byte>"));
sbus_writeb(0, esp->eregs + ESP_FDATA);
esp->hme_fifo_workaround_buffer[count++] =
sbus_readb(esp->eregs + ESP_FDATA);
ESPHME(("<%02x,0x00>", esp->hme_fifo_workaround_buffer[count-1]));
ESPHME(("CMD_FLUSH"));
esp_cmd(esp, ESP_CMD_FLUSH);
} else {
ESPHME(("no_xtra_byte"));
}
}
ESPHME(("wkarnd_cnt=%d]", (int)count));
esp->hme_fifo_workaround_count = count;
}
static inline void hme_fifo_push(struct esp *esp, u8 *bytes, u8 count)
{
esp_cmd(esp, ESP_CMD_FLUSH);
while (count) {
u8 tmp = *bytes++;
sbus_writeb(tmp, esp->eregs + ESP_FDATA);
sbus_writeb(0, esp->eregs + ESP_FDATA);
count--;
}
}
/* We try to avoid some interrupts by jumping ahead and see if the ESP
* has gotten far enough yet. Hence the following.
*/
static inline int skipahead1(struct esp *esp, struct scsi_cmnd *scp,
int prev_phase, int new_phase)
{
if (scp->SCp.sent_command != prev_phase)
return 0;
if (ESP_IRQ_P(esp->dregs)) {
/* Yes, we are able to save an interrupt. */
if (esp->erev == fashme)
esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2);
esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR));
esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT);
if (esp->erev == fashme) {
/* This chip is really losing. */
ESPHME(("HME["));
/* Must latch fifo before reading the interrupt
* register else garbage ends up in the FIFO
* which confuses the driver utterly.
* Happy Meal indeed....
*/
ESPHME(("fifo_workaround]"));
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
(esp->sreg2 & ESP_STAT2_F1BYTE))
hme_fifo_read(esp);
}
if (!(esp->ireg & ESP_INTR_SR))
return 0;
else
return do_reset_complete;
}
/* Ho hum, target is taking forever... */
scp->SCp.sent_command = new_phase; /* so we don't recurse... */
return do_intr_end;
}
static inline int skipahead2(struct esp *esp, struct scsi_cmnd *scp,
int prev_phase1, int prev_phase2, int new_phase)
{
if (scp->SCp.sent_command != prev_phase1 &&
scp->SCp.sent_command != prev_phase2)
return 0;
if (ESP_IRQ_P(esp->dregs)) {
/* Yes, we are able to save an interrupt. */
if (esp->erev == fashme)
esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2);
esp->sreg = (sbus_readb(esp->eregs + ESP_STATUS) & ~(ESP_STAT_INTR));
esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT);
if (esp->erev == fashme) {
/* This chip is really losing. */
ESPHME(("HME["));
/* Must latch fifo before reading the interrupt
* register else garbage ends up in the FIFO
* which confuses the driver utterly.
* Happy Meal indeed....
*/
ESPHME(("fifo_workaround]"));
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
(esp->sreg2 & ESP_STAT2_F1BYTE))
hme_fifo_read(esp);
}
if (!(esp->ireg & ESP_INTR_SR))
return 0;
else
return do_reset_complete;
}
/* Ho hum, target is taking forever... */
scp->SCp.sent_command = new_phase; /* so we don't recurse... */
return do_intr_end;
}
/* Now some dma helpers. */
static void dma_setup(struct esp *esp, __u32 addr, int count, int write)
{
u32 nreg = sbus_readl(esp->dregs + DMA_CSR);
if (write)
nreg |= DMA_ST_WRITE;
else
nreg &= ~(DMA_ST_WRITE);
nreg |= DMA_ENABLE;
sbus_writel(nreg, esp->dregs + DMA_CSR);
if (esp->dma->revision == dvmaesc1) {
/* This ESC gate array sucks! */
__u32 src = addr;
__u32 dest = src + count;
if (dest & (PAGE_SIZE - 1))
count = PAGE_ALIGN(count);
sbus_writel(count, esp->dregs + DMA_COUNT);
}
sbus_writel(addr, esp->dregs + DMA_ADDR);
}
static void dma_drain(struct esp *esp)
{
u32 tmp;
if (esp->dma->revision == dvmahme)
return;
if ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_FIFO_ISDRAIN) {
switch (esp->dma->revision) {
default:
tmp |= DMA_FIFO_STDRAIN;
sbus_writel(tmp, esp->dregs + DMA_CSR);
case dvmarev3:
case dvmaesc1:
while (sbus_readl(esp->dregs + DMA_CSR) & DMA_FIFO_ISDRAIN)
udelay(1);
};
}
}
static void dma_invalidate(struct esp *esp)
{
u32 tmp;
if (esp->dma->revision == dvmahme) {
sbus_writel(DMA_RST_SCSI, esp->dregs + DMA_CSR);
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB)) &
~(DMA_ST_WRITE | DMA_ENABLE));
sbus_writel(0, esp->dregs + DMA_CSR);
sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
sbus_writel(0, esp->dregs + DMA_ADDR);
} else {
while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ)
udelay(1);
tmp &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
tmp |= DMA_FIFO_INV;
sbus_writel(tmp, esp->dregs + DMA_CSR);
tmp &= ~DMA_FIFO_INV;
sbus_writel(tmp, esp->dregs + DMA_CSR);
}
}
static inline void dma_flashclear(struct esp *esp)
{
dma_drain(esp);
dma_invalidate(esp);
}
static int dma_can_transfer(struct esp *esp, struct scsi_cmnd *sp)
{
__u32 base, end, sz;
if (esp->dma->revision == dvmarev3) {
sz = sp->SCp.this_residual;
if (sz > 0x1000000)
sz = 0x1000000;
} else {
base = ((__u32)((unsigned long)sp->SCp.ptr));
base &= (0x1000000 - 1);
end = (base + sp->SCp.this_residual);
if (end > 0x1000000)
end = 0x1000000;
sz = (end - base);
}
return sz;
}
/* Misc. esp helper macros. */
#define esp_setcount(__eregs, __cnt, __hme) \
sbus_writeb(((__cnt)&0xff), (__eregs) + ESP_TCLOW); \
sbus_writeb((((__cnt)>>8)&0xff), (__eregs) + ESP_TCMED); \
if (__hme) { \
sbus_writeb((((__cnt)>>16)&0xff), (__eregs) + FAS_RLO); \
sbus_writeb(0, (__eregs) + FAS_RHI); \
}
#define esp_getcount(__eregs, __hme) \
((sbus_readb((__eregs) + ESP_TCLOW)&0xff) | \
((sbus_readb((__eregs) + ESP_TCMED)&0xff) << 8) | \
((__hme) ? sbus_readb((__eregs) + FAS_RLO) << 16 : 0))
#define fcount(__esp) \
(((__esp)->erev == fashme) ? \
(__esp)->hme_fifo_workaround_count : \
sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_FBYTES)
#define fnzero(__esp) \
(((__esp)->erev == fashme) ? 0 : \
sbus_readb(((__esp)->eregs) + ESP_FFLAGS) & ESP_FF_ONOTZERO)
/* XXX speculative nops unnecessary when continuing amidst a data phase
* XXX even on esp100!!! another case of flooding the bus with I/O reg
* XXX writes...
*/
#define esp_maybe_nop(__esp) \
if ((__esp)->erev == esp100) \
esp_cmd((__esp), ESP_CMD_NULL)
#define sreg_to_dataphase(__sreg) \
((((__sreg) & ESP_STAT_PMASK) == ESP_DOP) ? in_dataout : in_datain)
/* The ESP100 when in synchronous data phase, can mistake a long final
* REQ pulse from the target as an extra byte, it places whatever is on
* the data lines into the fifo. For now, we will assume when this
* happens that the target is a bit quirky and we don't want to
* be talking synchronously to it anyways. Regardless, we need to
* tell the ESP to eat the extraneous byte so that we can proceed
* to the next phase.
*/
static int esp100_sync_hwbug(struct esp *esp, struct scsi_cmnd *sp, int fifocnt)
{
/* Do not touch this piece of code. */
if ((!(esp->erev == esp100)) ||
(!(sreg_datainp((esp->sreg = sbus_readb(esp->eregs + ESP_STATUS))) &&
!fifocnt) &&
!(sreg_dataoutp(esp->sreg) && !fnzero(esp)))) {
if (sp->SCp.phase == in_dataout)
esp_cmd(esp, ESP_CMD_FLUSH);
return 0;
} else {
/* Async mode for this guy. */
build_sync_nego_msg(esp, 0, 0);
/* Ack the bogus byte, but set ATN first. */
esp_cmd(esp, ESP_CMD_SATN);
esp_cmd(esp, ESP_CMD_MOK);
return 1;
}
}
/* This closes the window during a selection with a reselect pending, because
* we use DMA for the selection process the FIFO should hold the correct
* contents if we get reselected during this process. So we just need to
* ack the possible illegal cmd interrupt pending on the esp100.
*/
static inline int esp100_reconnect_hwbug(struct esp *esp)
{
u8 tmp;
if (esp->erev != esp100)
return 0;
tmp = sbus_readb(esp->eregs + ESP_INTRPT);
if (tmp & ESP_INTR_SR)
return 1;
return 0;
}
/* This verifies the BUSID bits during a reselection so that we know which
* target is talking to us.
*/
static inline int reconnect_target(struct esp *esp)
{
int it, me = esp->scsi_id_mask, targ = 0;
if (2 != fcount(esp))
return -1;
if (esp->erev == fashme) {
/* HME does not latch it's own BUS ID bits during
* a reselection. Also the target number is given
* as an unsigned char, not as a sole bit number
* like the other ESP's do.
* Happy Meal indeed....
*/
targ = esp->hme_fifo_workaround_buffer[0];
} else {
it = sbus_readb(esp->eregs + ESP_FDATA);
if (!(it & me))
return -1;
it &= ~me;
if (it & (it - 1))
return -1;
while (!(it & 1))
targ++, it >>= 1;
}
return targ;
}
/* This verifies the identify from the target so that we know which lun is
* being reconnected.
*/
static inline int reconnect_lun(struct esp *esp)
{
int lun;
if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP)
return -1;
if (esp->erev == fashme)
lun = esp->hme_fifo_workaround_buffer[1];
else
lun = sbus_readb(esp->eregs + ESP_FDATA);
/* Yes, you read this correctly. We report lun of zero
* if we see parity error. ESP reports parity error for
* the lun byte, and this is the only way to hope to recover
* because the target is connected.
*/
if (esp->sreg & ESP_STAT_PERR)
return 0;
/* Check for illegal bits being set in the lun. */
if ((lun & 0x40) || !(lun & 0x80))
return -1;
return lun & 7;
}
/* This puts the driver in a state where it can revitalize a command that
* is being continued due to reselection.
*/
static inline void esp_connect(struct esp *esp, struct scsi_cmnd *sp)
{
struct esp_device *esp_dev = sp->device->hostdata;
if (esp->prev_soff != esp_dev->sync_max_offset ||
esp->prev_stp != esp_dev->sync_min_period ||
(esp->erev > esp100a &&
esp->prev_cfg3 != esp->config3[sp->device->id])) {
esp->prev_soff = esp_dev->sync_max_offset;
esp->prev_stp = esp_dev->sync_min_period;
sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF);
sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP);
if (esp->erev > esp100a) {
esp->prev_cfg3 = esp->config3[sp->device->id];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
}
}
esp->current_SC = sp;
}
/* This will place the current working command back into the issue queue
* if we are to receive a reselection amidst a selection attempt.
*/
static inline void esp_reconnect(struct esp *esp, struct scsi_cmnd *sp)
{
if (!esp->disconnected_SC)
ESPLOG(("esp%d: Weird, being reselected but disconnected "
"command queue is empty.\n", esp->esp_id));
esp->snip = 0;
esp->current_SC = NULL;
sp->SCp.phase = not_issued;
append_SC(&esp->issue_SC, sp);
}
/* Begin message in phase. */
static int esp_do_msgin(struct esp *esp)
{
/* Must be very careful with the fifo on the HME */
if ((esp->erev != fashme) ||
!(sbus_readb(esp->eregs + ESP_STATUS2) & ESP_STAT2_FEMPTY))
esp_cmd(esp, ESP_CMD_FLUSH);
esp_maybe_nop(esp);
esp_cmd(esp, ESP_CMD_TI);
esp->msgin_len = 1;
esp->msgin_ctr = 0;
esp_advance_phase(esp->current_SC, in_msgindone);
return do_work_bus;
}
/* This uses various DMA csr fields and the fifo flags count value to
* determine how many bytes were successfully sent/received by the ESP.
*/
static inline int esp_bytes_sent(struct esp *esp, int fifo_count)
{
int rval = sbus_readl(esp->dregs + DMA_ADDR) - esp->esp_command_dvma;
if (esp->dma->revision == dvmarev1)
rval -= (4 - ((sbus_readl(esp->dregs + DMA_CSR) & DMA_READ_AHEAD)>>11));
return rval - fifo_count;
}
static inline void advance_sg(struct scsi_cmnd *sp)
{
++sp->SCp.buffer;
--sp->SCp.buffers_residual;
sp->SCp.this_residual = sg_dma_len(sp->SCp.buffer);
sp->SCp.ptr = (char *)((unsigned long)sg_dma_address(sp->SCp.buffer));
}
/* Please note that the way I've coded these routines is that I _always_
* check for a disconnect during any and all information transfer
* phases. The SCSI standard states that the target _can_ cause a BUS
* FREE condition by dropping all MSG/CD/IO/BSY signals. Also note
* that during information transfer phases the target controls every
* change in phase, the only thing the initiator can do is "ask" for
* a message out phase by driving ATN true. The target can, and sometimes
* will, completely ignore this request so we cannot assume anything when
* we try to force a message out phase to abort/reset a target. Most of
* the time the target will eventually be nice and go to message out, so
* we may have to hold on to our state about what we want to tell the target
* for some period of time.
*/
/* I think I have things working here correctly. Even partial transfers
* within a buffer or sub-buffer should not upset us at all no matter
* how bad the target and/or ESP fucks things up.
*/
static int esp_do_data(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
int thisphase, hmuch;
ESPDATA(("esp_do_data: "));
esp_maybe_nop(esp);
thisphase = sreg_to_dataphase(esp->sreg);
esp_advance_phase(SCptr, thisphase);
ESPDATA(("newphase<%s> ", (thisphase == in_datain) ? "DATAIN" : "DATAOUT"));
hmuch = dma_can_transfer(esp, SCptr);
if (hmuch > (64 * 1024) && (esp->erev != fashme))
hmuch = (64 * 1024);
ESPDATA(("hmuch<%d> ", hmuch));
esp->current_transfer_size = hmuch;
if (esp->erev == fashme) {
u32 tmp = esp->prev_hme_dmacsr;
/* Always set the ESP count registers first. */
esp_setcount(esp->eregs, hmuch, 1);
/* Get the DMA csr computed. */
tmp |= (DMA_SCSI_DISAB | DMA_ENABLE);
if (thisphase == in_datain)
tmp |= DMA_ST_WRITE;
else
tmp &= ~(DMA_ST_WRITE);
esp->prev_hme_dmacsr = tmp;
ESPDATA(("DMA|TI --> do_intr_end\n"));
if (thisphase == in_datain) {
sbus_writel(hmuch, esp->dregs + DMA_COUNT);
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
} else {
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
sbus_writel(hmuch, esp->dregs + DMA_COUNT);
}
sbus_writel((__u32)((unsigned long)SCptr->SCp.ptr), esp->dregs+DMA_ADDR);
sbus_writel(esp->prev_hme_dmacsr, esp->dregs + DMA_CSR);
} else {
esp_setcount(esp->eregs, hmuch, 0);
dma_setup(esp, ((__u32)((unsigned long)SCptr->SCp.ptr)),
hmuch, (thisphase == in_datain));
ESPDATA(("DMA|TI --> do_intr_end\n"));
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
}
return do_intr_end;
}
/* See how successful the data transfer was. */
static int esp_do_data_finale(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
struct esp_device *esp_dev = SCptr->device->hostdata;
int bogus_data = 0, bytes_sent = 0, fifocnt, ecount = 0;
ESPDATA(("esp_do_data_finale: "));
if (SCptr->SCp.phase == in_datain) {
if (esp->sreg & ESP_STAT_PERR) {
/* Yuck, parity error. The ESP asserts ATN
* so that we can go to message out phase
* immediately and inform the target that
* something bad happened.
*/
ESPLOG(("esp%d: data bad parity detected.\n",
esp->esp_id));
esp->cur_msgout[0] = INITIATOR_ERROR;
esp->msgout_len = 1;
}
dma_drain(esp);
}
dma_invalidate(esp);
/* This could happen for the above parity error case. */
if (esp->ireg != ESP_INTR_BSERV) {
/* Please go to msgout phase, please please please... */
ESPLOG(("esp%d: !BSERV after data, probably to msgout\n",
esp->esp_id));
return esp_do_phase_determine(esp);
}
/* Check for partial transfers and other horrible events.
* Note, here we read the real fifo flags register even
* on HME broken adapters because we skip the HME fifo
* workaround code in esp_handle() if we are doing data
* phase things. We don't want to fuck directly with
* the fifo like that, especially if doing synchronous
* transfers! Also, will need to double the count on
* HME if we are doing wide transfers, as the HME fifo
* will move and count 16-bit quantities during wide data.
* SMCC _and_ Qlogic can both bite me.
*/
fifocnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES);
if (esp->erev != fashme)
ecount = esp_getcount(esp->eregs, 0);
bytes_sent = esp->current_transfer_size;
ESPDATA(("trans_sz(%d), ", bytes_sent));
if (esp->erev == fashme) {
if (!(esp->sreg & ESP_STAT_TCNT)) {
ecount = esp_getcount(esp->eregs, 1);
bytes_sent -= ecount;
}
/* Always subtract any cruft remaining in the FIFO. */
if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
fifocnt <<= 1;
if (SCptr->SCp.phase == in_dataout)
bytes_sent -= fifocnt;
/* I have an IBM disk which exhibits the following
* behavior during writes to it. It disconnects in
* the middle of a partial transfer, the current sglist
* buffer is 1024 bytes, the disk stops data transfer
* at 512 bytes.
*
* However the FAS366 reports that 32 more bytes were
* transferred than really were. This is precisely
* the size of a fully loaded FIFO in wide scsi mode.
* The FIFO state recorded indicates that it is empty.
*
* I have no idea if this is a bug in the FAS366 chip
* or a bug in the firmware on this IBM disk. In any
* event the following seems to be a good workaround. -DaveM
*/
if (bytes_sent != esp->current_transfer_size &&
SCptr->SCp.phase == in_dataout) {
int mask = (64 - 1);
if ((esp->prev_cfg3 & ESP_CONFIG3_EWIDE) == 0)
mask >>= 1;
if (bytes_sent & mask)
bytes_sent -= (bytes_sent & mask);
}
} else {
if (!(esp->sreg & ESP_STAT_TCNT))
bytes_sent -= ecount;
if (SCptr->SCp.phase == in_dataout)
bytes_sent -= fifocnt;
}
ESPDATA(("bytes_sent(%d), ", bytes_sent));
/* If we were in synchronous mode, check for peculiarities. */
if (esp->erev == fashme) {
if (esp_dev->sync_max_offset) {
if (SCptr->SCp.phase == in_dataout)
esp_cmd(esp, ESP_CMD_FLUSH);
} else {
esp_cmd(esp, ESP_CMD_FLUSH);
}
} else {
if (esp_dev->sync_max_offset)
bogus_data = esp100_sync_hwbug(esp, SCptr, fifocnt);
else
esp_cmd(esp, ESP_CMD_FLUSH);
}
/* Until we are sure of what has happened, we are certainly
* in the dark.
*/
esp_advance_phase(SCptr, in_the_dark);
if (bytes_sent < 0) {
/* I've seen this happen due to lost state in this
* driver. No idea why it happened, but allowing
* this value to be negative caused things to
* lock up. This allows greater chance of recovery.
* In fact every time I've seen this, it has been
* a driver bug without question.
*/
ESPLOG(("esp%d: yieee, bytes_sent < 0!\n", esp->esp_id));
ESPLOG(("esp%d: csz=%d fifocount=%d ecount=%d\n",
esp->esp_id,
esp->current_transfer_size, fifocnt, ecount));
ESPLOG(("esp%d: use_sg=%d ptr=%p this_residual=%d\n",
esp->esp_id,
SCptr->use_sg, SCptr->SCp.ptr, SCptr->SCp.this_residual));
ESPLOG(("esp%d: Forcing async for target %d\n", esp->esp_id,
SCptr->device->id));
SCptr->device->borken = 1;
esp_dev->sync = 0;
bytes_sent = 0;
}
/* Update the state of our transfer. */
SCptr->SCp.ptr += bytes_sent;
SCptr->SCp.this_residual -= bytes_sent;
if (SCptr->SCp.this_residual < 0) {
/* shit */
ESPLOG(("esp%d: Data transfer overrun.\n", esp->esp_id));
SCptr->SCp.this_residual = 0;
}
/* Maybe continue. */
if (!bogus_data) {
ESPDATA(("!bogus_data, "));
/* NO MATTER WHAT, we advance the scatterlist,
* if the target should decide to disconnect
* in between scatter chunks (which is common)
* we could die horribly! I used to have the sg
* advance occur only if we are going back into
* (or are staying in) a data phase, you can
* imagine the hell I went through trying to
* figure this out.
*/
if (SCptr->use_sg && !SCptr->SCp.this_residual)
advance_sg(SCptr);
if (sreg_datainp(esp->sreg) || sreg_dataoutp(esp->sreg)) {
ESPDATA(("to more data\n"));
return esp_do_data(esp);
}
ESPDATA(("to new phase\n"));
return esp_do_phase_determine(esp);
}
/* Bogus data, just wait for next interrupt. */
ESPLOG(("esp%d: bogus_data during end of data phase\n",
esp->esp_id));
return do_intr_end;
}
/* We received a non-good status return at the end of
* running a SCSI command. This is used to decide if
* we should clear our synchronous transfer state for
* such a device when that happens.
*
* The idea is that when spinning up a disk or rewinding
* a tape, we don't want to go into a loop re-negotiating
* synchronous capabilities over and over.
*/
static int esp_should_clear_sync(struct scsi_cmnd *sp)
{
u8 cmd1 = sp->cmnd[0];
u8 cmd2 = sp->data_cmnd[0];
/* These cases are for spinning up a disk and
* waiting for that spinup to complete.
*/
if (cmd1 == START_STOP ||
cmd2 == START_STOP)
return 0;
if (cmd1 == TEST_UNIT_READY ||
cmd2 == TEST_UNIT_READY)
return 0;
/* One more special case for SCSI tape drives,
* this is what is used to probe the device for
* completion of a rewind or tape load operation.
*/
if (sp->device->type == TYPE_TAPE) {
if (cmd1 == MODE_SENSE ||
cmd2 == MODE_SENSE)
return 0;
}
return 1;
}
/* Either a command is completing or a target is dropping off the bus
* to continue the command in the background so we can do other work.
*/
static int esp_do_freebus(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
struct esp_device *esp_dev = SCptr->device->hostdata;
int rval;
rval = skipahead2(esp, SCptr, in_status, in_msgindone, in_freeing);
if (rval)
return rval;
if (esp->ireg != ESP_INTR_DC) {
ESPLOG(("esp%d: Target will not disconnect\n", esp->esp_id));
return do_reset_bus; /* target will not drop BSY... */
}
esp->msgout_len = 0;
esp->prevmsgout = NOP;
if (esp->prevmsgin == COMMAND_COMPLETE) {
/* Normal end of nexus. */
if (esp->disconnected_SC || (esp->erev == fashme))
esp_cmd(esp, ESP_CMD_ESEL);
if (SCptr->SCp.Status != GOOD &&
SCptr->SCp.Status != CONDITION_GOOD &&
((1<<SCptr->device->id) & esp->targets_present) &&
esp_dev->sync &&
esp_dev->sync_max_offset) {
/* SCSI standard says that the synchronous capabilities
* should be renegotiated at this point. Most likely
* we are about to request sense from this target
* in which case we want to avoid using sync
* transfers until we are sure of the current target
* state.
*/
ESPMISC(("esp: Status <%d> for target %d lun %d\n",
SCptr->SCp.Status, SCptr->device->id, SCptr->device->lun));
/* But don't do this when spinning up a disk at
* boot time while we poll for completion as it
* fills up the console with messages. Also, tapes
* can report not ready many times right after
* loading up a tape.
*/
if (esp_should_clear_sync(SCptr) != 0)
esp_dev->sync = 0;
}
ESPDISC(("F<%02x,%02x>", SCptr->device->id, SCptr->device->lun));
esp_done(esp, ((SCptr->SCp.Status & 0xff) |
((SCptr->SCp.Message & 0xff)<<8) |
(DID_OK << 16)));
} else if (esp->prevmsgin == DISCONNECT) {
/* Normal disconnect. */
esp_cmd(esp, ESP_CMD_ESEL);
ESPDISC(("D<%02x,%02x>", SCptr->device->id, SCptr->device->lun));
append_SC(&esp->disconnected_SC, SCptr);
esp->current_SC = NULL;
if (esp->issue_SC)
esp_exec_cmd(esp);
} else {
/* Driver bug, we do not expect a disconnect here
* and should not have advanced the state engine
* to in_freeing.
*/
ESPLOG(("esp%d: last msg not disc and not cmd cmplt.\n",
esp->esp_id));
return do_reset_bus;
}
return do_intr_end;
}
/* When a reselect occurs, and we cannot find the command to
* reconnect to in our queues, we do this.
*/
static int esp_bad_reconnect(struct esp *esp)
{
struct scsi_cmnd *sp;
ESPLOG(("esp%d: Eieeee, reconnecting unknown command!\n",
esp->esp_id));
ESPLOG(("QUEUE DUMP\n"));
sp = esp->issue_SC;
ESPLOG(("esp%d: issue_SC[", esp->esp_id));
while (sp) {
ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun));
sp = (struct scsi_cmnd *) sp->host_scribble;
}
ESPLOG(("]\n"));
sp = esp->current_SC;
ESPLOG(("esp%d: current_SC[", esp->esp_id));
if (sp)
ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun));
else
ESPLOG(("<NULL>"));
ESPLOG(("]\n"));
sp = esp->disconnected_SC;
ESPLOG(("esp%d: disconnected_SC[", esp->esp_id));
while (sp) {
ESPLOG(("<%02x,%02x>", sp->device->id, sp->device->lun));
sp = (struct scsi_cmnd *) sp->host_scribble;
}
ESPLOG(("]\n"));
return do_reset_bus;
}
/* Do the needy when a target tries to reconnect to us. */
static int esp_do_reconnect(struct esp *esp)
{
int lun, target;
struct scsi_cmnd *SCptr;
/* Check for all bogus conditions first. */
target = reconnect_target(esp);
if (target < 0) {
ESPDISC(("bad bus bits\n"));
return do_reset_bus;
}
lun = reconnect_lun(esp);
if (lun < 0) {
ESPDISC(("target=%2x, bad identify msg\n", target));
return do_reset_bus;
}
/* Things look ok... */
ESPDISC(("R<%02x,%02x>", target, lun));
/* Must not flush FIFO or DVMA on HME. */
if (esp->erev != fashme) {
esp_cmd(esp, ESP_CMD_FLUSH);
if (esp100_reconnect_hwbug(esp))
return do_reset_bus;
esp_cmd(esp, ESP_CMD_NULL);
}
SCptr = remove_SC(&esp->disconnected_SC, (u8) target, (u8) lun);
if (!SCptr)
return esp_bad_reconnect(esp);
esp_connect(esp, SCptr);
esp_cmd(esp, ESP_CMD_MOK);
if (esp->erev == fashme)
sbus_writeb(((SCptr->device->id & 0xf) |
(ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT)),
esp->eregs + ESP_BUSID);
/* Reconnect implies a restore pointers operation. */
esp_restore_pointers(esp, SCptr);
esp->snip = 0;
esp_advance_phase(SCptr, in_the_dark);
return do_intr_end;
}
/* End of NEXUS (hopefully), pick up status + message byte then leave if
* all goes well.
*/
static int esp_do_status(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
int intr, rval;
rval = skipahead1(esp, SCptr, in_the_dark, in_status);
if (rval)
return rval;
intr = esp->ireg;
ESPSTAT(("esp_do_status: "));
if (intr != ESP_INTR_DC) {
int message_out = 0; /* for parity problems */
/* Ack the message. */
ESPSTAT(("ack msg, "));
esp_cmd(esp, ESP_CMD_MOK);
if (esp->erev != fashme) {
dma_flashclear(esp);
/* Wait till the first bits settle. */
while (esp->esp_command[0] == 0xff)
udelay(1);
} else {
esp->esp_command[0] = esp->hme_fifo_workaround_buffer[0];
esp->esp_command[1] = esp->hme_fifo_workaround_buffer[1];
}
ESPSTAT(("got something, "));
/* ESP chimes in with one of
*
* 1) function done interrupt:
* both status and message in bytes
* are available
*
* 2) bus service interrupt:
* only status byte was acquired
*
* 3) Anything else:
* can't happen, but we test for it
* anyways
*
* ALSO: If bad parity was detected on either
* the status _or_ the message byte then
* the ESP has asserted ATN on the bus
* and we must therefore wait for the
* next phase change.
*/
if (intr & ESP_INTR_FDONE) {
/* We got it all, hallejulia. */
ESPSTAT(("got both, "));
SCptr->SCp.Status = esp->esp_command[0];
SCptr->SCp.Message = esp->esp_command[1];
esp->prevmsgin = SCptr->SCp.Message;
esp->cur_msgin[0] = SCptr->SCp.Message;
if (esp->sreg & ESP_STAT_PERR) {
/* There was bad parity for the
* message byte, the status byte
* was ok.
*/
message_out = MSG_PARITY_ERROR;
}
} else if (intr == ESP_INTR_BSERV) {
/* Only got status byte. */
ESPLOG(("esp%d: got status only, ", esp->esp_id));
if (!(esp->sreg & ESP_STAT_PERR)) {
SCptr->SCp.Status = esp->esp_command[0];
SCptr->SCp.Message = 0xff;
} else {
/* The status byte had bad parity.
* we leave the scsi_pointer Status
* field alone as we set it to a default
* of CHECK_CONDITION in esp_queue.
*/
message_out = INITIATOR_ERROR;
}
} else {
/* This shouldn't happen ever. */
ESPSTAT(("got bolixed\n"));
esp_advance_phase(SCptr, in_the_dark);
return esp_do_phase_determine(esp);
}
if (!message_out) {
ESPSTAT(("status=%2x msg=%2x, ", SCptr->SCp.Status,
SCptr->SCp.Message));
if (SCptr->SCp.Message == COMMAND_COMPLETE) {
ESPSTAT(("and was COMMAND_COMPLETE\n"));
esp_advance_phase(SCptr, in_freeing);
return esp_do_freebus(esp);
} else {
ESPLOG(("esp%d: and _not_ COMMAND_COMPLETE\n",
esp->esp_id));
esp->msgin_len = esp->msgin_ctr = 1;
esp_advance_phase(SCptr, in_msgindone);
return esp_do_msgindone(esp);
}
} else {
/* With luck we'll be able to let the target
* know that bad parity happened, it will know
* which byte caused the problems and send it
* again. For the case where the status byte
* receives bad parity, I do not believe most
* targets recover very well. We'll see.
*/
ESPLOG(("esp%d: bad parity somewhere mout=%2x\n",
esp->esp_id, message_out));
esp->cur_msgout[0] = message_out;
esp->msgout_len = esp->msgout_ctr = 1;
esp_advance_phase(SCptr, in_the_dark);
return esp_do_phase_determine(esp);
}
} else {
/* If we disconnect now, all hell breaks loose. */
ESPLOG(("esp%d: whoops, disconnect\n", esp->esp_id));
esp_advance_phase(SCptr, in_the_dark);
return esp_do_phase_determine(esp);
}
}
static int esp_enter_status(struct esp *esp)
{
u8 thecmd = ESP_CMD_ICCSEQ;
esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->erev != fashme) {
u32 tmp;
esp->esp_command[0] = esp->esp_command[1] = 0xff;
sbus_writeb(2, esp->eregs + ESP_TCLOW);
sbus_writeb(0, esp->eregs + ESP_TCMED);
tmp = sbus_readl(esp->dregs + DMA_CSR);
tmp |= (DMA_ST_WRITE | DMA_ENABLE);
sbus_writel(tmp, esp->dregs + DMA_CSR);
if (esp->dma->revision == dvmaesc1)
sbus_writel(0x100, esp->dregs + DMA_COUNT);
sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR);
thecmd |= ESP_CMD_DMA;
}
esp_cmd(esp, thecmd);
esp_advance_phase(esp->current_SC, in_status);
return esp_do_status(esp);
}
static int esp_disconnect_amidst_phases(struct esp *esp)
{
struct scsi_cmnd *sp = esp->current_SC;
struct esp_device *esp_dev = sp->device->hostdata;
/* This means real problems if we see this
* here. Unless we were actually trying
* to force the device to abort/reset.
*/
ESPLOG(("esp%d Disconnect amidst phases, ", esp->esp_id));
ESPLOG(("pphase<%s> cphase<%s>, ",
phase_string(sp->SCp.phase),
phase_string(sp->SCp.sent_command)));
if (esp->disconnected_SC != NULL || (esp->erev == fashme))
esp_cmd(esp, ESP_CMD_ESEL);
switch (esp->cur_msgout[0]) {
default:
/* We didn't expect this to happen at all. */
ESPLOG(("device is bolixed\n"));
esp_advance_phase(sp, in_tgterror);
esp_done(esp, (DID_ERROR << 16));
break;
case BUS_DEVICE_RESET:
ESPLOG(("device reset successful\n"));
esp_dev->sync_max_offset = 0;
esp_dev->sync_min_period = 0;
esp_dev->sync = 0;
esp_advance_phase(sp, in_resetdev);
esp_done(esp, (DID_RESET << 16));
break;
case ABORT:
ESPLOG(("device abort successful\n"));
esp_advance_phase(sp, in_abortone);
esp_done(esp, (DID_ABORT << 16));
break;
};
return do_intr_end;
}
static int esp_enter_msgout(struct esp *esp)
{
esp_advance_phase(esp->current_SC, in_msgout);
return esp_do_msgout(esp);
}
static int esp_enter_msgin(struct esp *esp)
{
esp_advance_phase(esp->current_SC, in_msgin);
return esp_do_msgin(esp);
}
static int esp_enter_cmd(struct esp *esp)
{
esp_advance_phase(esp->current_SC, in_cmdbegin);
return esp_do_cmdbegin(esp);
}
static int esp_enter_badphase(struct esp *esp)
{
ESPLOG(("esp%d: Bizarre bus phase %2x.\n", esp->esp_id,
esp->sreg & ESP_STAT_PMASK));
return do_reset_bus;
}
typedef int (*espfunc_t)(struct esp *);
static espfunc_t phase_vector[] = {
esp_do_data, /* ESP_DOP */
esp_do_data, /* ESP_DIP */
esp_enter_cmd, /* ESP_CMDP */
esp_enter_status, /* ESP_STATP */
esp_enter_badphase, /* ESP_STAT_PMSG */
esp_enter_badphase, /* ESP_STAT_PMSG | ESP_STAT_PIO */
esp_enter_msgout, /* ESP_MOP */
esp_enter_msgin, /* ESP_MIP */
};
/* The target has control of the bus and we have to see where it has
* taken us.
*/
static int esp_do_phase_determine(struct esp *esp)
{
if ((esp->ireg & ESP_INTR_DC) != 0)
return esp_disconnect_amidst_phases(esp);
return phase_vector[esp->sreg & ESP_STAT_PMASK](esp);
}
/* First interrupt after exec'ing a cmd comes here. */
static int esp_select_complete(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
struct esp_device *esp_dev = SCptr->device->hostdata;
int cmd_bytes_sent, fcnt;
if (esp->erev != fashme)
esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS);
if (esp->erev == fashme)
fcnt = esp->hme_fifo_workaround_count;
else
fcnt = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES);
cmd_bytes_sent = esp_bytes_sent(esp, fcnt);
dma_invalidate(esp);
/* Let's check to see if a reselect happened
* while we we're trying to select. This must
* be checked first.
*/
if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
esp_reconnect(esp, SCptr);
return esp_do_reconnect(esp);
}
/* Looks like things worked, we should see a bus service &
* a function complete interrupt at this point. Note we
* are doing a direct comparison because we don't want to
* be fooled into thinking selection was successful if
* ESP_INTR_DC is set, see below.
*/
if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
/* target speaks... */
esp->targets_present |= (1<<SCptr->device->id);
/* What if the target ignores the sdtr? */
if (esp->snip)
esp_dev->sync = 1;
/* See how far, if at all, we got in getting
* the information out to the target.
*/
switch (esp->seqreg) {
default:
case ESP_STEP_ASEL:
/* Arbitration won, target selected, but
* we are in some phase which is not command
* phase nor is it message out phase.
*
* XXX We've confused the target, obviously.
* XXX So clear it's state, but we also end
* XXX up clearing everyone elses. That isn't
* XXX so nice. I'd like to just reset this
* XXX target, but if I cannot even get it's
* XXX attention and finish selection to talk
* XXX to it, there is not much more I can do.
* XXX If we have a loaded bus we're going to
* XXX spend the next second or so renegotiating
* XXX for synchronous transfers.
*/
ESPLOG(("esp%d: STEP_ASEL for tgt %d\n",
esp->esp_id, SCptr->device->id));
case ESP_STEP_SID:
/* Arbitration won, target selected, went
* to message out phase, sent one message
* byte, then we stopped. ATN is asserted
* on the SCSI bus and the target is still
* there hanging on. This is a legal
* sequence step if we gave the ESP a select
* and stop command.
*
* XXX See above, I could set the borken flag
* XXX in the device struct and retry the
* XXX command. But would that help for
* XXX tagged capable targets?
*/
case ESP_STEP_NCMD:
/* Arbitration won, target selected, maybe
* sent the one message byte in message out
* phase, but we did not go to command phase
* in the end. Actually, we could have sent
* only some of the message bytes if we tried
* to send out the entire identify and tag
* message using ESP_CMD_SA3.
*/
cmd_bytes_sent = 0;
break;
case ESP_STEP_PPC:
/* No, not the powerPC pinhead. Arbitration
* won, all message bytes sent if we went to
* message out phase, went to command phase
* but only part of the command was sent.
*
* XXX I've seen this, but usually in conjunction
* XXX with a gross error which appears to have
* XXX occurred between the time I told the
* XXX ESP to arbitrate and when I got the
* XXX interrupt. Could I have misloaded the
* XXX command bytes into the fifo? Actually,
* XXX I most likely missed a phase, and therefore
* XXX went into never never land and didn't even
* XXX know it. That was the old driver though.
* XXX What is even more peculiar is that the ESP
* XXX showed the proper function complete and
* XXX bus service bits in the interrupt register.
*/
case ESP_STEP_FINI4:
case ESP_STEP_FINI5:
case ESP_STEP_FINI6:
case ESP_STEP_FINI7:
/* Account for the identify message */
if (SCptr->SCp.phase == in_slct_norm)
cmd_bytes_sent -= 1;
};
if (esp->erev != fashme)
esp_cmd(esp, ESP_CMD_NULL);
/* Be careful, we could really get fucked during synchronous
* data transfers if we try to flush the fifo now.
*/
if ((esp->erev != fashme) && /* not a Happy Meal and... */
!fcnt && /* Fifo is empty and... */
/* either we are not doing synchronous transfers or... */
(!esp_dev->sync_max_offset ||
/* We are not going into data in phase. */
((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
esp_cmd(esp, ESP_CMD_FLUSH); /* flush is safe */
/* See how far we got if this is not a slow command. */
if (!esp->esp_slowcmd) {
if (cmd_bytes_sent < 0)
cmd_bytes_sent = 0;
if (cmd_bytes_sent != SCptr->cmd_len) {
/* Crapola, mark it as a slowcmd
* so that we have some chance of
* keeping the command alive with
* good luck.
*
* XXX Actually, if we didn't send it all
* XXX this means either we didn't set things
* XXX up properly (driver bug) or the target
* XXX or the ESP detected parity on one of
* XXX the command bytes. This makes much
* XXX more sense, and therefore this code
* XXX should be changed to send out a
* XXX parity error message or if the status
* XXX register shows no parity error then
* XXX just expect the target to bring the
* XXX bus into message in phase so that it
* XXX can send us the parity error message.
* XXX SCSI sucks...
*/
esp->esp_slowcmd = 1;
esp->esp_scmdp = &(SCptr->cmnd[cmd_bytes_sent]);
esp->esp_scmdleft = (SCptr->cmd_len - cmd_bytes_sent);
}
}
/* Now figure out where we went. */
esp_advance_phase(SCptr, in_the_dark);
return esp_do_phase_determine(esp);
}
/* Did the target even make it? */
if (esp->ireg == ESP_INTR_DC) {
/* wheee... nobody there or they didn't like
* what we told it to do, clean up.
*/
/* If anyone is off the bus, but working on
* a command in the background for us, tell
* the ESP to listen for them.
*/
if (esp->disconnected_SC)
esp_cmd(esp, ESP_CMD_ESEL);
if (((1<<SCptr->device->id) & esp->targets_present) &&
esp->seqreg != 0 &&
(esp->cur_msgout[0] == EXTENDED_MESSAGE) &&
(SCptr->SCp.phase == in_slct_msg ||
SCptr->SCp.phase == in_slct_stop)) {
/* shit */
esp->snip = 0;
ESPLOG(("esp%d: Failed synchronous negotiation for target %d "
"lun %d\n", esp->esp_id, SCptr->device->id, SCptr->device->lun));
esp_dev->sync_max_offset = 0;
esp_dev->sync_min_period = 0;
esp_dev->sync = 1; /* so we don't negotiate again */
/* Run the command again, this time though we
* won't try to negotiate for synchronous transfers.
*
* XXX I'd like to do something like send an
* XXX INITIATOR_ERROR or ABORT message to the
* XXX target to tell it, "Sorry I confused you,
* XXX please come back and I will be nicer next
* XXX time". But that requires having the target
* XXX on the bus, and it has dropped BSY on us.
*/
esp->current_SC = NULL;
esp_advance_phase(SCptr, not_issued);
prepend_SC(&esp->issue_SC, SCptr);
esp_exec_cmd(esp);
return do_intr_end;
}
/* Ok, this is normal, this is what we see during boot
* or whenever when we are scanning the bus for targets.
* But first make sure that is really what is happening.
*/
if (((1<<SCptr->device->id) & esp->targets_present)) {
ESPLOG(("esp%d: Warning, live target %d not responding to "
"selection.\n", esp->esp_id, SCptr->device->id));
/* This _CAN_ happen. The SCSI standard states that
* the target is to _not_ respond to selection if
* _it_ detects bad parity on the bus for any reason.
* Therefore, we assume that if we've talked successfully
* to this target before, bad parity is the problem.
*/
esp_done(esp, (DID_PARITY << 16));
} else {
/* Else, there really isn't anyone there. */
ESPMISC(("esp: selection failure, maybe nobody there?\n"));
ESPMISC(("esp: target %d lun %d\n",
SCptr->device->id, SCptr->device->lun));
esp_done(esp, (DID_BAD_TARGET << 16));
}
return do_intr_end;
}
ESPLOG(("esp%d: Selection failure.\n", esp->esp_id));
printk("esp%d: Currently -- ", esp->esp_id);
esp_print_ireg(esp->ireg); printk(" ");
esp_print_statreg(esp->sreg); printk(" ");
esp_print_seqreg(esp->seqreg); printk("\n");
printk("esp%d: New -- ", esp->esp_id);
esp->sreg = sbus_readb(esp->eregs + ESP_STATUS);
esp->seqreg = sbus_readb(esp->eregs + ESP_SSTEP);
esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT);
esp_print_ireg(esp->ireg); printk(" ");
esp_print_statreg(esp->sreg); printk(" ");
esp_print_seqreg(esp->seqreg); printk("\n");
ESPLOG(("esp%d: resetting bus\n", esp->esp_id));
return do_reset_bus; /* ugh... */
}
/* Continue reading bytes for msgin phase. */
static int esp_do_msgincont(struct esp *esp)
{
if (esp->ireg & ESP_INTR_BSERV) {
/* in the right phase too? */
if ((esp->sreg & ESP_STAT_PMASK) == ESP_MIP) {
/* phew... */
esp_cmd(esp, ESP_CMD_TI);
esp_advance_phase(esp->current_SC, in_msgindone);
return do_intr_end;
}
/* We changed phase but ESP shows bus service,
* in this case it is most likely that we, the
* hacker who has been up for 20hrs straight
* staring at the screen, drowned in coffee
* smelling like retched cigarette ashes
* have miscoded something..... so, try to
* recover as best we can.
*/
ESPLOG(("esp%d: message in mis-carriage.\n", esp->esp_id));
}
esp_advance_phase(esp->current_SC, in_the_dark);
return do_phase_determine;
}
static int check_singlebyte_msg(struct esp *esp)
{
esp->prevmsgin = esp->cur_msgin[0];
if (esp->cur_msgin[0] & 0x80) {
/* wheee... */
ESPLOG(("esp%d: target sends identify amidst phases\n",
esp->esp_id));
esp_advance_phase(esp->current_SC, in_the_dark);
return 0;
} else if (((esp->cur_msgin[0] & 0xf0) == 0x20) ||
(esp->cur_msgin[0] == EXTENDED_MESSAGE)) {
esp->msgin_len = 2;
esp_advance_phase(esp->current_SC, in_msgincont);
return 0;
}
esp_advance_phase(esp->current_SC, in_the_dark);
switch (esp->cur_msgin[0]) {
default:
/* We don't want to hear about it. */
ESPLOG(("esp%d: msg %02x which we don't know about\n", esp->esp_id,
esp->cur_msgin[0]));
return MESSAGE_REJECT;
case NOP:
ESPLOG(("esp%d: target %d sends a nop\n", esp->esp_id,
esp->current_SC->device->id));
return 0;
case RESTORE_POINTERS:
/* In this case we might also have to backup the
* "slow command" pointer. It is rare to get such
* a save/restore pointer sequence so early in the
* bus transition sequences, but cover it.
*/
if (esp->esp_slowcmd) {
esp->esp_scmdleft = esp->current_SC->cmd_len;
esp->esp_scmdp = &esp->current_SC->cmnd[0];
}
esp_restore_pointers(esp, esp->current_SC);
return 0;
case SAVE_POINTERS:
esp_save_pointers(esp, esp->current_SC);
return 0;
case COMMAND_COMPLETE:
case DISCONNECT:
/* Freeing the bus, let it go. */
esp->current_SC->SCp.phase = in_freeing;
return 0;
case MESSAGE_REJECT:
ESPMISC(("msg reject, "));
if (esp->prevmsgout == EXTENDED_MESSAGE) {
struct esp_device *esp_dev = esp->current_SC->device->hostdata;
/* Doesn't look like this target can
* do synchronous or WIDE transfers.
*/
ESPSDTR(("got reject, was trying nego, clearing sync/WIDE\n"));
esp_dev->sync = 1;
esp_dev->wide = 1;
esp_dev->sync_min_period = 0;
esp_dev->sync_max_offset = 0;
return 0;
} else {
ESPMISC(("not sync nego, sending ABORT\n"));
return ABORT;
}
};
}
/* Target negotiates for synchronous transfers before we do, this
* is legal although very strange. What is even funnier is that
* the SCSI2 standard specifically recommends against targets doing
* this because so many initiators cannot cope with this occurring.
*/
static int target_with_ants_in_pants(struct esp *esp,
struct scsi_cmnd *SCptr,
struct esp_device *esp_dev)
{
if (esp_dev->sync || SCptr->device->borken) {
/* sorry, no can do */
ESPSDTR(("forcing to async, "));
build_sync_nego_msg(esp, 0, 0);
esp_dev->sync = 1;
esp->snip = 1;
ESPLOG(("esp%d: hoping for msgout\n", esp->esp_id));
esp_advance_phase(SCptr, in_the_dark);
return EXTENDED_MESSAGE;
}
/* Ok, we'll check them out... */
return 0;
}
static void sync_report(struct esp *esp)
{
int msg3, msg4;
char *type;
msg3 = esp->cur_msgin[3];
msg4 = esp->cur_msgin[4];
if (msg4) {
int hz = 1000000000 / (msg3 * 4);
int integer = hz / 1000000;
int fraction = (hz - (integer * 1000000)) / 10000;
if ((esp->erev == fashme) &&
(esp->config3[esp->current_SC->device->id] & ESP_CONFIG3_EWIDE)) {
type = "FAST-WIDE";
integer <<= 1;
fraction <<= 1;
} else if ((msg3 * 4) < 200) {
type = "FAST";
} else {
type = "synchronous";
}
/* Do not transform this back into one big printk
* again, it triggers a bug in our sparc64-gcc272
* sibling call optimization. -DaveM
*/
ESPLOG((KERN_INFO "esp%d: target %d ",
esp->esp_id, esp->current_SC->device->id));
ESPLOG(("[period %dns offset %d %d.%02dMHz ",
(int) msg3 * 4, (int) msg4,
integer, fraction));
ESPLOG(("%s SCSI%s]\n", type,
(((msg3 * 4) < 200) ? "-II" : "")));
} else {
ESPLOG((KERN_INFO "esp%d: target %d asynchronous\n",
esp->esp_id, esp->current_SC->device->id));
}
}
static int check_multibyte_msg(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
struct esp_device *esp_dev = SCptr->device->hostdata;
u8 regval = 0;
int message_out = 0;
ESPSDTR(("chk multibyte msg: "));
if (esp->cur_msgin[2] == EXTENDED_SDTR) {
int period = esp->cur_msgin[3];
int offset = esp->cur_msgin[4];
ESPSDTR(("is sync nego response, "));
if (!esp->snip) {
int rval;
/* Target negotiates first! */
ESPSDTR(("target jumps the gun, "));
message_out = EXTENDED_MESSAGE; /* we must respond */
rval = target_with_ants_in_pants(esp, SCptr, esp_dev);
if (rval)
return rval;
}
ESPSDTR(("examining sdtr, "));
/* Offset cannot be larger than ESP fifo size. */
if (offset > 15) {
ESPSDTR(("offset too big %2x, ", offset));
offset = 15;
ESPSDTR(("sending back new offset\n"));
build_sync_nego_msg(esp, period, offset);
return EXTENDED_MESSAGE;
}
if (offset && period > esp->max_period) {
/* Yeee, async for this slow device. */
ESPSDTR(("period too long %2x, ", period));
build_sync_nego_msg(esp, 0, 0);
ESPSDTR(("hoping for msgout\n"));
esp_advance_phase(esp->current_SC, in_the_dark);
return EXTENDED_MESSAGE;
} else if (offset && period < esp->min_period) {
ESPSDTR(("period too short %2x, ", period));
period = esp->min_period;
if (esp->erev > esp236)
regval = 4;
else
regval = 5;
} else if (offset) {
int tmp;
ESPSDTR(("period is ok, "));
tmp = esp->ccycle / 1000;
regval = (((period << 2) + tmp - 1) / tmp);
if (regval && ((esp->erev == fas100a ||
esp->erev == fas236 ||
esp->erev == fashme))) {
if (period >= 50)
regval--;
}
}
if (offset) {
u8 bit;
esp_dev->sync_min_period = (regval & 0x1f);
esp_dev->sync_max_offset = (offset | esp->radelay);
if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) {
if ((esp->erev == fas100a) || (esp->erev == fashme))
bit = ESP_CONFIG3_FAST;
else
bit = ESP_CONFIG3_FSCSI;
if (period < 50) {
/* On FAS366, if using fast-20 synchronous transfers
* we need to make sure the REQ/ACK assert/deassert
* control bits are clear.
*/
if (esp->erev == fashme)
esp_dev->sync_max_offset &= ~esp->radelay;
esp->config3[SCptr->device->id] |= bit;
} else {
esp->config3[SCptr->device->id] &= ~bit;
}
esp->prev_cfg3 = esp->config3[SCptr->device->id];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
}
esp->prev_soff = esp_dev->sync_max_offset;
esp->prev_stp = esp_dev->sync_min_period;
sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF);
sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP);
ESPSDTR(("soff=%2x stp=%2x cfg3=%2x\n",
esp_dev->sync_max_offset,
esp_dev->sync_min_period,
esp->config3[SCptr->device->id]));
esp->snip = 0;
} else if (esp_dev->sync_max_offset) {
u8 bit;
/* back to async mode */
ESPSDTR(("unaccaptable sync nego, forcing async\n"));
esp_dev->sync_max_offset = 0;
esp_dev->sync_min_period = 0;
esp->prev_soff = 0;
esp->prev_stp = 0;
sbus_writeb(esp->prev_soff, esp->eregs + ESP_SOFF);
sbus_writeb(esp->prev_stp, esp->eregs + ESP_STP);
if (esp->erev == fas100a || esp->erev == fas236 || esp->erev == fashme) {
if ((esp->erev == fas100a) || (esp->erev == fashme))
bit = ESP_CONFIG3_FAST;
else
bit = ESP_CONFIG3_FSCSI;
esp->config3[SCptr->device->id] &= ~bit;
esp->prev_cfg3 = esp->config3[SCptr->device->id];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
}
}
sync_report(esp);
ESPSDTR(("chk multibyte msg: sync is known, "));
esp_dev->sync = 1;
if (message_out) {
ESPLOG(("esp%d: sending sdtr back, hoping for msgout\n",
esp->esp_id));
build_sync_nego_msg(esp, period, offset);
esp_advance_phase(SCptr, in_the_dark);
return EXTENDED_MESSAGE;
}
ESPSDTR(("returning zero\n"));
esp_advance_phase(SCptr, in_the_dark); /* ...or else! */
return 0;
} else if (esp->cur_msgin[2] == EXTENDED_WDTR) {
int size = 8 << esp->cur_msgin[3];
esp->wnip = 0;
if (esp->erev != fashme) {
ESPLOG(("esp%d: AIEEE wide msg received and not HME.\n",
esp->esp_id));
message_out = MESSAGE_REJECT;
} else if (size > 16) {
ESPLOG(("esp%d: AIEEE wide transfer for %d size "
"not supported.\n", esp->esp_id, size));
message_out = MESSAGE_REJECT;
} else {
/* Things look good; let's see what we got. */
if (size == 16) {
/* Set config 3 register for this target. */
esp->config3[SCptr->device->id] |= ESP_CONFIG3_EWIDE;
} else {
/* Just make sure it was one byte sized. */
if (size != 8) {
ESPLOG(("esp%d: Aieee, wide nego of %d size.\n",
esp->esp_id, size));
message_out = MESSAGE_REJECT;
goto finish;
}
/* Pure paranoia. */
esp->config3[SCptr->device->id] &= ~(ESP_CONFIG3_EWIDE);
}
esp->prev_cfg3 = esp->config3[SCptr->device->id];
sbus_writeb(esp->prev_cfg3, esp->eregs + ESP_CFG3);
/* Regardless, next try for sync transfers. */
build_sync_nego_msg(esp, esp->sync_defp, 15);
esp_dev->sync = 1;
esp->snip = 1;
message_out = EXTENDED_MESSAGE;
}
} else if (esp->cur_msgin[2] == EXTENDED_MODIFY_DATA_POINTER) {
ESPLOG(("esp%d: rejecting modify data ptr msg\n", esp->esp_id));
message_out = MESSAGE_REJECT;
}
finish:
esp_advance_phase(SCptr, in_the_dark);
return message_out;
}
static int esp_do_msgindone(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
int message_out = 0, it = 0, rval;
rval = skipahead1(esp, SCptr, in_msgin, in_msgindone);
if (rval)
return rval;
if (SCptr->SCp.sent_command != in_status) {
if (!(esp->ireg & ESP_INTR_DC)) {
if (esp->msgin_len && (esp->sreg & ESP_STAT_PERR)) {
message_out = MSG_PARITY_ERROR;
esp_cmd(esp, ESP_CMD_FLUSH);
} else if (esp->erev != fashme &&
(it = (sbus_readb(esp->eregs + ESP_FFLAGS) & ESP_FF_FBYTES)) != 1) {
/* We certainly dropped the ball somewhere. */
message_out = INITIATOR_ERROR;
esp_cmd(esp, ESP_CMD_FLUSH);
} else if (!esp->msgin_len) {
if (esp->erev == fashme)
it = esp->hme_fifo_workaround_buffer[0];
else
it = sbus_readb(esp->eregs + ESP_FDATA);
esp_advance_phase(SCptr, in_msgincont);
} else {
/* it is ok and we want it */
if (esp->erev == fashme)
it = esp->cur_msgin[esp->msgin_ctr] =
esp->hme_fifo_workaround_buffer[0];
else
it = esp->cur_msgin[esp->msgin_ctr] =
sbus_readb(esp->eregs + ESP_FDATA);
esp->msgin_ctr++;
}
} else {
esp_advance_phase(SCptr, in_the_dark);
return do_work_bus;
}
} else {
it = esp->cur_msgin[0];
}
if (!message_out && esp->msgin_len) {
if (esp->msgin_ctr < esp->msgin_len) {
esp_advance_phase(SCptr, in_msgincont);
} else if (esp->msgin_len == 1) {
message_out = check_singlebyte_msg(esp);
} else if (esp->msgin_len == 2) {
if (esp->cur_msgin[0] == EXTENDED_MESSAGE) {
if ((it + 2) >= 15) {
message_out = MESSAGE_REJECT;
} else {
esp->msgin_len = (it + 2);
esp_advance_phase(SCptr, in_msgincont);
}
} else {
message_out = MESSAGE_REJECT; /* foo on you */
}
} else {
message_out = check_multibyte_msg(esp);
}
}
if (message_out < 0) {
return -message_out;
} else if (message_out) {
if (((message_out != 1) &&
((message_out < 0x20) || (message_out & 0x80))))
esp->msgout_len = 1;
esp->cur_msgout[0] = message_out;
esp_cmd(esp, ESP_CMD_SATN);
esp_advance_phase(SCptr, in_the_dark);
esp->msgin_len = 0;
}
esp->sreg = sbus_readb(esp->eregs + ESP_STATUS);
esp->sreg &= ~(ESP_STAT_INTR);
if ((esp->sreg & (ESP_STAT_PMSG|ESP_STAT_PCD)) == (ESP_STAT_PMSG|ESP_STAT_PCD))
esp_cmd(esp, ESP_CMD_MOK);
if ((SCptr->SCp.sent_command == in_msgindone) &&
(SCptr->SCp.phase == in_freeing))
return esp_do_freebus(esp);
return do_intr_end;
}
static int esp_do_cmdbegin(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
esp_advance_phase(SCptr, in_cmdend);
if (esp->erev == fashme) {
u32 tmp = sbus_readl(esp->dregs + DMA_CSR);
int i;
for (i = 0; i < esp->esp_scmdleft; i++)
esp->esp_command[i] = *esp->esp_scmdp++;
esp->esp_scmdleft = 0;
esp_cmd(esp, ESP_CMD_FLUSH);
esp_setcount(esp->eregs, i, 1);
esp_cmd(esp, (ESP_CMD_DMA | ESP_CMD_TI));
tmp |= (DMA_SCSI_DISAB | DMA_ENABLE);
tmp &= ~(DMA_ST_WRITE);
sbus_writel(i, esp->dregs + DMA_COUNT);
sbus_writel(esp->esp_command_dvma, esp->dregs + DMA_ADDR);
sbus_writel(tmp, esp->dregs + DMA_CSR);
} else {
u8 tmp;
esp_cmd(esp, ESP_CMD_FLUSH);
tmp = *esp->esp_scmdp++;
esp->esp_scmdleft--;
sbus_writeb(tmp, esp->eregs + ESP_FDATA);
esp_cmd(esp, ESP_CMD_TI);
}
return do_intr_end;
}
static int esp_do_cmddone(struct esp *esp)
{
if (esp->erev == fashme)
dma_invalidate(esp);
else
esp_cmd(esp, ESP_CMD_NULL);
if (esp->ireg & ESP_INTR_BSERV) {
esp_advance_phase(esp->current_SC, in_the_dark);
return esp_do_phase_determine(esp);
}
ESPLOG(("esp%d: in do_cmddone() but didn't get BSERV interrupt.\n",
esp->esp_id));
return do_reset_bus;
}
static int esp_do_msgout(struct esp *esp)
{
esp_cmd(esp, ESP_CMD_FLUSH);
switch (esp->msgout_len) {
case 1:
if (esp->erev == fashme)
hme_fifo_push(esp, &esp->cur_msgout[0], 1);
else
sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA);
esp_cmd(esp, ESP_CMD_TI);
break;
case 2:
esp->esp_command[0] = esp->cur_msgout[0];
esp->esp_command[1] = esp->cur_msgout[1];
if (esp->erev == fashme) {
hme_fifo_push(esp, &esp->cur_msgout[0], 2);
esp_cmd(esp, ESP_CMD_TI);
} else {
dma_setup(esp, esp->esp_command_dvma, 2, 0);
esp_setcount(esp->eregs, 2, 0);
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
}
break;
case 4:
esp->esp_command[0] = esp->cur_msgout[0];
esp->esp_command[1] = esp->cur_msgout[1];
esp->esp_command[2] = esp->cur_msgout[2];
esp->esp_command[3] = esp->cur_msgout[3];
esp->snip = 1;
if (esp->erev == fashme) {
hme_fifo_push(esp, &esp->cur_msgout[0], 4);
esp_cmd(esp, ESP_CMD_TI);
} else {
dma_setup(esp, esp->esp_command_dvma, 4, 0);
esp_setcount(esp->eregs, 4, 0);
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
}
break;
case 5:
esp->esp_command[0] = esp->cur_msgout[0];
esp->esp_command[1] = esp->cur_msgout[1];
esp->esp_command[2] = esp->cur_msgout[2];
esp->esp_command[3] = esp->cur_msgout[3];
esp->esp_command[4] = esp->cur_msgout[4];
esp->snip = 1;
if (esp->erev == fashme) {
hme_fifo_push(esp, &esp->cur_msgout[0], 5);
esp_cmd(esp, ESP_CMD_TI);
} else {
dma_setup(esp, esp->esp_command_dvma, 5, 0);
esp_setcount(esp->eregs, 5, 0);
esp_cmd(esp, ESP_CMD_DMA | ESP_CMD_TI);
}
break;
default:
/* whoops */
ESPMISC(("bogus msgout sending NOP\n"));
esp->cur_msgout[0] = NOP;
if (esp->erev == fashme) {
hme_fifo_push(esp, &esp->cur_msgout[0], 1);
} else {
sbus_writeb(esp->cur_msgout[0], esp->eregs + ESP_FDATA);
}
esp->msgout_len = 1;
esp_cmd(esp, ESP_CMD_TI);
break;
};
esp_advance_phase(esp->current_SC, in_msgoutdone);
return do_intr_end;
}
static int esp_do_msgoutdone(struct esp *esp)
{
if (esp->msgout_len > 1) {
/* XXX HME/FAS ATN deassert workaround required,
* XXX no DMA flushing, only possible ESP_CMD_FLUSH
* XXX to kill the fifo.
*/
if (esp->erev != fashme) {
u32 tmp;
while ((tmp = sbus_readl(esp->dregs + DMA_CSR)) & DMA_PEND_READ)
udelay(1);
tmp &= ~DMA_ENABLE;
sbus_writel(tmp, esp->dregs + DMA_CSR);
dma_invalidate(esp);
} else {
esp_cmd(esp, ESP_CMD_FLUSH);
}
}
if (!(esp->ireg & ESP_INTR_DC)) {
if (esp->erev != fashme)
esp_cmd(esp, ESP_CMD_NULL);
switch (esp->sreg & ESP_STAT_PMASK) {
case ESP_MOP:
/* whoops, parity error */
ESPLOG(("esp%d: still in msgout, parity error assumed\n",
esp->esp_id));
if (esp->msgout_len > 1)
esp_cmd(esp, ESP_CMD_SATN);
esp_advance_phase(esp->current_SC, in_msgout);
return do_work_bus;
case ESP_DIP:
break;
default:
/* Happy Meal fifo is touchy... */
if ((esp->erev != fashme) &&
!fcount(esp) &&
!(((struct esp_device *)esp->current_SC->device->hostdata)->sync_max_offset))
esp_cmd(esp, ESP_CMD_FLUSH);
break;
};
} else {
ESPLOG(("esp%d: disconnect, resetting bus\n", esp->esp_id));
return do_reset_bus;
}
/* If we sent out a synchronous negotiation message, update
* our state.
*/
if (esp->cur_msgout[2] == EXTENDED_MESSAGE &&
esp->cur_msgout[4] == EXTENDED_SDTR) {
esp->snip = 1; /* anal retentiveness... */
}
esp->prevmsgout = esp->cur_msgout[0];
esp->msgout_len = 0;
esp_advance_phase(esp->current_SC, in_the_dark);
return esp_do_phase_determine(esp);
}
static int esp_bus_unexpected(struct esp *esp)
{
ESPLOG(("esp%d: command in weird state %2x\n",
esp->esp_id, esp->current_SC->SCp.phase));
return do_reset_bus;
}
static espfunc_t bus_vector[] = {
esp_do_data_finale,
esp_do_data_finale,
esp_bus_unexpected,
esp_do_msgin,
esp_do_msgincont,
esp_do_msgindone,
esp_do_msgout,
esp_do_msgoutdone,
esp_do_cmdbegin,
esp_do_cmddone,
esp_do_status,
esp_do_freebus,
esp_do_phase_determine,
esp_bus_unexpected,
esp_bus_unexpected,
esp_bus_unexpected,
};
/* This is the second tier in our dual-level SCSI state machine. */
static int esp_work_bus(struct esp *esp)
{
struct scsi_cmnd *SCptr = esp->current_SC;
unsigned int phase;
ESPBUS(("esp_work_bus: "));
if (!SCptr) {
ESPBUS(("reconnect\n"));
return esp_do_reconnect(esp);
}
phase = SCptr->SCp.phase;
if ((phase & 0xf0) == in_phases_mask)
return bus_vector[(phase & 0x0f)](esp);
else if ((phase & 0xf0) == in_slct_mask)
return esp_select_complete(esp);
else
return esp_bus_unexpected(esp);
}
static espfunc_t isvc_vector[] = {
NULL,
esp_do_phase_determine,
esp_do_resetbus,
esp_finish_reset,
esp_work_bus
};
/* Main interrupt handler for an esp adapter. */
static void esp_handle(struct esp *esp)
{
struct scsi_cmnd *SCptr;
int what_next = do_intr_end;
SCptr = esp->current_SC;
/* Check for errors. */
esp->sreg = sbus_readb(esp->eregs + ESP_STATUS);
esp->sreg &= (~ESP_STAT_INTR);
if (esp->erev == fashme) {
esp->sreg2 = sbus_readb(esp->eregs + ESP_STATUS2);
esp->seqreg = (sbus_readb(esp->eregs + ESP_SSTEP) & ESP_STEP_VBITS);
}
if (esp->sreg & (ESP_STAT_SPAM)) {
/* Gross error, could be due to one of:
*
* - top of fifo overwritten, could be because
* we tried to do a synchronous transfer with
* an offset greater than ESP fifo size
*
* - top of command register overwritten
*
* - DMA setup to go in one direction, SCSI
* bus points in the other, whoops
*
* - weird phase change during asynchronous
* data phase while we are initiator
*/
ESPLOG(("esp%d: Gross error sreg=%2x\n", esp->esp_id, esp->sreg));
/* If a command is live on the bus we cannot safely
* reset the bus, so we'll just let the pieces fall
* where they may. Here we are hoping that the
* target will be able to cleanly go away soon
* so we can safely reset things.
*/
if (!SCptr) {
ESPLOG(("esp%d: No current cmd during gross error, "
"resetting bus\n", esp->esp_id));
what_next = do_reset_bus;
goto state_machine;
}
}
if (sbus_readl(esp->dregs + DMA_CSR) & DMA_HNDL_ERROR) {
/* A DMA gate array error. Here we must
* be seeing one of two things. Either the
* virtual to physical address translation
* on the SBUS could not occur, else the
* translation it did get pointed to a bogus
* page. Ho hum...
*/
ESPLOG(("esp%d: DMA error %08x\n", esp->esp_id,
sbus_readl(esp->dregs + DMA_CSR)));
/* DMA gate array itself must be reset to clear the
* error condition.
*/
esp_reset_dma(esp);
what_next = do_reset_bus;
goto state_machine;
}
esp->ireg = sbus_readb(esp->eregs + ESP_INTRPT); /* Unlatch intr reg */
if (esp->erev == fashme) {
/* This chip is really losing. */
ESPHME(("HME["));
ESPHME(("sreg2=%02x,", esp->sreg2));
/* Must latch fifo before reading the interrupt
* register else garbage ends up in the FIFO
* which confuses the driver utterly.
*/
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
(esp->sreg2 & ESP_STAT2_F1BYTE)) {
ESPHME(("fifo_workaround]"));
hme_fifo_read(esp);
} else {
ESPHME(("no_fifo_workaround]"));
}
}
/* No current cmd is only valid at this point when there are
* commands off the bus or we are trying a reset.
*/
if (!SCptr && !esp->disconnected_SC && !(esp->ireg & ESP_INTR_SR)) {
/* Panic is safe, since current_SC is null. */
ESPLOG(("esp%d: no command in esp_handle()\n", esp->esp_id));
panic("esp_handle: current_SC == penguin within interrupt!");
}
if (esp->ireg & (ESP_INTR_IC)) {
/* Illegal command fed to ESP. Outside of obvious
* software bugs that could cause this, there is
* a condition with esp100 where we can confuse the
* ESP into an erroneous illegal command interrupt
* because it does not scrape the FIFO properly
* for reselection. See esp100_reconnect_hwbug()
* to see how we try very hard to avoid this.
*/
ESPLOG(("esp%d: invalid command\n", esp->esp_id));
esp_dump_state(esp);
if (SCptr != NULL) {
/* Devices with very buggy firmware can drop BSY
* during a scatter list interrupt when using sync
* mode transfers. We continue the transfer as
* expected, the target drops the bus, the ESP
* gets confused, and we get a illegal command
* interrupt because the bus is in the disconnected
* state now and ESP_CMD_TI is only allowed when
* a nexus is alive on the bus.
*/
ESPLOG(("esp%d: Forcing async and disabling disconnect for "
"target %d\n", esp->esp_id, SCptr->device->id));
SCptr->device->borken = 1; /* foo on you */
}
what_next = do_reset_bus;
} else if (!(esp->ireg & ~(ESP_INTR_FDONE | ESP_INTR_BSERV | ESP_INTR_DC))) {
if (SCptr) {
unsigned int phase = SCptr->SCp.phase;
if (phase & in_phases_mask) {
what_next = esp_work_bus(esp);
} else if (phase & in_slct_mask) {
what_next = esp_select_complete(esp);
} else {
ESPLOG(("esp%d: interrupt for no good reason...\n",
esp->esp_id));
what_next = do_intr_end;
}
} else {
ESPLOG(("esp%d: BSERV or FDONE or DC while SCptr==NULL\n",
esp->esp_id));
what_next = do_reset_bus;
}
} else if (esp->ireg & ESP_INTR_SR) {
ESPLOG(("esp%d: SCSI bus reset interrupt\n", esp->esp_id));
what_next = do_reset_complete;
} else if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN)) {
ESPLOG(("esp%d: AIEEE we have been selected by another initiator!\n",
esp->esp_id));
what_next = do_reset_bus;
} else if (esp->ireg & ESP_INTR_RSEL) {
if (SCptr == NULL) {
/* This is ok. */
what_next = esp_do_reconnect(esp);
} else if (SCptr->SCp.phase & in_slct_mask) {
/* Only selection code knows how to clean
* up properly.
*/
ESPDISC(("Reselected during selection attempt\n"));
what_next = esp_select_complete(esp);
} else {
ESPLOG(("esp%d: Reselected while bus is busy\n",
esp->esp_id));
what_next = do_reset_bus;
}
}
/* This is tier-one in our dual level SCSI state machine. */
state_machine:
while (what_next != do_intr_end) {
if (what_next >= do_phase_determine &&
what_next < do_intr_end) {
what_next = isvc_vector[what_next](esp);
} else {
/* state is completely lost ;-( */
ESPLOG(("esp%d: interrupt engine loses state, resetting bus\n",
esp->esp_id));
what_next = do_reset_bus;
}
}
}
/* Service only the ESP described by dev_id. */
static irqreturn_t esp_intr(int irq, void *dev_id, struct pt_regs *pregs)
{
struct esp *esp = dev_id;
unsigned long flags;
spin_lock_irqsave(esp->ehost->host_lock, flags);
if (ESP_IRQ_P(esp->dregs)) {
ESP_INTSOFF(esp->dregs);
ESPIRQ(("I[%d:%d](", smp_processor_id(), esp->esp_id));
esp_handle(esp);
ESPIRQ((")"));
ESP_INTSON(esp->dregs);
}
spin_unlock_irqrestore(esp->ehost->host_lock, flags);
return IRQ_HANDLED;
}
static int esp_slave_alloc(struct scsi_device *SDptr)
{
struct esp_device *esp_dev =
kmalloc(sizeof(struct esp_device), GFP_ATOMIC);
if (!esp_dev)
return -ENOMEM;
memset(esp_dev, 0, sizeof(struct esp_device));
SDptr->hostdata = esp_dev;
return 0;
}
static void esp_slave_destroy(struct scsi_device *SDptr)
{
struct esp *esp = (struct esp *) SDptr->host->hostdata;
esp->targets_present &= ~(1 << SDptr->id);
kfree(SDptr->hostdata);
SDptr->hostdata = NULL;
}
static struct scsi_host_template esp_template = {
.module = THIS_MODULE,
.name = "esp",
.info = esp_info,
.slave_alloc = esp_slave_alloc,
.slave_destroy = esp_slave_destroy,
.queuecommand = esp_queue,
.eh_abort_handler = esp_abort,
.eh_bus_reset_handler = esp_reset,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.proc_name = "esp",
.proc_info = esp_proc_info,
};
#ifndef CONFIG_SUN4
static struct of_device_id esp_match[] = {
{
.name = "SUNW,esp",
.data = &esp_template,
},
{
.name = "SUNW,fas",
.data = &esp_template,
},
{
.name = "esp",
.data = &esp_template,
},
{},
};
MODULE_DEVICE_TABLE(of, esp_match);
static struct of_platform_driver esp_sbus_driver = {
.name = "esp",
.match_table = esp_match,
.probe = esp_sbus_probe,
.remove = __devexit_p(esp_sbus_remove),
};
#endif
static int __init esp_init(void)
{
#ifdef CONFIG_SUN4
return esp_sun4_probe(&esp_template);
#else
return of_register_driver(&esp_sbus_driver, &sbus_bus_type);
#endif
}
static void __exit esp_exit(void)
{
#ifdef CONFIG_SUN4
esp_sun4_remove();
#else
of_unregister_driver(&esp_sbus_driver);
#endif
}
MODULE_DESCRIPTION("ESP Sun SCSI driver");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(esp_init);
module_exit(esp_exit);