5404525b98
-----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAluRLa8ACgkQxWXV+ddt WDvc+BAAqxTMVngZ60WfktXzsS56OB6fu/R3DORgYcSZ0BCD4zTwoDlCjLhrCK6E cmC+BMj+AspDQYiYESwGyFcN10sK0X7w7fa3wypTc4GNWxpkRm0Z6zT/kCvLUhdI NlkMqAfsZ9N6iIXcR0qOxI7G55e3mpXPZGdFTk5rmDTv/9TqU0TMp9s8Zw5scn6R ctdE+iE0lpRfNjF8ZDH1BtYIV4g2X81sZF/fkGz621HQfMTCjjPHFdlz+jlirBaf BrYR4w4zjVuMKd3ZC5FHffVchbkvt29h6fAr4sEpJTwFJwd8pjI7GuPYWDQ918NB TGX6EUP6usQqDK2zD405jCS6MbMshJm3uh5kmEpeNgK/tKJTln8Sbef/Xs93yIn2 +k9BMKOIcUHHBiv6PgCaZomcWCpii2S2u6vncqCnNuI4wK1RN3gHJc5YPhJArlrB NUFJiTCQE6LWYOP2Hw+rggcrtBxli0bX7Mqp5FYFVdh5KBvolJE1o3B/JS8qpqRF u0dPwbLHtTpTpXM5EfmM8a45S+DxuxTDBh3vdoAOM9LN/ivpeqqnFbHrIGmrTMjo pQJ8aTrCwYMEMNu6oCV1cniFrOYRZ439hYjg524MjVXYCRyxhzAdVmVTEBaLjWCW 9GlGqEC7YZY2wLi5lPEGqxsIaVVELpettJB9KbBKmYB47VFWEf0= =fu93 -----END PGP SIGNATURE----- Merge tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix for improper fsync after hardlink - fix for a corruption during file deduplication - use after free fixes - RCU warning fix - fix for buffered write to nodatacow file * tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: Fix suspicious RCU usage warning in btrfs_debug_in_rcu btrfs: use after free in btrfs_quota_enable btrfs: btrfs_shrink_device should call commit transaction at the end btrfs: fix qgroup_free wrong num_bytes in btrfs_subvolume_reserve_metadata Btrfs: fix data corruption when deduplicating between different files Btrfs: sync log after logging new name Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
6012 lines
146 KiB
C
6012 lines
146 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/security.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/btrfs.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/iversion.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "inode-map.h"
|
|
#include "backref.h"
|
|
#include "rcu-string.h"
|
|
#include "send.h"
|
|
#include "dev-replace.h"
|
|
#include "props.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "tree-log.h"
|
|
#include "compression.h"
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
|
|
* structures are incorrect, as the timespec structure from userspace
|
|
* is 4 bytes too small. We define these alternatives here to teach
|
|
* the kernel about the 32-bit struct packing.
|
|
*/
|
|
struct btrfs_ioctl_timespec_32 {
|
|
__u64 sec;
|
|
__u32 nsec;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_ioctl_received_subvol_args_32 {
|
|
char uuid[BTRFS_UUID_SIZE]; /* in */
|
|
__u64 stransid; /* in */
|
|
__u64 rtransid; /* out */
|
|
struct btrfs_ioctl_timespec_32 stime; /* in */
|
|
struct btrfs_ioctl_timespec_32 rtime; /* out */
|
|
__u64 flags; /* in */
|
|
__u64 reserved[16]; /* in */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
|
|
struct btrfs_ioctl_received_subvol_args_32)
|
|
#endif
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 {
|
|
__s64 send_fd; /* in */
|
|
__u64 clone_sources_count; /* in */
|
|
compat_uptr_t clone_sources; /* in */
|
|
__u64 parent_root; /* in */
|
|
__u64 flags; /* in */
|
|
__u64 reserved[4]; /* in */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
|
|
struct btrfs_ioctl_send_args_32)
|
|
#endif
|
|
|
|
static int btrfs_clone(struct inode *src, struct inode *inode,
|
|
u64 off, u64 olen, u64 olen_aligned, u64 destoff,
|
|
int no_time_update);
|
|
|
|
/* Mask out flags that are inappropriate for the given type of inode. */
|
|
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
|
|
unsigned int flags)
|
|
{
|
|
if (S_ISDIR(inode->i_mode))
|
|
return flags;
|
|
else if (S_ISREG(inode->i_mode))
|
|
return flags & ~FS_DIRSYNC_FL;
|
|
else
|
|
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
|
|
}
|
|
|
|
/*
|
|
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
|
|
* ioctl.
|
|
*/
|
|
static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
|
|
{
|
|
unsigned int iflags = 0;
|
|
|
|
if (flags & BTRFS_INODE_SYNC)
|
|
iflags |= FS_SYNC_FL;
|
|
if (flags & BTRFS_INODE_IMMUTABLE)
|
|
iflags |= FS_IMMUTABLE_FL;
|
|
if (flags & BTRFS_INODE_APPEND)
|
|
iflags |= FS_APPEND_FL;
|
|
if (flags & BTRFS_INODE_NODUMP)
|
|
iflags |= FS_NODUMP_FL;
|
|
if (flags & BTRFS_INODE_NOATIME)
|
|
iflags |= FS_NOATIME_FL;
|
|
if (flags & BTRFS_INODE_DIRSYNC)
|
|
iflags |= FS_DIRSYNC_FL;
|
|
if (flags & BTRFS_INODE_NODATACOW)
|
|
iflags |= FS_NOCOW_FL;
|
|
|
|
if (flags & BTRFS_INODE_NOCOMPRESS)
|
|
iflags |= FS_NOCOMP_FL;
|
|
else if (flags & BTRFS_INODE_COMPRESS)
|
|
iflags |= FS_COMPR_FL;
|
|
|
|
return iflags;
|
|
}
|
|
|
|
/*
|
|
* Update inode->i_flags based on the btrfs internal flags.
|
|
*/
|
|
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
unsigned int new_fl = 0;
|
|
|
|
if (binode->flags & BTRFS_INODE_SYNC)
|
|
new_fl |= S_SYNC;
|
|
if (binode->flags & BTRFS_INODE_IMMUTABLE)
|
|
new_fl |= S_IMMUTABLE;
|
|
if (binode->flags & BTRFS_INODE_APPEND)
|
|
new_fl |= S_APPEND;
|
|
if (binode->flags & BTRFS_INODE_NOATIME)
|
|
new_fl |= S_NOATIME;
|
|
if (binode->flags & BTRFS_INODE_DIRSYNC)
|
|
new_fl |= S_DIRSYNC;
|
|
|
|
set_mask_bits(&inode->i_flags,
|
|
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
|
|
new_fl);
|
|
}
|
|
|
|
static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
|
|
unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* Check if @flags are a supported and valid set of FS_*_FL flags */
|
|
static int check_fsflags(unsigned int flags)
|
|
{
|
|
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
|
|
FS_NOATIME_FL | FS_NODUMP_FL | \
|
|
FS_SYNC_FL | FS_DIRSYNC_FL | \
|
|
FS_NOCOMP_FL | FS_COMPR_FL |
|
|
FS_NOCOW_FL))
|
|
return -EOPNOTSUPP;
|
|
|
|
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
struct btrfs_root *root = binode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned int fsflags, old_fsflags;
|
|
int ret;
|
|
u64 old_flags;
|
|
unsigned int old_i_flags;
|
|
umode_t mode;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
|
|
return -EFAULT;
|
|
|
|
ret = check_fsflags(fsflags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
old_flags = binode->flags;
|
|
old_i_flags = inode->i_flags;
|
|
mode = inode->i_mode;
|
|
|
|
fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
|
|
old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
|
|
if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
|
|
if (!capable(CAP_LINUX_IMMUTABLE)) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (fsflags & FS_SYNC_FL)
|
|
binode->flags |= BTRFS_INODE_SYNC;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_SYNC;
|
|
if (fsflags & FS_IMMUTABLE_FL)
|
|
binode->flags |= BTRFS_INODE_IMMUTABLE;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_IMMUTABLE;
|
|
if (fsflags & FS_APPEND_FL)
|
|
binode->flags |= BTRFS_INODE_APPEND;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_APPEND;
|
|
if (fsflags & FS_NODUMP_FL)
|
|
binode->flags |= BTRFS_INODE_NODUMP;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NODUMP;
|
|
if (fsflags & FS_NOATIME_FL)
|
|
binode->flags |= BTRFS_INODE_NOATIME;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NOATIME;
|
|
if (fsflags & FS_DIRSYNC_FL)
|
|
binode->flags |= BTRFS_INODE_DIRSYNC;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_DIRSYNC;
|
|
if (fsflags & FS_NOCOW_FL) {
|
|
if (S_ISREG(mode)) {
|
|
/*
|
|
* It's safe to turn csums off here, no extents exist.
|
|
* Otherwise we want the flag to reflect the real COW
|
|
* status of the file and will not set it.
|
|
*/
|
|
if (inode->i_size == 0)
|
|
binode->flags |= BTRFS_INODE_NODATACOW
|
|
| BTRFS_INODE_NODATASUM;
|
|
} else {
|
|
binode->flags |= BTRFS_INODE_NODATACOW;
|
|
}
|
|
} else {
|
|
/*
|
|
* Revert back under same assumptions as above
|
|
*/
|
|
if (S_ISREG(mode)) {
|
|
if (inode->i_size == 0)
|
|
binode->flags &= ~(BTRFS_INODE_NODATACOW
|
|
| BTRFS_INODE_NODATASUM);
|
|
} else {
|
|
binode->flags &= ~BTRFS_INODE_NODATACOW;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
|
|
* flag may be changed automatically if compression code won't make
|
|
* things smaller.
|
|
*/
|
|
if (fsflags & FS_NOCOMP_FL) {
|
|
binode->flags &= ~BTRFS_INODE_COMPRESS;
|
|
binode->flags |= BTRFS_INODE_NOCOMPRESS;
|
|
|
|
ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
|
|
if (ret && ret != -ENODATA)
|
|
goto out_drop;
|
|
} else if (fsflags & FS_COMPR_FL) {
|
|
const char *comp;
|
|
|
|
binode->flags |= BTRFS_INODE_COMPRESS;
|
|
binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
|
|
|
|
comp = btrfs_compress_type2str(fs_info->compress_type);
|
|
if (!comp || comp[0] == 0)
|
|
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
|
|
|
|
ret = btrfs_set_prop(inode, "btrfs.compression",
|
|
comp, strlen(comp), 0);
|
|
if (ret)
|
|
goto out_drop;
|
|
|
|
} else {
|
|
ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
|
|
if (ret && ret != -ENODATA)
|
|
goto out_drop;
|
|
binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_drop;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
btrfs_end_transaction(trans);
|
|
out_drop:
|
|
if (ret) {
|
|
binode->flags = old_flags;
|
|
inode->i_flags = old_i_flags;
|
|
}
|
|
|
|
out_unlock:
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Translate btrfs internal inode flags to xflags as expected by the
|
|
* FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
|
|
* silently dropped.
|
|
*/
|
|
static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
|
|
{
|
|
unsigned int xflags = 0;
|
|
|
|
if (flags & BTRFS_INODE_APPEND)
|
|
xflags |= FS_XFLAG_APPEND;
|
|
if (flags & BTRFS_INODE_IMMUTABLE)
|
|
xflags |= FS_XFLAG_IMMUTABLE;
|
|
if (flags & BTRFS_INODE_NOATIME)
|
|
xflags |= FS_XFLAG_NOATIME;
|
|
if (flags & BTRFS_INODE_NODUMP)
|
|
xflags |= FS_XFLAG_NODUMP;
|
|
if (flags & BTRFS_INODE_SYNC)
|
|
xflags |= FS_XFLAG_SYNC;
|
|
|
|
return xflags;
|
|
}
|
|
|
|
/* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
|
|
static int check_xflags(unsigned int flags)
|
|
{
|
|
if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
|
|
FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
|
|
return -EOPNOTSUPP;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the xflags from the internal inode flags. The remaining items of fsxattr
|
|
* are zeroed.
|
|
*/
|
|
static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(file_inode(file));
|
|
struct fsxattr fa;
|
|
|
|
memset(&fa, 0, sizeof(fa));
|
|
fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
|
|
|
|
if (copy_to_user(arg, &fa, sizeof(fa)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
struct btrfs_root *root = binode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
struct fsxattr fa;
|
|
unsigned old_flags;
|
|
unsigned old_i_flags;
|
|
int ret = 0;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
memset(&fa, 0, sizeof(fa));
|
|
if (copy_from_user(&fa, arg, sizeof(fa)))
|
|
return -EFAULT;
|
|
|
|
ret = check_xflags(fa.fsx_xflags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
old_flags = binode->flags;
|
|
old_i_flags = inode->i_flags;
|
|
|
|
/* We need the capabilities to change append-only or immutable inode */
|
|
if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
|
|
(fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
|
|
!capable(CAP_LINUX_IMMUTABLE)) {
|
|
ret = -EPERM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (fa.fsx_xflags & FS_XFLAG_SYNC)
|
|
binode->flags |= BTRFS_INODE_SYNC;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_SYNC;
|
|
if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
|
|
binode->flags |= BTRFS_INODE_IMMUTABLE;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_IMMUTABLE;
|
|
if (fa.fsx_xflags & FS_XFLAG_APPEND)
|
|
binode->flags |= BTRFS_INODE_APPEND;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_APPEND;
|
|
if (fa.fsx_xflags & FS_XFLAG_NODUMP)
|
|
binode->flags |= BTRFS_INODE_NODUMP;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NODUMP;
|
|
if (fa.fsx_xflags & FS_XFLAG_NOATIME)
|
|
binode->flags |= BTRFS_INODE_NOATIME;
|
|
else
|
|
binode->flags &= ~BTRFS_INODE_NOATIME;
|
|
|
|
/* 1 item for the inode */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
|
|
btrfs_end_transaction(trans);
|
|
|
|
out_unlock:
|
|
if (ret) {
|
|
binode->flags = old_flags;
|
|
inode->i_flags = old_i_flags;
|
|
}
|
|
|
|
inode_unlock(inode);
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
|
|
return put_user(inode->i_generation, arg);
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_device *device;
|
|
struct request_queue *q;
|
|
struct fstrim_range range;
|
|
u64 minlen = ULLONG_MAX;
|
|
u64 num_devices = 0;
|
|
u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
|
|
dev_list) {
|
|
if (!device->bdev)
|
|
continue;
|
|
q = bdev_get_queue(device->bdev);
|
|
if (blk_queue_discard(q)) {
|
|
num_devices++;
|
|
minlen = min_t(u64, q->limits.discard_granularity,
|
|
minlen);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!num_devices)
|
|
return -EOPNOTSUPP;
|
|
if (copy_from_user(&range, arg, sizeof(range)))
|
|
return -EFAULT;
|
|
if (range.start > total_bytes ||
|
|
range.len < fs_info->sb->s_blocksize)
|
|
return -EINVAL;
|
|
|
|
range.len = min(range.len, total_bytes - range.start);
|
|
range.minlen = max(range.minlen, minlen);
|
|
ret = btrfs_trim_fs(fs_info, &range);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user(arg, &range, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_is_empty_uuid(u8 *uuid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
|
|
if (uuid[i])
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static noinline int create_subvol(struct inode *dir,
|
|
struct dentry *dentry,
|
|
const char *name, int namelen,
|
|
u64 *async_transid,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_block_rsv block_rsv;
|
|
struct timespec64 cur_time = current_time(dir);
|
|
struct inode *inode;
|
|
int ret;
|
|
int err;
|
|
u64 objectid;
|
|
u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
|
|
u64 index = 0;
|
|
uuid_le new_uuid;
|
|
|
|
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
|
|
if (!root_item)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
|
|
if (ret)
|
|
goto fail_free;
|
|
|
|
/*
|
|
* Don't create subvolume whose level is not zero. Or qgroup will be
|
|
* screwed up since it assumes subvolume qgroup's level to be 0.
|
|
*/
|
|
if (btrfs_qgroup_level(objectid)) {
|
|
ret = -ENOSPC;
|
|
goto fail_free;
|
|
}
|
|
|
|
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* The same as the snapshot creation, please see the comment
|
|
* of create_snapshot().
|
|
*/
|
|
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
|
|
if (ret)
|
|
goto fail_free;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_subvolume_release_metadata(fs_info, &block_rsv);
|
|
goto fail_free;
|
|
}
|
|
trans->block_rsv = &block_rsv;
|
|
trans->bytes_reserved = block_rsv.size;
|
|
|
|
ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
inode_item = &root_item->inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item,
|
|
fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_flags(root_item, 0);
|
|
btrfs_set_root_limit(root_item, 0);
|
|
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
|
|
|
|
btrfs_set_root_bytenr(root_item, leaf->start);
|
|
btrfs_set_root_generation(root_item, trans->transid);
|
|
btrfs_set_root_level(root_item, 0);
|
|
btrfs_set_root_refs(root_item, 1);
|
|
btrfs_set_root_used(root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(root_item, 0);
|
|
|
|
btrfs_set_root_generation_v2(root_item,
|
|
btrfs_root_generation(root_item));
|
|
uuid_le_gen(&new_uuid);
|
|
memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
|
|
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
|
|
root_item->ctime = root_item->otime;
|
|
btrfs_set_root_ctransid(root_item, trans->transid);
|
|
btrfs_set_root_otransid(root_item, trans->transid);
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
free_extent_buffer(leaf);
|
|
leaf = NULL;
|
|
|
|
btrfs_set_root_dirid(root_item, new_dirid);
|
|
|
|
key.objectid = objectid;
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
|
|
root_item);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
key.offset = (u64)-1;
|
|
new_root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_record_root_in_trans(trans, new_root);
|
|
|
|
ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
|
|
if (ret) {
|
|
/* We potentially lose an unused inode item here */
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
mutex_lock(&new_root->objectid_mutex);
|
|
new_root->highest_objectid = new_dirid;
|
|
mutex_unlock(&new_root->objectid_mutex);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_insert_dir_item(trans, root,
|
|
name, namelen, BTRFS_I(dir), &key,
|
|
BTRFS_FT_DIR, index);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
|
|
ret = btrfs_update_inode(trans, root, dir);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
|
|
btrfs_ino(BTRFS_I(dir)), index, name, namelen);
|
|
BUG_ON(ret);
|
|
|
|
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
|
|
BTRFS_UUID_KEY_SUBVOL, objectid);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
|
|
fail:
|
|
kfree(root_item);
|
|
trans->block_rsv = NULL;
|
|
trans->bytes_reserved = 0;
|
|
btrfs_subvolume_release_metadata(fs_info, &block_rsv);
|
|
|
|
if (async_transid) {
|
|
*async_transid = trans->transid;
|
|
err = btrfs_commit_transaction_async(trans, 1);
|
|
if (err)
|
|
err = btrfs_commit_transaction(trans);
|
|
} else {
|
|
err = btrfs_commit_transaction(trans);
|
|
}
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
if (!ret) {
|
|
inode = btrfs_lookup_dentry(dir, dentry);
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
d_instantiate(dentry, inode);
|
|
}
|
|
return ret;
|
|
|
|
fail_free:
|
|
kfree(root_item);
|
|
return ret;
|
|
}
|
|
|
|
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
|
|
struct dentry *dentry,
|
|
u64 *async_transid, bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode;
|
|
struct btrfs_pending_snapshot *pending_snapshot;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
bool snapshot_force_cow = false;
|
|
|
|
if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
|
|
return -EINVAL;
|
|
|
|
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
|
|
if (!pending_snapshot)
|
|
return -ENOMEM;
|
|
|
|
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
|
|
GFP_KERNEL);
|
|
pending_snapshot->path = btrfs_alloc_path();
|
|
if (!pending_snapshot->root_item || !pending_snapshot->path) {
|
|
ret = -ENOMEM;
|
|
goto free_pending;
|
|
}
|
|
|
|
/*
|
|
* Force new buffered writes to reserve space even when NOCOW is
|
|
* possible. This is to avoid later writeback (running dealloc) to
|
|
* fallback to COW mode and unexpectedly fail with ENOSPC.
|
|
*/
|
|
atomic_inc(&root->will_be_snapshotted);
|
|
smp_mb__after_atomic();
|
|
/* wait for no snapshot writes */
|
|
wait_event(root->subv_writers->wait,
|
|
percpu_counter_sum(&root->subv_writers->counter) == 0);
|
|
|
|
ret = btrfs_start_delalloc_inodes(root);
|
|
if (ret)
|
|
goto dec_and_free;
|
|
|
|
/*
|
|
* All previous writes have started writeback in NOCOW mode, so now
|
|
* we force future writes to fallback to COW mode during snapshot
|
|
* creation.
|
|
*/
|
|
atomic_inc(&root->snapshot_force_cow);
|
|
snapshot_force_cow = true;
|
|
|
|
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
|
|
|
|
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
|
|
BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* 1 - parent dir inode
|
|
* 2 - dir entries
|
|
* 1 - root item
|
|
* 2 - root ref/backref
|
|
* 1 - root of snapshot
|
|
* 1 - UUID item
|
|
*/
|
|
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
|
|
&pending_snapshot->block_rsv, 8,
|
|
false);
|
|
if (ret)
|
|
goto dec_and_free;
|
|
|
|
pending_snapshot->dentry = dentry;
|
|
pending_snapshot->root = root;
|
|
pending_snapshot->readonly = readonly;
|
|
pending_snapshot->dir = dir;
|
|
pending_snapshot->inherit = inherit;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto fail;
|
|
}
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_add(&pending_snapshot->list,
|
|
&trans->transaction->pending_snapshots);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
if (async_transid) {
|
|
*async_transid = trans->transid;
|
|
ret = btrfs_commit_transaction_async(trans, 1);
|
|
if (ret)
|
|
ret = btrfs_commit_transaction(trans);
|
|
} else {
|
|
ret = btrfs_commit_transaction(trans);
|
|
}
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = pending_snapshot->error;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto fail;
|
|
}
|
|
|
|
d_instantiate(dentry, inode);
|
|
ret = 0;
|
|
fail:
|
|
btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
|
|
dec_and_free:
|
|
if (snapshot_force_cow)
|
|
atomic_dec(&root->snapshot_force_cow);
|
|
if (atomic_dec_and_test(&root->will_be_snapshotted))
|
|
wake_up_var(&root->will_be_snapshotted);
|
|
free_pending:
|
|
kfree(pending_snapshot->root_item);
|
|
btrfs_free_path(pending_snapshot->path);
|
|
kfree(pending_snapshot);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* copy of may_delete in fs/namei.c()
|
|
* Check whether we can remove a link victim from directory dir, check
|
|
* whether the type of victim is right.
|
|
* 1. We can't do it if dir is read-only (done in permission())
|
|
* 2. We should have write and exec permissions on dir
|
|
* 3. We can't remove anything from append-only dir
|
|
* 4. We can't do anything with immutable dir (done in permission())
|
|
* 5. If the sticky bit on dir is set we should either
|
|
* a. be owner of dir, or
|
|
* b. be owner of victim, or
|
|
* c. have CAP_FOWNER capability
|
|
* 6. If the victim is append-only or immutable we can't do anything with
|
|
* links pointing to it.
|
|
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
|
|
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
|
|
* 9. We can't remove a root or mountpoint.
|
|
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
|
|
* nfs_async_unlink().
|
|
*/
|
|
|
|
static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
|
|
{
|
|
int error;
|
|
|
|
if (d_really_is_negative(victim))
|
|
return -ENOENT;
|
|
|
|
BUG_ON(d_inode(victim->d_parent) != dir);
|
|
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
|
|
|
|
error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
return error;
|
|
if (IS_APPEND(dir))
|
|
return -EPERM;
|
|
if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
|
|
IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
|
|
return -EPERM;
|
|
if (isdir) {
|
|
if (!d_is_dir(victim))
|
|
return -ENOTDIR;
|
|
if (IS_ROOT(victim))
|
|
return -EBUSY;
|
|
} else if (d_is_dir(victim))
|
|
return -EISDIR;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/* copy of may_create in fs/namei.c() */
|
|
static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
|
|
{
|
|
if (d_really_is_positive(child))
|
|
return -EEXIST;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
return inode_permission(dir, MAY_WRITE | MAY_EXEC);
|
|
}
|
|
|
|
/*
|
|
* Create a new subvolume below @parent. This is largely modeled after
|
|
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
|
|
* inside this filesystem so it's quite a bit simpler.
|
|
*/
|
|
static noinline int btrfs_mksubvol(const struct path *parent,
|
|
const char *name, int namelen,
|
|
struct btrfs_root *snap_src,
|
|
u64 *async_transid, bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct inode *dir = d_inode(parent->dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct dentry *dentry;
|
|
int error;
|
|
|
|
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (error == -EINTR)
|
|
return error;
|
|
|
|
dentry = lookup_one_len(name, parent->dentry, namelen);
|
|
error = PTR_ERR(dentry);
|
|
if (IS_ERR(dentry))
|
|
goto out_unlock;
|
|
|
|
error = btrfs_may_create(dir, dentry);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
/*
|
|
* even if this name doesn't exist, we may get hash collisions.
|
|
* check for them now when we can safely fail
|
|
*/
|
|
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
|
|
dir->i_ino, name,
|
|
namelen);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
|
|
goto out_up_read;
|
|
|
|
if (snap_src) {
|
|
error = create_snapshot(snap_src, dir, dentry,
|
|
async_transid, readonly, inherit);
|
|
} else {
|
|
error = create_subvol(dir, dentry, name, namelen,
|
|
async_transid, inherit);
|
|
}
|
|
if (!error)
|
|
fsnotify_mkdir(dir, dentry);
|
|
out_up_read:
|
|
up_read(&fs_info->subvol_sem);
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock:
|
|
inode_unlock(dir);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* When we're defragging a range, we don't want to kick it off again
|
|
* if it is really just waiting for delalloc to send it down.
|
|
* If we find a nice big extent or delalloc range for the bytes in the
|
|
* file you want to defrag, we return 0 to let you know to skip this
|
|
* part of the file
|
|
*/
|
|
static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
|
|
{
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em = NULL;
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
u64 end;
|
|
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (em) {
|
|
end = extent_map_end(em);
|
|
free_extent_map(em);
|
|
if (end - offset > thresh)
|
|
return 0;
|
|
}
|
|
/* if we already have a nice delalloc here, just stop */
|
|
thresh /= 2;
|
|
end = count_range_bits(io_tree, &offset, offset + thresh,
|
|
thresh, EXTENT_DELALLOC, 1);
|
|
if (end >= thresh)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* helper function to walk through a file and find extents
|
|
* newer than a specific transid, and smaller than thresh.
|
|
*
|
|
* This is used by the defragging code to find new and small
|
|
* extents
|
|
*/
|
|
static int find_new_extents(struct btrfs_root *root,
|
|
struct inode *inode, u64 newer_than,
|
|
u64 *off, u32 thresh)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_key min_key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_file_extent_item *extent;
|
|
int type;
|
|
int ret;
|
|
u64 ino = btrfs_ino(BTRFS_I(inode));
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
min_key.objectid = ino;
|
|
min_key.type = BTRFS_EXTENT_DATA_KEY;
|
|
min_key.offset = *off;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_forward(root, &min_key, path, newer_than);
|
|
if (ret != 0)
|
|
goto none;
|
|
process_slot:
|
|
if (min_key.objectid != ino)
|
|
goto none;
|
|
if (min_key.type != BTRFS_EXTENT_DATA_KEY)
|
|
goto none;
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
|
|
type = btrfs_file_extent_type(leaf, extent);
|
|
if (type == BTRFS_FILE_EXTENT_REG &&
|
|
btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
|
|
check_defrag_in_cache(inode, min_key.offset, thresh)) {
|
|
*off = min_key.offset;
|
|
btrfs_free_path(path);
|
|
return 0;
|
|
}
|
|
|
|
path->slots[0]++;
|
|
if (path->slots[0] < btrfs_header_nritems(leaf)) {
|
|
btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
|
|
goto process_slot;
|
|
}
|
|
|
|
if (min_key.offset == (u64)-1)
|
|
goto none;
|
|
|
|
min_key.offset++;
|
|
btrfs_release_path(path);
|
|
}
|
|
none:
|
|
btrfs_free_path(path);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
u64 len = PAGE_SIZE;
|
|
|
|
/*
|
|
* hopefully we have this extent in the tree already, try without
|
|
* the full extent lock
|
|
*/
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, len);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
if (!em) {
|
|
struct extent_state *cached = NULL;
|
|
u64 end = start + len - 1;
|
|
|
|
/* get the big lock and read metadata off disk */
|
|
lock_extent_bits(io_tree, start, end, &cached);
|
|
em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
|
|
unlock_extent_cached(io_tree, start, end, &cached);
|
|
|
|
if (IS_ERR(em))
|
|
return NULL;
|
|
}
|
|
|
|
return em;
|
|
}
|
|
|
|
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
|
|
{
|
|
struct extent_map *next;
|
|
bool ret = true;
|
|
|
|
/* this is the last extent */
|
|
if (em->start + em->len >= i_size_read(inode))
|
|
return false;
|
|
|
|
next = defrag_lookup_extent(inode, em->start + em->len);
|
|
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
|
|
ret = false;
|
|
else if ((em->block_start + em->block_len == next->block_start) &&
|
|
(em->block_len > SZ_128K && next->block_len > SZ_128K))
|
|
ret = false;
|
|
|
|
free_extent_map(next);
|
|
return ret;
|
|
}
|
|
|
|
static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
|
|
u64 *last_len, u64 *skip, u64 *defrag_end,
|
|
int compress)
|
|
{
|
|
struct extent_map *em;
|
|
int ret = 1;
|
|
bool next_mergeable = true;
|
|
bool prev_mergeable = true;
|
|
|
|
/*
|
|
* make sure that once we start defragging an extent, we keep on
|
|
* defragging it
|
|
*/
|
|
if (start < *defrag_end)
|
|
return 1;
|
|
|
|
*skip = 0;
|
|
|
|
em = defrag_lookup_extent(inode, start);
|
|
if (!em)
|
|
return 0;
|
|
|
|
/* this will cover holes, and inline extents */
|
|
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!*defrag_end)
|
|
prev_mergeable = false;
|
|
|
|
next_mergeable = defrag_check_next_extent(inode, em);
|
|
/*
|
|
* we hit a real extent, if it is big or the next extent is not a
|
|
* real extent, don't bother defragging it
|
|
*/
|
|
if (!compress && (*last_len == 0 || *last_len >= thresh) &&
|
|
(em->len >= thresh || (!next_mergeable && !prev_mergeable)))
|
|
ret = 0;
|
|
out:
|
|
/*
|
|
* last_len ends up being a counter of how many bytes we've defragged.
|
|
* every time we choose not to defrag an extent, we reset *last_len
|
|
* so that the next tiny extent will force a defrag.
|
|
*
|
|
* The end result of this is that tiny extents before a single big
|
|
* extent will force at least part of that big extent to be defragged.
|
|
*/
|
|
if (ret) {
|
|
*defrag_end = extent_map_end(em);
|
|
} else {
|
|
*last_len = 0;
|
|
*skip = extent_map_end(em);
|
|
*defrag_end = 0;
|
|
}
|
|
|
|
free_extent_map(em);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* it doesn't do much good to defrag one or two pages
|
|
* at a time. This pulls in a nice chunk of pages
|
|
* to COW and defrag.
|
|
*
|
|
* It also makes sure the delalloc code has enough
|
|
* dirty data to avoid making new small extents as part
|
|
* of the defrag
|
|
*
|
|
* It's a good idea to start RA on this range
|
|
* before calling this.
|
|
*/
|
|
static int cluster_pages_for_defrag(struct inode *inode,
|
|
struct page **pages,
|
|
unsigned long start_index,
|
|
unsigned long num_pages)
|
|
{
|
|
unsigned long file_end;
|
|
u64 isize = i_size_read(inode);
|
|
u64 page_start;
|
|
u64 page_end;
|
|
u64 page_cnt;
|
|
int ret;
|
|
int i;
|
|
int i_done;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cached_state = NULL;
|
|
struct extent_io_tree *tree;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
|
|
|
|
file_end = (isize - 1) >> PAGE_SHIFT;
|
|
if (!isize || start_index > file_end)
|
|
return 0;
|
|
|
|
page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
|
|
start_index << PAGE_SHIFT,
|
|
page_cnt << PAGE_SHIFT);
|
|
if (ret)
|
|
return ret;
|
|
i_done = 0;
|
|
tree = &BTRFS_I(inode)->io_tree;
|
|
|
|
/* step one, lock all the pages */
|
|
for (i = 0; i < page_cnt; i++) {
|
|
struct page *page;
|
|
again:
|
|
page = find_or_create_page(inode->i_mapping,
|
|
start_index + i, mask);
|
|
if (!page)
|
|
break;
|
|
|
|
page_start = page_offset(page);
|
|
page_end = page_start + PAGE_SIZE - 1;
|
|
while (1) {
|
|
lock_extent_bits(tree, page_start, page_end,
|
|
&cached_state);
|
|
ordered = btrfs_lookup_ordered_extent(inode,
|
|
page_start);
|
|
unlock_extent_cached(tree, page_start, page_end,
|
|
&cached_state);
|
|
if (!ordered)
|
|
break;
|
|
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_page(page);
|
|
/*
|
|
* we unlocked the page above, so we need check if
|
|
* it was released or not.
|
|
*/
|
|
if (page->mapping != inode->i_mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (!PageUptodate(page)) {
|
|
btrfs_readpage(NULL, page);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (page->mapping != inode->i_mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
|
|
pages[i] = page;
|
|
i_done++;
|
|
}
|
|
if (!i_done || ret)
|
|
goto out;
|
|
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE))
|
|
goto out;
|
|
|
|
/*
|
|
* so now we have a nice long stream of locked
|
|
* and up to date pages, lets wait on them
|
|
*/
|
|
for (i = 0; i < i_done; i++)
|
|
wait_on_page_writeback(pages[i]);
|
|
|
|
page_start = page_offset(pages[0]);
|
|
page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
|
|
|
|
lock_extent_bits(&BTRFS_I(inode)->io_tree,
|
|
page_start, page_end - 1, &cached_state);
|
|
clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
|
|
page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
|
|
EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
|
|
&cached_state);
|
|
|
|
if (i_done != page_cnt) {
|
|
spin_lock(&BTRFS_I(inode)->lock);
|
|
BTRFS_I(inode)->outstanding_extents++;
|
|
spin_unlock(&BTRFS_I(inode)->lock);
|
|
btrfs_delalloc_release_space(inode, data_reserved,
|
|
start_index << PAGE_SHIFT,
|
|
(page_cnt - i_done) << PAGE_SHIFT, true);
|
|
}
|
|
|
|
|
|
set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
|
|
&cached_state);
|
|
|
|
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
|
|
page_start, page_end - 1, &cached_state);
|
|
|
|
for (i = 0; i < i_done; i++) {
|
|
clear_page_dirty_for_io(pages[i]);
|
|
ClearPageChecked(pages[i]);
|
|
set_page_extent_mapped(pages[i]);
|
|
set_page_dirty(pages[i]);
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
|
|
false);
|
|
extent_changeset_free(data_reserved);
|
|
return i_done;
|
|
out:
|
|
for (i = 0; i < i_done; i++) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
btrfs_delalloc_release_space(inode, data_reserved,
|
|
start_index << PAGE_SHIFT,
|
|
page_cnt << PAGE_SHIFT, true);
|
|
btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
|
|
true);
|
|
extent_changeset_free(data_reserved);
|
|
return ret;
|
|
|
|
}
|
|
|
|
int btrfs_defrag_file(struct inode *inode, struct file *file,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
u64 newer_than, unsigned long max_to_defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct file_ra_state *ra = NULL;
|
|
unsigned long last_index;
|
|
u64 isize = i_size_read(inode);
|
|
u64 last_len = 0;
|
|
u64 skip = 0;
|
|
u64 defrag_end = 0;
|
|
u64 newer_off = range->start;
|
|
unsigned long i;
|
|
unsigned long ra_index = 0;
|
|
int ret;
|
|
int defrag_count = 0;
|
|
int compress_type = BTRFS_COMPRESS_ZLIB;
|
|
u32 extent_thresh = range->extent_thresh;
|
|
unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
|
|
unsigned long cluster = max_cluster;
|
|
u64 new_align = ~((u64)SZ_128K - 1);
|
|
struct page **pages = NULL;
|
|
bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
if (range->start >= isize)
|
|
return -EINVAL;
|
|
|
|
if (do_compress) {
|
|
if (range->compress_type > BTRFS_COMPRESS_TYPES)
|
|
return -EINVAL;
|
|
if (range->compress_type)
|
|
compress_type = range->compress_type;
|
|
}
|
|
|
|
if (extent_thresh == 0)
|
|
extent_thresh = SZ_256K;
|
|
|
|
/*
|
|
* If we were not given a file, allocate a readahead context. As
|
|
* readahead is just an optimization, defrag will work without it so
|
|
* we don't error out.
|
|
*/
|
|
if (!file) {
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (ra)
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
} else {
|
|
ra = &file->f_ra;
|
|
}
|
|
|
|
pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages) {
|
|
ret = -ENOMEM;
|
|
goto out_ra;
|
|
}
|
|
|
|
/* find the last page to defrag */
|
|
if (range->start + range->len > range->start) {
|
|
last_index = min_t(u64, isize - 1,
|
|
range->start + range->len - 1) >> PAGE_SHIFT;
|
|
} else {
|
|
last_index = (isize - 1) >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (newer_than) {
|
|
ret = find_new_extents(root, inode, newer_than,
|
|
&newer_off, SZ_64K);
|
|
if (!ret) {
|
|
range->start = newer_off;
|
|
/*
|
|
* we always align our defrag to help keep
|
|
* the extents in the file evenly spaced
|
|
*/
|
|
i = (newer_off & new_align) >> PAGE_SHIFT;
|
|
} else
|
|
goto out_ra;
|
|
} else {
|
|
i = range->start >> PAGE_SHIFT;
|
|
}
|
|
if (!max_to_defrag)
|
|
max_to_defrag = last_index - i + 1;
|
|
|
|
/*
|
|
* make writeback starts from i, so the defrag range can be
|
|
* written sequentially.
|
|
*/
|
|
if (i < inode->i_mapping->writeback_index)
|
|
inode->i_mapping->writeback_index = i;
|
|
|
|
while (i <= last_index && defrag_count < max_to_defrag &&
|
|
(i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
|
|
/*
|
|
* make sure we stop running if someone unmounts
|
|
* the FS
|
|
*/
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE))
|
|
break;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
btrfs_debug(fs_info, "defrag_file cancelled");
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
|
|
extent_thresh, &last_len, &skip,
|
|
&defrag_end, do_compress)){
|
|
unsigned long next;
|
|
/*
|
|
* the should_defrag function tells us how much to skip
|
|
* bump our counter by the suggested amount
|
|
*/
|
|
next = DIV_ROUND_UP(skip, PAGE_SIZE);
|
|
i = max(i + 1, next);
|
|
continue;
|
|
}
|
|
|
|
if (!newer_than) {
|
|
cluster = (PAGE_ALIGN(defrag_end) >>
|
|
PAGE_SHIFT) - i;
|
|
cluster = min(cluster, max_cluster);
|
|
} else {
|
|
cluster = max_cluster;
|
|
}
|
|
|
|
if (i + cluster > ra_index) {
|
|
ra_index = max(i, ra_index);
|
|
if (ra)
|
|
page_cache_sync_readahead(inode->i_mapping, ra,
|
|
file, ra_index, cluster);
|
|
ra_index += cluster;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
if (do_compress)
|
|
BTRFS_I(inode)->defrag_compress = compress_type;
|
|
ret = cluster_pages_for_defrag(inode, pages, i, cluster);
|
|
if (ret < 0) {
|
|
inode_unlock(inode);
|
|
goto out_ra;
|
|
}
|
|
|
|
defrag_count += ret;
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
inode_unlock(inode);
|
|
|
|
if (newer_than) {
|
|
if (newer_off == (u64)-1)
|
|
break;
|
|
|
|
if (ret > 0)
|
|
i += ret;
|
|
|
|
newer_off = max(newer_off + 1,
|
|
(u64)i << PAGE_SHIFT);
|
|
|
|
ret = find_new_extents(root, inode, newer_than,
|
|
&newer_off, SZ_64K);
|
|
if (!ret) {
|
|
range->start = newer_off;
|
|
i = (newer_off & new_align) >> PAGE_SHIFT;
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
if (ret > 0) {
|
|
i += ret;
|
|
last_len += ret << PAGE_SHIFT;
|
|
} else {
|
|
i++;
|
|
last_len = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
|
|
if (range->compress_type == BTRFS_COMPRESS_LZO) {
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
|
|
} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
|
|
}
|
|
|
|
ret = defrag_count;
|
|
|
|
out_ra:
|
|
if (do_compress) {
|
|
inode_lock(inode);
|
|
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
inode_unlock(inode);
|
|
}
|
|
if (!file)
|
|
kfree(ra);
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_resize(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 new_size;
|
|
u64 old_size;
|
|
u64 devid = 1;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device = NULL;
|
|
char *sizestr;
|
|
char *retptr;
|
|
char *devstr = NULL;
|
|
int ret = 0;
|
|
int mod = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
mnt_drop_write_file(file);
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
}
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
|
|
sizestr = vol_args->name;
|
|
devstr = strchr(sizestr, ':');
|
|
if (devstr) {
|
|
sizestr = devstr + 1;
|
|
*devstr = '\0';
|
|
devstr = vol_args->name;
|
|
ret = kstrtoull(devstr, 10, &devid);
|
|
if (ret)
|
|
goto out_free;
|
|
if (!devid) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
btrfs_info(fs_info, "resizing devid %llu", devid);
|
|
}
|
|
|
|
device = btrfs_find_device(fs_info, devid, NULL, NULL);
|
|
if (!device) {
|
|
btrfs_info(fs_info, "resizer unable to find device %llu",
|
|
devid);
|
|
ret = -ENODEV;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
btrfs_info(fs_info,
|
|
"resizer unable to apply on readonly device %llu",
|
|
devid);
|
|
ret = -EPERM;
|
|
goto out_free;
|
|
}
|
|
|
|
if (!strcmp(sizestr, "max"))
|
|
new_size = device->bdev->bd_inode->i_size;
|
|
else {
|
|
if (sizestr[0] == '-') {
|
|
mod = -1;
|
|
sizestr++;
|
|
} else if (sizestr[0] == '+') {
|
|
mod = 1;
|
|
sizestr++;
|
|
}
|
|
new_size = memparse(sizestr, &retptr);
|
|
if (*retptr != '\0' || new_size == 0) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
}
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
ret = -EPERM;
|
|
goto out_free;
|
|
}
|
|
|
|
old_size = btrfs_device_get_total_bytes(device);
|
|
|
|
if (mod < 0) {
|
|
if (new_size > old_size) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
new_size = old_size - new_size;
|
|
} else if (mod > 0) {
|
|
if (new_size > ULLONG_MAX - old_size) {
|
|
ret = -ERANGE;
|
|
goto out_free;
|
|
}
|
|
new_size = old_size + new_size;
|
|
}
|
|
|
|
if (new_size < SZ_256M) {
|
|
ret = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
if (new_size > device->bdev->bd_inode->i_size) {
|
|
ret = -EFBIG;
|
|
goto out_free;
|
|
}
|
|
|
|
new_size = round_down(new_size, fs_info->sectorsize);
|
|
|
|
btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
|
|
rcu_str_deref(device->name), new_size);
|
|
|
|
if (new_size > old_size) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
ret = btrfs_grow_device(trans, device, new_size);
|
|
btrfs_commit_transaction(trans);
|
|
} else if (new_size < old_size) {
|
|
ret = btrfs_shrink_device(device, new_size);
|
|
} /* equal, nothing need to do */
|
|
|
|
out_free:
|
|
kfree(vol_args);
|
|
out:
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
|
|
const char *name, unsigned long fd, int subvol,
|
|
u64 *transid, bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
int namelen;
|
|
int ret = 0;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
namelen = strlen(name);
|
|
if (strchr(name, '/')) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (name[0] == '.' &&
|
|
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
|
|
ret = -EEXIST;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (subvol) {
|
|
ret = btrfs_mksubvol(&file->f_path, name, namelen,
|
|
NULL, transid, readonly, inherit);
|
|
} else {
|
|
struct fd src = fdget(fd);
|
|
struct inode *src_inode;
|
|
if (!src.file) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
src_inode = file_inode(src.file);
|
|
if (src_inode->i_sb != file_inode(file)->i_sb) {
|
|
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
|
|
"Snapshot src from another FS");
|
|
ret = -EXDEV;
|
|
} else if (!inode_owner_or_capable(src_inode)) {
|
|
/*
|
|
* Subvolume creation is not restricted, but snapshots
|
|
* are limited to own subvolumes only
|
|
*/
|
|
ret = -EPERM;
|
|
} else {
|
|
ret = btrfs_mksubvol(&file->f_path, name, namelen,
|
|
BTRFS_I(src_inode)->root,
|
|
transid, readonly, inherit);
|
|
}
|
|
fdput(src);
|
|
}
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
|
|
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
|
|
vol_args->fd, subvol,
|
|
NULL, false, NULL);
|
|
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
int ret;
|
|
u64 transid = 0;
|
|
u64 *ptr = NULL;
|
|
bool readonly = false;
|
|
struct btrfs_qgroup_inherit *inherit = NULL;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
|
|
if (vol_args->flags &
|
|
~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
|
|
BTRFS_SUBVOL_QGROUP_INHERIT)) {
|
|
ret = -EOPNOTSUPP;
|
|
goto free_args;
|
|
}
|
|
|
|
if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
|
|
ptr = &transid;
|
|
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
|
|
readonly = true;
|
|
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
|
|
if (vol_args->size > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_args;
|
|
}
|
|
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
|
|
if (IS_ERR(inherit)) {
|
|
ret = PTR_ERR(inherit);
|
|
goto free_args;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
|
|
vol_args->fd, subvol, ptr,
|
|
readonly, inherit);
|
|
if (ret)
|
|
goto free_inherit;
|
|
|
|
if (ptr && copy_to_user(arg +
|
|
offsetof(struct btrfs_ioctl_vol_args_v2,
|
|
transid),
|
|
ptr, sizeof(*ptr)))
|
|
ret = -EFAULT;
|
|
|
|
free_inherit:
|
|
kfree(inherit);
|
|
free_args:
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
u64 flags = 0;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
|
|
return -EINVAL;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
if (btrfs_root_readonly(root))
|
|
flags |= BTRFS_SUBVOL_RDONLY;
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 root_flags;
|
|
u64 flags;
|
|
int ret = 0;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (copy_from_user(&flags, arg, sizeof(flags))) {
|
|
ret = -EFAULT;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (flags & ~BTRFS_SUBVOL_RDONLY) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
/* nothing to do */
|
|
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
|
|
goto out_drop_sem;
|
|
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_RDONLY) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
|
|
} else {
|
|
/*
|
|
* Block RO -> RW transition if this subvolume is involved in
|
|
* send
|
|
*/
|
|
spin_lock(&root->root_item_lock);
|
|
if (root->send_in_progress == 0) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
|
|
spin_unlock(&root->root_item_lock);
|
|
} else {
|
|
spin_unlock(&root->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"Attempt to set subvolume %llu read-write during send",
|
|
root->root_key.objectid);
|
|
ret = -EPERM;
|
|
goto out_drop_sem;
|
|
}
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_reset:
|
|
if (ret)
|
|
btrfs_set_root_flags(&root->root_item, root_flags);
|
|
out_drop_sem:
|
|
up_write(&fs_info->subvol_sem);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int key_in_sk(struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk)
|
|
{
|
|
struct btrfs_key test;
|
|
int ret;
|
|
|
|
test.objectid = sk->min_objectid;
|
|
test.type = sk->min_type;
|
|
test.offset = sk->min_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret > 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int copy_to_sk(struct btrfs_path *path,
|
|
struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf,
|
|
unsigned long *sk_offset,
|
|
int *num_found)
|
|
{
|
|
u64 found_transid;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_ioctl_search_header sh;
|
|
struct btrfs_key test;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
int nritems;
|
|
int i;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
if (btrfs_header_generation(leaf) > sk->max_transid) {
|
|
i = nritems;
|
|
goto advance_key;
|
|
}
|
|
found_transid = btrfs_header_generation(leaf);
|
|
|
|
for (i = slot; i < nritems; i++) {
|
|
item_off = btrfs_item_ptr_offset(leaf, i);
|
|
item_len = btrfs_item_size_nr(leaf, i);
|
|
|
|
btrfs_item_key_to_cpu(leaf, key, i);
|
|
if (!key_in_sk(key, sk))
|
|
continue;
|
|
|
|
if (sizeof(sh) + item_len > *buf_size) {
|
|
if (*num_found) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* return one empty item back for v1, which does not
|
|
* handle -EOVERFLOW
|
|
*/
|
|
|
|
*buf_size = sizeof(sh) + item_len;
|
|
item_len = 0;
|
|
ret = -EOVERFLOW;
|
|
}
|
|
|
|
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
sh.objectid = key->objectid;
|
|
sh.offset = key->offset;
|
|
sh.type = key->type;
|
|
sh.len = item_len;
|
|
sh.transid = found_transid;
|
|
|
|
/* copy search result header */
|
|
if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += sizeof(sh);
|
|
|
|
if (item_len) {
|
|
char __user *up = ubuf + *sk_offset;
|
|
/* copy the item */
|
|
if (read_extent_buffer_to_user(leaf, up,
|
|
item_off, item_len)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += item_len;
|
|
}
|
|
(*num_found)++;
|
|
|
|
if (ret) /* -EOVERFLOW from above */
|
|
goto out;
|
|
|
|
if (*num_found >= sk->nr_items) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
advance_key:
|
|
ret = 0;
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
if (btrfs_comp_cpu_keys(key, &test) >= 0)
|
|
ret = 1;
|
|
else if (key->offset < (u64)-1)
|
|
key->offset++;
|
|
else if (key->type < (u8)-1) {
|
|
key->offset = 0;
|
|
key->type++;
|
|
} else if (key->objectid < (u64)-1) {
|
|
key->offset = 0;
|
|
key->type = 0;
|
|
key->objectid++;
|
|
} else
|
|
ret = 1;
|
|
out:
|
|
/*
|
|
* 0: all items from this leaf copied, continue with next
|
|
* 1: * more items can be copied, but unused buffer is too small
|
|
* * all items were found
|
|
* Either way, it will stops the loop which iterates to the next
|
|
* leaf
|
|
* -EOVERFLOW: item was to large for buffer
|
|
* -EFAULT: could not copy extent buffer back to userspace
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
static noinline int search_ioctl(struct inode *inode,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf)
|
|
{
|
|
struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int num_found = 0;
|
|
unsigned long sk_offset = 0;
|
|
|
|
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
|
|
*buf_size = sizeof(struct btrfs_ioctl_search_header);
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (sk->tree_id == 0) {
|
|
/* search the root of the inode that was passed */
|
|
root = BTRFS_I(inode)->root;
|
|
} else {
|
|
key.objectid = sk->tree_id;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(info, &key);
|
|
if (IS_ERR(root)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(root);
|
|
}
|
|
}
|
|
|
|
key.objectid = sk->min_objectid;
|
|
key.type = sk->min_type;
|
|
key.offset = sk->min_offset;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
|
|
if (ret != 0) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
goto err;
|
|
}
|
|
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
|
|
&sk_offset, &num_found);
|
|
btrfs_release_path(path);
|
|
if (ret)
|
|
break;
|
|
|
|
}
|
|
if (ret > 0)
|
|
ret = 0;
|
|
err:
|
|
sk->nr_items = num_found;
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args __user *uargs;
|
|
struct btrfs_ioctl_search_key sk;
|
|
struct inode *inode;
|
|
int ret;
|
|
size_t buf_size;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
uargs = (struct btrfs_ioctl_search_args __user *)argp;
|
|
|
|
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
|
|
return -EFAULT;
|
|
|
|
buf_size = sizeof(uargs->buf);
|
|
|
|
inode = file_inode(file);
|
|
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
|
|
|
|
/*
|
|
* In the origin implementation an overflow is handled by returning a
|
|
* search header with a len of zero, so reset ret.
|
|
*/
|
|
if (ret == -EOVERFLOW)
|
|
ret = 0;
|
|
|
|
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
|
|
ret = -EFAULT;
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args_v2 __user *uarg;
|
|
struct btrfs_ioctl_search_args_v2 args;
|
|
struct inode *inode;
|
|
int ret;
|
|
size_t buf_size;
|
|
const size_t buf_limit = SZ_16M;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/* copy search header and buffer size */
|
|
uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
|
|
if (copy_from_user(&args, uarg, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
buf_size = args.buf_size;
|
|
|
|
/* limit result size to 16MB */
|
|
if (buf_size > buf_limit)
|
|
buf_size = buf_limit;
|
|
|
|
inode = file_inode(file);
|
|
ret = search_ioctl(inode, &args.key, &buf_size,
|
|
(char __user *)(&uarg->buf[0]));
|
|
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
|
|
ret = -EFAULT;
|
|
else if (ret == -EOVERFLOW &&
|
|
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search INODE_REFs to identify path name of 'dirid' directory
|
|
* in a 'tree_id' tree. and sets path name to 'name'.
|
|
*/
|
|
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
|
|
u64 tree_id, u64 dirid, char *name)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
char *ptr;
|
|
int ret = -1;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
struct btrfs_inode_ref *iref;
|
|
struct extent_buffer *l;
|
|
struct btrfs_path *path;
|
|
|
|
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
name[0]='\0';
|
|
return 0;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
|
|
|
|
key.objectid = tree_id;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(info, &key);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_REF_KEY);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(l, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < name) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
|
|
|
|
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
|
|
break;
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
memmove(name, ptr, total_len);
|
|
name[total_len] = '\0';
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_search_path_in_tree_user(struct inode *inode,
|
|
struct btrfs_ioctl_ino_lookup_user_args *args)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct btrfs_key upper_limit = BTRFS_I(inode)->location;
|
|
u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
|
|
u64 dirid = args->dirid;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key, key2;
|
|
struct extent_buffer *leaf;
|
|
struct inode *temp_inode;
|
|
char *ptr;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If the bottom subvolume does not exist directly under upper_limit,
|
|
* construct the path in from the bottom up.
|
|
*/
|
|
if (dirid != upper_limit.objectid) {
|
|
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
|
|
|
|
key.objectid = treeid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
while (1) {
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_REF_KEY);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(leaf, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < args->path) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(leaf, ptr,
|
|
(unsigned long)(iref + 1), len);
|
|
|
|
/* Check the read+exec permission of this directory */
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_ITEM_KEY);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key2, slot);
|
|
if (key2.objectid != dirid) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
temp_inode = btrfs_iget(sb, &key2, root, NULL);
|
|
if (IS_ERR(temp_inode)) {
|
|
ret = PTR_ERR(temp_inode);
|
|
goto out;
|
|
}
|
|
ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
|
|
iput(temp_inode);
|
|
if (ret) {
|
|
ret = -EACCES;
|
|
goto out;
|
|
}
|
|
|
|
if (key.offset == upper_limit.objectid)
|
|
break;
|
|
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EACCES;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
|
|
memmove(args->path, ptr, total_len);
|
|
args->path[total_len] = '\0';
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
/* Get the bottom subvolume's name from ROOT_REF */
|
|
root = fs_info->tree_root;
|
|
key.objectid = treeid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = args->treeid;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot);
|
|
item_len = btrfs_item_size_nr(leaf, slot);
|
|
/* Check if dirid in ROOT_REF corresponds to passed dirid */
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Copy subvolume's name */
|
|
item_off += sizeof(struct btrfs_root_ref);
|
|
item_len -= sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, args->name, item_off, item_len);
|
|
args->name[item_len] = 0;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_ino_lookup(struct file *file,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_args *args;
|
|
struct inode *inode;
|
|
int ret = 0;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
inode = file_inode(file);
|
|
|
|
/*
|
|
* Unprivileged query to obtain the containing subvolume root id. The
|
|
* path is reset so it's consistent with btrfs_search_path_in_tree.
|
|
*/
|
|
if (args->treeid == 0)
|
|
args->treeid = BTRFS_I(inode)->root->root_key.objectid;
|
|
|
|
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
args->name[0] = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
|
|
args->treeid, args->objectid,
|
|
args->name);
|
|
|
|
out:
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Version of ino_lookup ioctl (unprivileged)
|
|
*
|
|
* The main differences from ino_lookup ioctl are:
|
|
*
|
|
* 1. Read + Exec permission will be checked using inode_permission() during
|
|
* path construction. -EACCES will be returned in case of failure.
|
|
* 2. Path construction will be stopped at the inode number which corresponds
|
|
* to the fd with which this ioctl is called. If constructed path does not
|
|
* exist under fd's inode, -EACCES will be returned.
|
|
* 3. The name of bottom subvolume is also searched and filled.
|
|
*/
|
|
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_user_args *args;
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
inode = file_inode(file);
|
|
|
|
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
|
|
BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
|
|
/*
|
|
* The subvolume does not exist under fd with which this is
|
|
* called
|
|
*/
|
|
kfree(args);
|
|
return -EACCES;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree_user(inode, args);
|
|
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
|
|
static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_root_ref *rref;
|
|
struct extent_buffer *leaf;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
struct inode *inode;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
|
|
if (!subvol_info) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
inode = file_inode(file);
|
|
fs_info = BTRFS_I(inode)->root->fs_info;
|
|
|
|
/* Get root_item of inode's subvolume */
|
|
key.objectid = BTRFS_I(inode)->root->root_key.objectid;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
root = btrfs_read_fs_root_no_name(fs_info, &key);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
root_item = &root->root_item;
|
|
|
|
subvol_info->treeid = key.objectid;
|
|
|
|
subvol_info->generation = btrfs_root_generation(root_item);
|
|
subvol_info->flags = btrfs_root_flags(root_item);
|
|
|
|
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->received_uuid, root_item->received_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
|
|
subvol_info->ctransid = btrfs_root_ctransid(root_item);
|
|
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
|
|
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
|
|
|
|
subvol_info->otransid = btrfs_root_otransid(root_item);
|
|
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
|
|
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
|
|
|
|
subvol_info->stransid = btrfs_root_stransid(root_item);
|
|
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
|
|
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
|
|
|
|
subvol_info->rtransid = btrfs_root_rtransid(root_item);
|
|
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
|
|
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
|
|
|
|
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
|
|
/* Search root tree for ROOT_BACKREF of this subvolume */
|
|
root = fs_info->tree_root;
|
|
|
|
key.type = BTRFS_ROOT_BACKREF_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == subvol_info->treeid &&
|
|
key.type == BTRFS_ROOT_BACKREF_KEY) {
|
|
subvol_info->parent_id = key.offset;
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot)
|
|
+ sizeof(struct btrfs_root_ref);
|
|
item_len = btrfs_item_size_nr(leaf, slot)
|
|
- sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, subvol_info->name,
|
|
item_off, item_len);
|
|
} else {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kzfree(subvol_info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return ROOT_REF information of the subvolume containing this inode
|
|
* except the subvolume name.
|
|
*/
|
|
static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct inode *inode;
|
|
u64 objectid;
|
|
int slot;
|
|
int ret;
|
|
u8 found;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
rootrefs = memdup_user(argp, sizeof(*rootrefs));
|
|
if (IS_ERR(rootrefs)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(rootrefs);
|
|
}
|
|
|
|
inode = file_inode(file);
|
|
root = BTRFS_I(inode)->root->fs_info->tree_root;
|
|
objectid = BTRFS_I(inode)->root->root_key.objectid;
|
|
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = rootrefs->min_treeid;
|
|
found = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
|
|
ret = -EOVERFLOW;
|
|
goto out;
|
|
}
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
rootrefs->rootref[found].treeid = key.offset;
|
|
rootrefs->rootref[found].dirid =
|
|
btrfs_root_ref_dirid(leaf, rref);
|
|
found++;
|
|
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (!ret || ret == -EOVERFLOW) {
|
|
rootrefs->num_items = found;
|
|
/* update min_treeid for next search */
|
|
if (found)
|
|
rootrefs->min_treeid =
|
|
rootrefs->rootref[found - 1].treeid + 1;
|
|
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
kfree(rootrefs);
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct dentry *parent = file->f_path.dentry;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
|
|
struct dentry *dentry;
|
|
struct inode *dir = d_inode(parent);
|
|
struct inode *inode;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *dest = NULL;
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int namelen;
|
|
int err = 0;
|
|
|
|
if (!S_ISDIR(dir->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
namelen = strlen(vol_args->name);
|
|
if (strchr(vol_args->name, '/') ||
|
|
strncmp(vol_args->name, "..", namelen) == 0) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
|
|
|
|
err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (err == -EINTR)
|
|
goto out_drop_write;
|
|
dentry = lookup_one_len(vol_args->name, parent, namelen);
|
|
if (IS_ERR(dentry)) {
|
|
err = PTR_ERR(dentry);
|
|
goto out_unlock_dir;
|
|
}
|
|
|
|
if (d_really_is_negative(dentry)) {
|
|
err = -ENOENT;
|
|
goto out_dput;
|
|
}
|
|
|
|
inode = d_inode(dentry);
|
|
dest = BTRFS_I(inode)->root;
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
/*
|
|
* Regular user. Only allow this with a special mount
|
|
* option, when the user has write+exec access to the
|
|
* subvol root, and when rmdir(2) would have been
|
|
* allowed.
|
|
*
|
|
* Note that this is _not_ check that the subvol is
|
|
* empty or doesn't contain data that we wouldn't
|
|
* otherwise be able to delete.
|
|
*
|
|
* Users who want to delete empty subvols should try
|
|
* rmdir(2).
|
|
*/
|
|
err = -EPERM;
|
|
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
|
|
goto out_dput;
|
|
|
|
/*
|
|
* Do not allow deletion if the parent dir is the same
|
|
* as the dir to be deleted. That means the ioctl
|
|
* must be called on the dentry referencing the root
|
|
* of the subvol, not a random directory contained
|
|
* within it.
|
|
*/
|
|
err = -EINVAL;
|
|
if (root == dest)
|
|
goto out_dput;
|
|
|
|
err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
|
|
if (err)
|
|
goto out_dput;
|
|
}
|
|
|
|
/* check if subvolume may be deleted by a user */
|
|
err = btrfs_may_delete(dir, dentry, 1);
|
|
if (err)
|
|
goto out_dput;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
err = -EINVAL;
|
|
goto out_dput;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
err = btrfs_delete_subvolume(dir, dentry);
|
|
inode_unlock(inode);
|
|
if (!err)
|
|
d_delete(dentry);
|
|
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock_dir:
|
|
inode_unlock(dir);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(vol_args);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_defrag_range_args *range;
|
|
int ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFDIR:
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
ret = btrfs_defrag_root(root);
|
|
break;
|
|
case S_IFREG:
|
|
/*
|
|
* Note that this does not check the file descriptor for write
|
|
* access. This prevents defragmenting executables that are
|
|
* running and allows defrag on files open in read-only mode.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN) &&
|
|
inode_permission(inode, MAY_WRITE)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
range = kzalloc(sizeof(*range), GFP_KERNEL);
|
|
if (!range) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (argp) {
|
|
if (copy_from_user(range, argp,
|
|
sizeof(*range))) {
|
|
ret = -EFAULT;
|
|
kfree(range);
|
|
goto out;
|
|
}
|
|
/* compression requires us to start the IO */
|
|
if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
|
|
range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
|
|
range->extent_thresh = (u32)-1;
|
|
}
|
|
} else {
|
|
/* the rest are all set to zero by kzalloc */
|
|
range->len = (u64)-1;
|
|
}
|
|
ret = btrfs_defrag_file(file_inode(file), file,
|
|
range, BTRFS_OLDEST_GENERATION, 0);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
kfree(range);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
ret = btrfs_init_new_device(fs_info, vol_args->name);
|
|
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk added %s", vol_args->name);
|
|
|
|
kfree(vol_args);
|
|
out:
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto err_drop;
|
|
}
|
|
|
|
/* Check for compatibility reject unknown flags */
|
|
if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out;
|
|
}
|
|
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
|
|
ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
|
|
} else {
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
|
|
}
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
|
|
if (!ret) {
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
|
|
btrfs_info(fs_info, "device deleted: id %llu",
|
|
vol_args->devid);
|
|
else
|
|
btrfs_info(fs_info, "device deleted: %s",
|
|
vol_args->name);
|
|
}
|
|
out:
|
|
kfree(vol_args);
|
|
err_drop:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
ret = btrfs_rm_device(fs_info, vol_args->name, 0);
|
|
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
|
|
kfree(vol_args);
|
|
out:
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_fs_info_args *fi_args;
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
int ret = 0;
|
|
|
|
fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
|
|
if (!fi_args)
|
|
return -ENOMEM;
|
|
|
|
rcu_read_lock();
|
|
fi_args->num_devices = fs_devices->num_devices;
|
|
|
|
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
|
|
if (device->devid > fi_args->max_id)
|
|
fi_args->max_id = device->devid;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
|
|
fi_args->nodesize = fs_info->nodesize;
|
|
fi_args->sectorsize = fs_info->sectorsize;
|
|
fi_args->clone_alignment = fs_info->sectorsize;
|
|
|
|
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(fi_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_dev_info_args *di_args;
|
|
struct btrfs_device *dev;
|
|
int ret = 0;
|
|
char *s_uuid = NULL;
|
|
|
|
di_args = memdup_user(arg, sizeof(*di_args));
|
|
if (IS_ERR(di_args))
|
|
return PTR_ERR(di_args);
|
|
|
|
if (!btrfs_is_empty_uuid(di_args->uuid))
|
|
s_uuid = di_args->uuid;
|
|
|
|
rcu_read_lock();
|
|
dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
|
|
|
|
if (!dev) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
di_args->devid = dev->devid;
|
|
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
|
|
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
|
|
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
|
|
if (dev->name) {
|
|
strncpy(di_args->path, rcu_str_deref(dev->name),
|
|
sizeof(di_args->path) - 1);
|
|
di_args->path[sizeof(di_args->path) - 1] = 0;
|
|
} else {
|
|
di_args->path[0] = '\0';
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(di_args);
|
|
return ret;
|
|
}
|
|
|
|
static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
|
|
page = grab_cache_page(inode->i_mapping, index);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (!PageUptodate(page)) {
|
|
int ret;
|
|
|
|
ret = btrfs_readpage(NULL, page);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
lock_page(page);
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (page->mapping != inode->i_mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static int gather_extent_pages(struct inode *inode, struct page **pages,
|
|
int num_pages, u64 off)
|
|
{
|
|
int i;
|
|
pgoff_t index = off >> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
again:
|
|
pages[i] = extent_same_get_page(inode, index + i);
|
|
if (IS_ERR(pages[i])) {
|
|
int err = PTR_ERR(pages[i]);
|
|
|
|
if (err == -EAGAIN)
|
|
goto again;
|
|
pages[i] = NULL;
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int lock_extent_range(struct inode *inode, u64 off, u64 len,
|
|
bool retry_range_locking)
|
|
{
|
|
/*
|
|
* Do any pending delalloc/csum calculations on inode, one way or
|
|
* another, and lock file content.
|
|
* The locking order is:
|
|
*
|
|
* 1) pages
|
|
* 2) range in the inode's io tree
|
|
*/
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
|
|
ordered = btrfs_lookup_first_ordered_extent(inode,
|
|
off + len - 1);
|
|
if ((!ordered ||
|
|
ordered->file_offset + ordered->len <= off ||
|
|
ordered->file_offset >= off + len) &&
|
|
!test_range_bit(&BTRFS_I(inode)->io_tree, off,
|
|
off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
|
|
if (ordered)
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (!retry_range_locking)
|
|
return -EAGAIN;
|
|
btrfs_wait_ordered_range(inode, off, len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
inode_unlock(inode1);
|
|
inode_unlock(inode2);
|
|
}
|
|
|
|
static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
|
|
{
|
|
if (inode1 < inode2)
|
|
swap(inode1, inode2);
|
|
|
|
inode_lock_nested(inode1, I_MUTEX_PARENT);
|
|
inode_lock_nested(inode2, I_MUTEX_CHILD);
|
|
}
|
|
|
|
static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
|
|
struct inode *inode2, u64 loff2, u64 len)
|
|
{
|
|
unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
|
|
unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
|
|
}
|
|
|
|
static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
|
|
struct inode *inode2, u64 loff2, u64 len,
|
|
bool retry_range_locking)
|
|
{
|
|
int ret;
|
|
|
|
if (inode1 < inode2) {
|
|
swap(inode1, inode2);
|
|
swap(loff1, loff2);
|
|
}
|
|
ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
|
|
if (ret)
|
|
return ret;
|
|
ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
|
|
if (ret)
|
|
unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
|
|
loff1 + len - 1);
|
|
return ret;
|
|
}
|
|
|
|
struct cmp_pages {
|
|
int num_pages;
|
|
struct page **src_pages;
|
|
struct page **dst_pages;
|
|
};
|
|
|
|
static void btrfs_cmp_data_free(struct cmp_pages *cmp)
|
|
{
|
|
int i;
|
|
struct page *pg;
|
|
|
|
for (i = 0; i < cmp->num_pages; i++) {
|
|
pg = cmp->src_pages[i];
|
|
if (pg) {
|
|
unlock_page(pg);
|
|
put_page(pg);
|
|
cmp->src_pages[i] = NULL;
|
|
}
|
|
pg = cmp->dst_pages[i];
|
|
if (pg) {
|
|
unlock_page(pg);
|
|
put_page(pg);
|
|
cmp->dst_pages[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
|
|
struct inode *dst, u64 dst_loff,
|
|
u64 len, struct cmp_pages *cmp)
|
|
{
|
|
int ret;
|
|
int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
|
|
|
|
cmp->num_pages = num_pages;
|
|
|
|
ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
|
|
|
|
out:
|
|
if (ret)
|
|
btrfs_cmp_data_free(cmp);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
struct page *src_page, *dst_page;
|
|
unsigned int cmp_len = PAGE_SIZE;
|
|
void *addr, *dst_addr;
|
|
|
|
i = 0;
|
|
while (len) {
|
|
if (len < PAGE_SIZE)
|
|
cmp_len = len;
|
|
|
|
BUG_ON(i >= cmp->num_pages);
|
|
|
|
src_page = cmp->src_pages[i];
|
|
dst_page = cmp->dst_pages[i];
|
|
ASSERT(PageLocked(src_page));
|
|
ASSERT(PageLocked(dst_page));
|
|
|
|
addr = kmap_atomic(src_page);
|
|
dst_addr = kmap_atomic(dst_page);
|
|
|
|
flush_dcache_page(src_page);
|
|
flush_dcache_page(dst_page);
|
|
|
|
if (memcmp(addr, dst_addr, cmp_len))
|
|
ret = -EBADE;
|
|
|
|
kunmap_atomic(addr);
|
|
kunmap_atomic(dst_addr);
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
len -= cmp_len;
|
|
i++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
|
|
u64 olen)
|
|
{
|
|
u64 len = *plen;
|
|
u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
|
|
|
|
if (off + olen > inode->i_size || off + olen < off)
|
|
return -EINVAL;
|
|
|
|
/* if we extend to eof, continue to block boundary */
|
|
if (off + len == inode->i_size)
|
|
*plen = len = ALIGN(inode->i_size, bs) - off;
|
|
|
|
/* Check that we are block aligned - btrfs_clone() requires this */
|
|
if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
|
|
struct inode *dst, u64 dst_loff,
|
|
struct cmp_pages *cmp)
|
|
{
|
|
int ret;
|
|
u64 len = olen;
|
|
bool same_inode = (src == dst);
|
|
u64 same_lock_start = 0;
|
|
u64 same_lock_len = 0;
|
|
|
|
ret = extent_same_check_offsets(src, loff, &len, olen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (same_inode) {
|
|
/*
|
|
* Single inode case wants the same checks, except we
|
|
* don't want our length pushed out past i_size as
|
|
* comparing that data range makes no sense.
|
|
*
|
|
* extent_same_check_offsets() will do this for an
|
|
* unaligned length at i_size, so catch it here and
|
|
* reject the request.
|
|
*
|
|
* This effectively means we require aligned extents
|
|
* for the single-inode case, whereas the other cases
|
|
* allow an unaligned length so long as it ends at
|
|
* i_size.
|
|
*/
|
|
if (len != olen)
|
|
return -EINVAL;
|
|
|
|
/* Check for overlapping ranges */
|
|
if (dst_loff + len > loff && dst_loff < loff + len)
|
|
return -EINVAL;
|
|
|
|
same_lock_start = min_t(u64, loff, dst_loff);
|
|
same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
|
|
} else {
|
|
/*
|
|
* If the source and destination inodes are different, the
|
|
* source's range end offset matches the source's i_size, that
|
|
* i_size is not a multiple of the sector size, and the
|
|
* destination range does not go past the destination's i_size,
|
|
* we must round down the length to the nearest sector size
|
|
* multiple. If we don't do this adjustment we end replacing
|
|
* with zeroes the bytes in the range that starts at the
|
|
* deduplication range's end offset and ends at the next sector
|
|
* size multiple.
|
|
*/
|
|
if (loff + olen == i_size_read(src) &&
|
|
dst_loff + len < i_size_read(dst)) {
|
|
const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
|
|
|
|
len = round_down(i_size_read(src), sz) - loff;
|
|
olen = len;
|
|
}
|
|
}
|
|
|
|
again:
|
|
ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (same_inode)
|
|
ret = lock_extent_range(src, same_lock_start, same_lock_len,
|
|
false);
|
|
else
|
|
ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
|
|
false);
|
|
/*
|
|
* If one of the inodes has dirty pages in the respective range or
|
|
* ordered extents, we need to flush dellaloc and wait for all ordered
|
|
* extents in the range. We must unlock the pages and the ranges in the
|
|
* io trees to avoid deadlocks when flushing delalloc (requires locking
|
|
* pages) and when waiting for ordered extents to complete (they require
|
|
* range locking).
|
|
*/
|
|
if (ret == -EAGAIN) {
|
|
/*
|
|
* Ranges in the io trees already unlocked. Now unlock all
|
|
* pages before waiting for all IO to complete.
|
|
*/
|
|
btrfs_cmp_data_free(cmp);
|
|
if (same_inode) {
|
|
btrfs_wait_ordered_range(src, same_lock_start,
|
|
same_lock_len);
|
|
} else {
|
|
btrfs_wait_ordered_range(src, loff, len);
|
|
btrfs_wait_ordered_range(dst, dst_loff, len);
|
|
}
|
|
goto again;
|
|
}
|
|
ASSERT(ret == 0);
|
|
if (WARN_ON(ret)) {
|
|
/* ranges in the io trees already unlocked */
|
|
btrfs_cmp_data_free(cmp);
|
|
return ret;
|
|
}
|
|
|
|
/* pass original length for comparison so we stay within i_size */
|
|
ret = btrfs_cmp_data(olen, cmp);
|
|
if (ret == 0)
|
|
ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
|
|
|
|
if (same_inode)
|
|
unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
|
|
same_lock_start + same_lock_len - 1);
|
|
else
|
|
btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
|
|
|
|
btrfs_cmp_data_free(cmp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BTRFS_MAX_DEDUPE_LEN SZ_16M
|
|
|
|
static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
|
|
struct inode *dst, u64 dst_loff)
|
|
{
|
|
int ret;
|
|
struct cmp_pages cmp;
|
|
int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
|
|
bool same_inode = (src == dst);
|
|
u64 i, tail_len, chunk_count;
|
|
|
|
if (olen == 0)
|
|
return 0;
|
|
|
|
if (same_inode)
|
|
inode_lock(src);
|
|
else
|
|
btrfs_double_inode_lock(src, dst);
|
|
|
|
/* don't make the dst file partly checksummed */
|
|
if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
|
|
(BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
|
|
chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
|
|
if (chunk_count == 0)
|
|
num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* If deduping ranges in the same inode, locking rules make it
|
|
* mandatory to always lock pages in ascending order to avoid deadlocks
|
|
* with concurrent tasks (such as starting writeback/delalloc).
|
|
*/
|
|
if (same_inode && dst_loff < loff)
|
|
swap(loff, dst_loff);
|
|
|
|
/*
|
|
* We must gather up all the pages before we initiate our extent
|
|
* locking. We use an array for the page pointers. Size of the array is
|
|
* bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
|
|
*/
|
|
cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!cmp.src_pages || !cmp.dst_pages) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
for (i = 0; i < chunk_count; i++) {
|
|
ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
|
|
dst, dst_loff, &cmp);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
loff += BTRFS_MAX_DEDUPE_LEN;
|
|
dst_loff += BTRFS_MAX_DEDUPE_LEN;
|
|
}
|
|
|
|
if (tail_len > 0)
|
|
ret = btrfs_extent_same_range(src, loff, tail_len, dst,
|
|
dst_loff, &cmp);
|
|
|
|
out_free:
|
|
kvfree(cmp.src_pages);
|
|
kvfree(cmp.dst_pages);
|
|
|
|
out_unlock:
|
|
if (same_inode)
|
|
inode_unlock(src);
|
|
else
|
|
btrfs_double_inode_unlock(src, dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_dedupe_file_range(struct file *src_file, loff_t src_loff,
|
|
struct file *dst_file, loff_t dst_loff,
|
|
u64 olen)
|
|
{
|
|
struct inode *src = file_inode(src_file);
|
|
struct inode *dst = file_inode(dst_file);
|
|
u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
|
|
|
|
if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
|
|
/*
|
|
* Btrfs does not support blocksize < page_size. As a
|
|
* result, btrfs_cmp_data() won't correctly handle
|
|
* this situation without an update.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
return btrfs_extent_same(src, src_loff, olen, dst, dst_loff);
|
|
}
|
|
|
|
static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
|
|
struct inode *inode,
|
|
u64 endoff,
|
|
const u64 destoff,
|
|
const u64 olen,
|
|
int no_time_update)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
|
|
inode_inc_iversion(inode);
|
|
if (!no_time_update)
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
/*
|
|
* We round up to the block size at eof when determining which
|
|
* extents to clone above, but shouldn't round up the file size.
|
|
*/
|
|
if (endoff > destoff + olen)
|
|
endoff = destoff + olen;
|
|
if (endoff > inode->i_size)
|
|
btrfs_i_size_write(BTRFS_I(inode), endoff);
|
|
|
|
ret = btrfs_update_inode(trans, root, inode);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
ret = btrfs_end_transaction(trans);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void clone_update_extent_map(struct btrfs_inode *inode,
|
|
const struct btrfs_trans_handle *trans,
|
|
const struct btrfs_path *path,
|
|
const u64 hole_offset,
|
|
const u64 hole_len)
|
|
{
|
|
struct extent_map_tree *em_tree = &inode->extent_tree;
|
|
struct extent_map *em;
|
|
int ret;
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
|
|
return;
|
|
}
|
|
|
|
if (path) {
|
|
struct btrfs_file_extent_item *fi;
|
|
|
|
fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
|
|
em->generation = -1;
|
|
if (btrfs_file_extent_type(path->nodes[0], fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
|
|
&inode->runtime_flags);
|
|
} else {
|
|
em->start = hole_offset;
|
|
em->len = hole_len;
|
|
em->ram_bytes = em->len;
|
|
em->orig_start = hole_offset;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
em->block_len = 0;
|
|
em->orig_block_len = 0;
|
|
em->compress_type = BTRFS_COMPRESS_NONE;
|
|
em->generation = trans->transid;
|
|
}
|
|
|
|
while (1) {
|
|
write_lock(&em_tree->lock);
|
|
ret = add_extent_mapping(em_tree, em, 1);
|
|
write_unlock(&em_tree->lock);
|
|
if (ret != -EEXIST) {
|
|
free_extent_map(em);
|
|
break;
|
|
}
|
|
btrfs_drop_extent_cache(inode, em->start,
|
|
em->start + em->len - 1, 0);
|
|
}
|
|
|
|
if (ret)
|
|
set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
|
|
}
|
|
|
|
/*
|
|
* Make sure we do not end up inserting an inline extent into a file that has
|
|
* already other (non-inline) extents. If a file has an inline extent it can
|
|
* not have any other extents and the (single) inline extent must start at the
|
|
* file offset 0. Failing to respect these rules will lead to file corruption,
|
|
* resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
|
|
*
|
|
* We can have extents that have been already written to disk or we can have
|
|
* dirty ranges still in delalloc, in which case the extent maps and items are
|
|
* created only when we run delalloc, and the delalloc ranges might fall outside
|
|
* the range we are currently locking in the inode's io tree. So we check the
|
|
* inode's i_size because of that (i_size updates are done while holding the
|
|
* i_mutex, which we are holding here).
|
|
* We also check to see if the inode has a size not greater than "datal" but has
|
|
* extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
|
|
* protected against such concurrent fallocate calls by the i_mutex).
|
|
*
|
|
* If the file has no extents but a size greater than datal, do not allow the
|
|
* copy because we would need turn the inline extent into a non-inline one (even
|
|
* with NO_HOLES enabled). If we find our destination inode only has one inline
|
|
* extent, just overwrite it with the source inline extent if its size is less
|
|
* than the source extent's size, or we could copy the source inline extent's
|
|
* data into the destination inode's inline extent if the later is greater then
|
|
* the former.
|
|
*/
|
|
static int clone_copy_inline_extent(struct inode *dst,
|
|
struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *new_key,
|
|
const u64 drop_start,
|
|
const u64 datal,
|
|
const u64 skip,
|
|
const u64 size,
|
|
char *inline_data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(dst)->root;
|
|
const u64 aligned_end = ALIGN(new_key->offset + datal,
|
|
fs_info->sectorsize);
|
|
int ret;
|
|
struct btrfs_key key;
|
|
|
|
if (new_key->offset > 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
key.objectid = btrfs_ino(BTRFS_I(dst));
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
} else if (ret > 0) {
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret > 0)
|
|
goto copy_inline_extent;
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
|
|
key.type == BTRFS_EXTENT_DATA_KEY) {
|
|
ASSERT(key.offset > 0);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
} else if (i_size_read(dst) <= datal) {
|
|
struct btrfs_file_extent_item *ei;
|
|
u64 ext_len;
|
|
|
|
/*
|
|
* If the file size is <= datal, make sure there are no other
|
|
* extents following (can happen do to an fallocate call with
|
|
* the flag FALLOC_FL_KEEP_SIZE).
|
|
*/
|
|
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_file_extent_item);
|
|
/*
|
|
* If it's an inline extent, it can not have other extents
|
|
* following it.
|
|
*/
|
|
if (btrfs_file_extent_type(path->nodes[0], ei) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
goto copy_inline_extent;
|
|
|
|
ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
|
|
if (ext_len > aligned_end)
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0) {
|
|
return ret;
|
|
} else if (ret == 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
|
|
key.type == BTRFS_EXTENT_DATA_KEY)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
copy_inline_extent:
|
|
/*
|
|
* We have no extent items, or we have an extent at offset 0 which may
|
|
* or may not be inlined. All these cases are dealt the same way.
|
|
*/
|
|
if (i_size_read(dst) > datal) {
|
|
/*
|
|
* If the destination inode has an inline extent...
|
|
* This would require copying the data from the source inline
|
|
* extent into the beginning of the destination's inline extent.
|
|
* But this is really complex, both extents can be compressed
|
|
* or just one of them, which would require decompressing and
|
|
* re-compressing data (which could increase the new compressed
|
|
* size, not allowing the compressed data to fit anymore in an
|
|
* inline extent).
|
|
* So just don't support this case for now (it should be rare,
|
|
* we are not really saving space when cloning inline extents).
|
|
*/
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (skip) {
|
|
const u32 start = btrfs_file_extent_calc_inline_size(0);
|
|
|
|
memmove(inline_data + start, inline_data + start + skip, datal);
|
|
}
|
|
|
|
write_extent_buffer(path->nodes[0], inline_data,
|
|
btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]),
|
|
size);
|
|
inode_add_bytes(dst, datal);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* btrfs_clone() - clone a range from inode file to another
|
|
*
|
|
* @src: Inode to clone from
|
|
* @inode: Inode to clone to
|
|
* @off: Offset within source to start clone from
|
|
* @olen: Original length, passed by user, of range to clone
|
|
* @olen_aligned: Block-aligned value of olen
|
|
* @destoff: Offset within @inode to start clone
|
|
* @no_time_update: Whether to update mtime/ctime on the target inode
|
|
*/
|
|
static int btrfs_clone(struct inode *src, struct inode *inode,
|
|
const u64 off, const u64 olen, const u64 olen_aligned,
|
|
const u64 destoff, int no_time_update)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_path *path = NULL;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_trans_handle *trans;
|
|
char *buf = NULL;
|
|
struct btrfs_key key;
|
|
u32 nritems;
|
|
int slot;
|
|
int ret;
|
|
const u64 len = olen_aligned;
|
|
u64 last_dest_end = destoff;
|
|
|
|
ret = -ENOMEM;
|
|
buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
|
|
if (!buf)
|
|
return ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
kvfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
path->reada = READA_FORWARD;
|
|
/* clone data */
|
|
key.objectid = btrfs_ino(BTRFS_I(src));
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = off;
|
|
|
|
while (1) {
|
|
u64 next_key_min_offset = key.offset + 1;
|
|
|
|
/*
|
|
* note the key will change type as we walk through the
|
|
* tree.
|
|
*/
|
|
path->leave_spinning = 1;
|
|
ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
|
|
0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/*
|
|
* First search, if no extent item that starts at offset off was
|
|
* found but the previous item is an extent item, it's possible
|
|
* it might overlap our target range, therefore process it.
|
|
*/
|
|
if (key.offset == off && ret > 0 && path->slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0] - 1);
|
|
if (key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path->slots[0]--;
|
|
}
|
|
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
process_slot:
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0)
|
|
break;
|
|
nritems = btrfs_header_nritems(path->nodes[0]);
|
|
}
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type > BTRFS_EXTENT_DATA_KEY ||
|
|
key.objectid != btrfs_ino(BTRFS_I(src)))
|
|
break;
|
|
|
|
if (key.type == BTRFS_EXTENT_DATA_KEY) {
|
|
struct btrfs_file_extent_item *extent;
|
|
int type;
|
|
u32 size;
|
|
struct btrfs_key new_key;
|
|
u64 disko = 0, diskl = 0;
|
|
u64 datao = 0, datal = 0;
|
|
u8 comp;
|
|
u64 drop_start;
|
|
|
|
extent = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_file_extent_item);
|
|
comp = btrfs_file_extent_compression(leaf, extent);
|
|
type = btrfs_file_extent_type(leaf, extent);
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
disko = btrfs_file_extent_disk_bytenr(leaf,
|
|
extent);
|
|
diskl = btrfs_file_extent_disk_num_bytes(leaf,
|
|
extent);
|
|
datao = btrfs_file_extent_offset(leaf, extent);
|
|
datal = btrfs_file_extent_num_bytes(leaf,
|
|
extent);
|
|
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
/* take upper bound, may be compressed */
|
|
datal = btrfs_file_extent_ram_bytes(leaf,
|
|
extent);
|
|
}
|
|
|
|
/*
|
|
* The first search might have left us at an extent
|
|
* item that ends before our target range's start, can
|
|
* happen if we have holes and NO_HOLES feature enabled.
|
|
*/
|
|
if (key.offset + datal <= off) {
|
|
path->slots[0]++;
|
|
goto process_slot;
|
|
} else if (key.offset >= off + len) {
|
|
break;
|
|
}
|
|
next_key_min_offset = key.offset + datal;
|
|
size = btrfs_item_size_nr(leaf, slot);
|
|
read_extent_buffer(leaf, buf,
|
|
btrfs_item_ptr_offset(leaf, slot),
|
|
size);
|
|
|
|
btrfs_release_path(path);
|
|
path->leave_spinning = 0;
|
|
|
|
memcpy(&new_key, &key, sizeof(new_key));
|
|
new_key.objectid = btrfs_ino(BTRFS_I(inode));
|
|
if (off <= key.offset)
|
|
new_key.offset = key.offset + destoff - off;
|
|
else
|
|
new_key.offset = destoff;
|
|
|
|
/*
|
|
* Deal with a hole that doesn't have an extent item
|
|
* that represents it (NO_HOLES feature enabled).
|
|
* This hole is either in the middle of the cloning
|
|
* range or at the beginning (fully overlaps it or
|
|
* partially overlaps it).
|
|
*/
|
|
if (new_key.offset != last_dest_end)
|
|
drop_start = last_dest_end;
|
|
else
|
|
drop_start = new_key.offset;
|
|
|
|
/*
|
|
* 1 - adjusting old extent (we may have to split it)
|
|
* 1 - add new extent
|
|
* 1 - inode update
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (type == BTRFS_FILE_EXTENT_REG ||
|
|
type == BTRFS_FILE_EXTENT_PREALLOC) {
|
|
/*
|
|
* a | --- range to clone ---| b
|
|
* | ------------- extent ------------- |
|
|
*/
|
|
|
|
/* subtract range b */
|
|
if (key.offset + datal > off + len)
|
|
datal = off + len - key.offset;
|
|
|
|
/* subtract range a */
|
|
if (off > key.offset) {
|
|
datao += off - key.offset;
|
|
datal -= off - key.offset;
|
|
}
|
|
|
|
ret = btrfs_drop_extents(trans, root, inode,
|
|
drop_start,
|
|
new_key.offset + datal,
|
|
1);
|
|
if (ret) {
|
|
if (ret != -EOPNOTSUPP)
|
|
btrfs_abort_transaction(trans,
|
|
ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path,
|
|
&new_key, size);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
write_extent_buffer(leaf, buf,
|
|
btrfs_item_ptr_offset(leaf, slot),
|
|
size);
|
|
|
|
extent = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_file_extent_item);
|
|
|
|
/* disko == 0 means it's a hole */
|
|
if (!disko)
|
|
datao = 0;
|
|
|
|
btrfs_set_file_extent_offset(leaf, extent,
|
|
datao);
|
|
btrfs_set_file_extent_num_bytes(leaf, extent,
|
|
datal);
|
|
|
|
if (disko) {
|
|
inode_add_bytes(inode, datal);
|
|
ret = btrfs_inc_extent_ref(trans,
|
|
root,
|
|
disko, diskl, 0,
|
|
root->root_key.objectid,
|
|
btrfs_ino(BTRFS_I(inode)),
|
|
new_key.offset - datao);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans,
|
|
ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
|
|
}
|
|
}
|
|
} else if (type == BTRFS_FILE_EXTENT_INLINE) {
|
|
u64 skip = 0;
|
|
u64 trim = 0;
|
|
|
|
if (off > key.offset) {
|
|
skip = off - key.offset;
|
|
new_key.offset += skip;
|
|
}
|
|
|
|
if (key.offset + datal > off + len)
|
|
trim = key.offset + datal - (off + len);
|
|
|
|
if (comp && (skip || trim)) {
|
|
ret = -EINVAL;
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
size -= skip + trim;
|
|
datal -= skip + trim;
|
|
|
|
ret = clone_copy_inline_extent(inode,
|
|
trans, path,
|
|
&new_key,
|
|
drop_start,
|
|
datal,
|
|
skip, size, buf);
|
|
if (ret) {
|
|
if (ret != -EOPNOTSUPP)
|
|
btrfs_abort_transaction(trans,
|
|
ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
}
|
|
|
|
/* If we have an implicit hole (NO_HOLES feature). */
|
|
if (drop_start < new_key.offset)
|
|
clone_update_extent_map(BTRFS_I(inode), trans,
|
|
NULL, drop_start,
|
|
new_key.offset - drop_start);
|
|
|
|
clone_update_extent_map(BTRFS_I(inode), trans,
|
|
path, 0, 0);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
last_dest_end = ALIGN(new_key.offset + datal,
|
|
fs_info->sectorsize);
|
|
ret = clone_finish_inode_update(trans, inode,
|
|
last_dest_end,
|
|
destoff, olen,
|
|
no_time_update);
|
|
if (ret)
|
|
goto out;
|
|
if (new_key.offset + datal >= destoff + len)
|
|
break;
|
|
}
|
|
btrfs_release_path(path);
|
|
key.offset = next_key_min_offset;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
goto out;
|
|
}
|
|
}
|
|
ret = 0;
|
|
|
|
if (last_dest_end < destoff + len) {
|
|
/*
|
|
* We have an implicit hole (NO_HOLES feature is enabled) that
|
|
* fully or partially overlaps our cloning range at its end.
|
|
*/
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* 1 - remove extent(s)
|
|
* 1 - inode update
|
|
*/
|
|
trans = btrfs_start_transaction(root, 2);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
ret = btrfs_drop_extents(trans, root, inode,
|
|
last_dest_end, destoff + len, 1);
|
|
if (ret) {
|
|
if (ret != -EOPNOTSUPP)
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
clone_update_extent_map(BTRFS_I(inode), trans, NULL,
|
|
last_dest_end,
|
|
destoff + len - last_dest_end);
|
|
ret = clone_finish_inode_update(trans, inode, destoff + len,
|
|
destoff, olen, no_time_update);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kvfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
|
|
u64 off, u64 olen, u64 destoff)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct inode *src = file_inode(file_src);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret;
|
|
u64 len = olen;
|
|
u64 bs = fs_info->sb->s_blocksize;
|
|
int same_inode = src == inode;
|
|
|
|
/*
|
|
* TODO:
|
|
* - split compressed inline extents. annoying: we need to
|
|
* decompress into destination's address_space (the file offset
|
|
* may change, so source mapping won't do), then recompress (or
|
|
* otherwise reinsert) a subrange.
|
|
*
|
|
* - split destination inode's inline extents. The inline extents can
|
|
* be either compressed or non-compressed.
|
|
*/
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (file_src->f_path.mnt != file->f_path.mnt ||
|
|
src->i_sb != inode->i_sb)
|
|
return -EXDEV;
|
|
|
|
if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
|
|
return -EISDIR;
|
|
|
|
if (!same_inode) {
|
|
btrfs_double_inode_lock(src, inode);
|
|
} else {
|
|
inode_lock(src);
|
|
}
|
|
|
|
/* don't make the dst file partly checksummed */
|
|
if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
|
|
(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* determine range to clone */
|
|
ret = -EINVAL;
|
|
if (off + len > src->i_size || off + len < off)
|
|
goto out_unlock;
|
|
if (len == 0)
|
|
olen = len = src->i_size - off;
|
|
/* if we extend to eof, continue to block boundary */
|
|
if (off + len == src->i_size)
|
|
len = ALIGN(src->i_size, bs) - off;
|
|
|
|
if (len == 0) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* verify the end result is block aligned */
|
|
if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
|
|
!IS_ALIGNED(destoff, bs))
|
|
goto out_unlock;
|
|
|
|
/* verify if ranges are overlapped within the same file */
|
|
if (same_inode) {
|
|
if (destoff + len > off && destoff < off + len)
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (destoff > inode->i_size) {
|
|
ret = btrfs_cont_expand(inode, inode->i_size, destoff);
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Lock the target range too. Right after we replace the file extent
|
|
* items in the fs tree (which now point to the cloned data), we might
|
|
* have a worker replace them with extent items relative to a write
|
|
* operation that was issued before this clone operation (i.e. confront
|
|
* with inode.c:btrfs_finish_ordered_io).
|
|
*/
|
|
if (same_inode) {
|
|
u64 lock_start = min_t(u64, off, destoff);
|
|
u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
|
|
|
|
ret = lock_extent_range(src, lock_start, lock_len, true);
|
|
} else {
|
|
ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
|
|
true);
|
|
}
|
|
ASSERT(ret == 0);
|
|
if (WARN_ON(ret)) {
|
|
/* ranges in the io trees already unlocked */
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
|
|
|
|
if (same_inode) {
|
|
u64 lock_start = min_t(u64, off, destoff);
|
|
u64 lock_end = max_t(u64, off, destoff) + len - 1;
|
|
|
|
unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
|
|
} else {
|
|
btrfs_double_extent_unlock(src, off, inode, destoff, len);
|
|
}
|
|
/*
|
|
* Truncate page cache pages so that future reads will see the cloned
|
|
* data immediately and not the previous data.
|
|
*/
|
|
truncate_inode_pages_range(&inode->i_data,
|
|
round_down(destoff, PAGE_SIZE),
|
|
round_up(destoff + len, PAGE_SIZE) - 1);
|
|
out_unlock:
|
|
if (!same_inode)
|
|
btrfs_double_inode_unlock(src, inode);
|
|
else
|
|
inode_unlock(src);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_clone_file_range(struct file *src_file, loff_t off,
|
|
struct file *dst_file, loff_t destoff, u64 len)
|
|
{
|
|
return btrfs_clone_files(dst_file, src_file, off, len, destoff);
|
|
}
|
|
|
|
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key location;
|
|
struct btrfs_disk_key disk_key;
|
|
u64 objectid = 0;
|
|
u64 dir_id;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (!objectid)
|
|
objectid = BTRFS_FS_TREE_OBJECTID;
|
|
|
|
location.objectid = objectid;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = (u64)-1;
|
|
|
|
new_root = btrfs_read_fs_root_no_name(fs_info, &location);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
goto out;
|
|
}
|
|
if (!is_fstree(new_root->objectid)) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
path->leave_spinning = 1;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
btrfs_free_path(path);
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
|
|
dir_id, "default", 7, 1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
btrfs_free_path(path);
|
|
btrfs_end_transaction(trans);
|
|
btrfs_err(fs_info,
|
|
"Umm, you don't have the default diritem, this isn't going to work");
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
|
|
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
|
|
btrfs_end_transaction(trans);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static void get_block_group_info(struct list_head *groups_list,
|
|
struct btrfs_ioctl_space_info *space)
|
|
{
|
|
struct btrfs_block_group_cache *block_group;
|
|
|
|
space->total_bytes = 0;
|
|
space->used_bytes = 0;
|
|
space->flags = 0;
|
|
list_for_each_entry(block_group, groups_list, list) {
|
|
space->flags = block_group->flags;
|
|
space->total_bytes += block_group->key.offset;
|
|
space->used_bytes +=
|
|
btrfs_block_group_used(&block_group->item);
|
|
}
|
|
}
|
|
|
|
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_space_args space_args;
|
|
struct btrfs_ioctl_space_info space;
|
|
struct btrfs_ioctl_space_info *dest;
|
|
struct btrfs_ioctl_space_info *dest_orig;
|
|
struct btrfs_ioctl_space_info __user *user_dest;
|
|
struct btrfs_space_info *info;
|
|
static const u64 types[] = {
|
|
BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
|
|
};
|
|
int num_types = 4;
|
|
int alloc_size;
|
|
int ret = 0;
|
|
u64 slot_count = 0;
|
|
int i, c;
|
|
|
|
if (copy_from_user(&space_args,
|
|
(struct btrfs_ioctl_space_args __user *)arg,
|
|
sizeof(space_args)))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
info = NULL;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(tmp, &fs_info->space_info,
|
|
list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!info)
|
|
continue;
|
|
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c]))
|
|
slot_count++;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Global block reserve, exported as a space_info
|
|
*/
|
|
slot_count++;
|
|
|
|
/* space_slots == 0 means they are asking for a count */
|
|
if (space_args.space_slots == 0) {
|
|
space_args.total_spaces = slot_count;
|
|
goto out;
|
|
}
|
|
|
|
slot_count = min_t(u64, space_args.space_slots, slot_count);
|
|
|
|
alloc_size = sizeof(*dest) * slot_count;
|
|
|
|
/* we generally have at most 6 or so space infos, one for each raid
|
|
* level. So, a whole page should be more than enough for everyone
|
|
*/
|
|
if (alloc_size > PAGE_SIZE)
|
|
return -ENOMEM;
|
|
|
|
space_args.total_spaces = 0;
|
|
dest = kmalloc(alloc_size, GFP_KERNEL);
|
|
if (!dest)
|
|
return -ENOMEM;
|
|
dest_orig = dest;
|
|
|
|
/* now we have a buffer to copy into */
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
if (!slot_count)
|
|
break;
|
|
|
|
info = NULL;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(tmp, &fs_info->space_info,
|
|
list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!info)
|
|
continue;
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c])) {
|
|
get_block_group_info(&info->block_groups[c],
|
|
&space);
|
|
memcpy(dest, &space, sizeof(space));
|
|
dest++;
|
|
space_args.total_spaces++;
|
|
slot_count--;
|
|
}
|
|
if (!slot_count)
|
|
break;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Add global block reserve
|
|
*/
|
|
if (slot_count) {
|
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
space.total_bytes = block_rsv->size;
|
|
space.used_bytes = block_rsv->size - block_rsv->reserved;
|
|
spin_unlock(&block_rsv->lock);
|
|
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
|
|
memcpy(dest, &space, sizeof(space));
|
|
space_args.total_spaces++;
|
|
}
|
|
|
|
user_dest = (struct btrfs_ioctl_space_info __user *)
|
|
(arg + sizeof(struct btrfs_ioctl_space_args));
|
|
|
|
if (copy_to_user(user_dest, dest_orig, alloc_size))
|
|
ret = -EFAULT;
|
|
|
|
kfree(dest_orig);
|
|
out:
|
|
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 transid;
|
|
int ret;
|
|
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
return PTR_ERR(trans);
|
|
|
|
/* No running transaction, don't bother */
|
|
transid = root->fs_info->last_trans_committed;
|
|
goto out;
|
|
}
|
|
transid = trans->transid;
|
|
ret = btrfs_commit_transaction_async(trans, 0);
|
|
if (ret) {
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
out:
|
|
if (argp)
|
|
if (copy_to_user(argp, &transid, sizeof(transid)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
|
|
void __user *argp)
|
|
{
|
|
u64 transid;
|
|
|
|
if (argp) {
|
|
if (copy_from_user(&transid, argp, sizeof(transid)))
|
|
return -EFAULT;
|
|
} else {
|
|
transid = 0; /* current trans */
|
|
}
|
|
return btrfs_wait_for_commit(fs_info, transid);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
|
|
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
|
|
0);
|
|
|
|
if (copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY))
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_scrub_cancel(fs_info);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
|
|
|
|
if (copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_get_dev_stats *sa;
|
|
int ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
|
|
kfree(sa);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = btrfs_get_dev_stats(fs_info, sa);
|
|
|
|
if (copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_dev_replace_args *p;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
p = memdup_user(arg, sizeof(*p));
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
switch (p->cmd) {
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
} else {
|
|
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
}
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
|
|
btrfs_dev_replace_status(fs_info, p);
|
|
ret = 0;
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
|
|
p->result = btrfs_dev_replace_cancel(fs_info);
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (copy_to_user(arg, p, sizeof(*p)))
|
|
ret = -EFAULT;
|
|
out:
|
|
kfree(p);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
u64 rel_ptr;
|
|
int size;
|
|
struct btrfs_ioctl_ino_path_args *ipa = NULL;
|
|
struct inode_fs_paths *ipath = NULL;
|
|
struct btrfs_path *path;
|
|
|
|
if (!capable(CAP_DAC_READ_SEARCH))
|
|
return -EPERM;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ipa = memdup_user(arg, sizeof(*ipa));
|
|
if (IS_ERR(ipa)) {
|
|
ret = PTR_ERR(ipa);
|
|
ipa = NULL;
|
|
goto out;
|
|
}
|
|
|
|
size = min_t(u32, ipa->size, 4096);
|
|
ipath = init_ipath(size, root, path);
|
|
if (IS_ERR(ipath)) {
|
|
ret = PTR_ERR(ipath);
|
|
ipath = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = paths_from_inode(ipa->inum, ipath);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
|
|
rel_ptr = ipath->fspath->val[i] -
|
|
(u64)(unsigned long)ipath->fspath->val;
|
|
ipath->fspath->val[i] = rel_ptr;
|
|
}
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
|
|
ipath->fspath, size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
free_ipath(ipath);
|
|
kfree(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
|
|
{
|
|
struct btrfs_data_container *inodes = ctx;
|
|
const size_t c = 3 * sizeof(u64);
|
|
|
|
if (inodes->bytes_left >= c) {
|
|
inodes->bytes_left -= c;
|
|
inodes->val[inodes->elem_cnt] = inum;
|
|
inodes->val[inodes->elem_cnt + 1] = offset;
|
|
inodes->val[inodes->elem_cnt + 2] = root;
|
|
inodes->elem_cnt += 3;
|
|
} else {
|
|
inodes->bytes_missing += c - inodes->bytes_left;
|
|
inodes->bytes_left = 0;
|
|
inodes->elem_missed += 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
|
|
void __user *arg, int version)
|
|
{
|
|
int ret = 0;
|
|
int size;
|
|
struct btrfs_ioctl_logical_ino_args *loi;
|
|
struct btrfs_data_container *inodes = NULL;
|
|
struct btrfs_path *path = NULL;
|
|
bool ignore_offset;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
loi = memdup_user(arg, sizeof(*loi));
|
|
if (IS_ERR(loi))
|
|
return PTR_ERR(loi);
|
|
|
|
if (version == 1) {
|
|
ignore_offset = false;
|
|
size = min_t(u32, loi->size, SZ_64K);
|
|
} else {
|
|
/* All reserved bits must be 0 for now */
|
|
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
/* Only accept flags we have defined so far */
|
|
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
|
|
size = min_t(u32, loi->size, SZ_16M);
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
inodes = init_data_container(size);
|
|
if (IS_ERR(inodes)) {
|
|
ret = PTR_ERR(inodes);
|
|
inodes = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
|
|
build_ino_list, inodes, ignore_offset);
|
|
if (ret == -EINVAL)
|
|
ret = -ENOENT;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
|
|
size);
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kvfree(inodes);
|
|
out_loi:
|
|
kfree(loi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ioctl_balance_args *bargs)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
|
|
bargs->flags = bctl->flags;
|
|
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
|
|
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
|
|
if (atomic_read(&fs_info->balance_pause_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
|
|
if (atomic_read(&fs_info->balance_cancel_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
|
|
|
|
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
|
|
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
|
|
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
struct btrfs_balance_control *bctl;
|
|
bool need_unlock; /* for mut. excl. ops lock */
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
again:
|
|
if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
need_unlock = true;
|
|
goto locked;
|
|
}
|
|
|
|
/*
|
|
* mut. excl. ops lock is locked. Three possibilities:
|
|
* (1) some other op is running
|
|
* (2) balance is running
|
|
* (3) balance is paused -- special case (think resume)
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (fs_info->balance_ctl) {
|
|
/* this is either (2) or (3) */
|
|
if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
/*
|
|
* Lock released to allow other waiters to continue,
|
|
* we'll reexamine the status again.
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl &&
|
|
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
/* this is (3) */
|
|
need_unlock = false;
|
|
goto locked;
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
goto again;
|
|
} else {
|
|
/* this is (2) */
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
ret = -EINPROGRESS;
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* this is (1) */
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out;
|
|
}
|
|
|
|
locked:
|
|
BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
|
|
|
|
if (arg) {
|
|
bargs = memdup_user(arg, sizeof(*bargs));
|
|
if (IS_ERR(bargs)) {
|
|
ret = PTR_ERR(bargs);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (bargs->flags & BTRFS_BALANCE_RESUME) {
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out_bargs;
|
|
}
|
|
|
|
bctl = fs_info->balance_ctl;
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->flags |= BTRFS_BALANCE_RESUME;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
|
|
goto do_balance;
|
|
}
|
|
} else {
|
|
bargs = NULL;
|
|
}
|
|
|
|
if (fs_info->balance_ctl) {
|
|
ret = -EINPROGRESS;
|
|
goto out_bargs;
|
|
}
|
|
|
|
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
|
|
if (!bctl) {
|
|
ret = -ENOMEM;
|
|
goto out_bargs;
|
|
}
|
|
|
|
if (arg) {
|
|
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
|
|
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
|
|
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
|
|
|
|
bctl->flags = bargs->flags;
|
|
} else {
|
|
/* balance everything - no filters */
|
|
bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
|
|
}
|
|
|
|
if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
|
|
ret = -EINVAL;
|
|
goto out_bctl;
|
|
}
|
|
|
|
do_balance:
|
|
/*
|
|
* Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
|
|
* btrfs_balance. bctl is freed in reset_balance_state, or, if
|
|
* restriper was paused all the way until unmount, in free_fs_info.
|
|
* The flag should be cleared after reset_balance_state.
|
|
*/
|
|
need_unlock = false;
|
|
|
|
ret = btrfs_balance(fs_info, bctl, bargs);
|
|
bctl = NULL;
|
|
|
|
if (arg) {
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
out_bctl:
|
|
kfree(bctl);
|
|
out_bargs:
|
|
kfree(bargs);
|
|
out_unlock:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
if (need_unlock)
|
|
clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case BTRFS_BALANCE_CTL_PAUSE:
|
|
return btrfs_pause_balance(fs_info);
|
|
case BTRFS_BALANCE_CTL_CANCEL:
|
|
return btrfs_cancel_balance(fs_info);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
|
|
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
|
|
if (!bargs) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_update_ioctl_balance_args(fs_info, bargs);
|
|
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(bargs);
|
|
out:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_ctl_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
switch (sa->cmd) {
|
|
case BTRFS_QUOTA_CTL_ENABLE:
|
|
ret = btrfs_quota_enable(fs_info);
|
|
break;
|
|
case BTRFS_QUOTA_CTL_DISABLE:
|
|
ret = btrfs_quota_disable(fs_info);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
kfree(sa);
|
|
up_write(&fs_info->subvol_sem);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_assign_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->assign) {
|
|
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
|
|
} else {
|
|
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
|
|
}
|
|
|
|
/* update qgroup status and info */
|
|
err = btrfs_run_qgroups(trans);
|
|
if (err < 0)
|
|
btrfs_handle_fs_error(fs_info, err,
|
|
"failed to update qgroup status and info");
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_create_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (!sa->qgroupid) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->create) {
|
|
ret = btrfs_create_qgroup(trans, sa->qgroupid);
|
|
} else {
|
|
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
|
|
}
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_limit_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
u64 qgroupid;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
qgroupid = sa->qgroupid;
|
|
if (!qgroupid) {
|
|
/* take the current subvol as qgroup */
|
|
qgroupid = root->root_key.objectid;
|
|
}
|
|
|
|
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_rescan_args *qsa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
qsa = memdup_user(arg, sizeof(*qsa));
|
|
if (IS_ERR(qsa)) {
|
|
ret = PTR_ERR(qsa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (qsa->flags) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_qgroup_rescan(fs_info);
|
|
|
|
out:
|
|
kfree(qsa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_rescan_args *qsa;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
|
|
if (!qsa)
|
|
return -ENOMEM;
|
|
|
|
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
|
|
qsa->flags = 1;
|
|
qsa->progress = fs_info->qgroup_rescan_progress.objectid;
|
|
}
|
|
|
|
if (copy_to_user(arg, qsa, sizeof(*qsa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(qsa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_qgroup_wait_for_completion(fs_info, true);
|
|
}
|
|
|
|
static long _btrfs_ioctl_set_received_subvol(struct file *file,
|
|
struct btrfs_ioctl_received_subvol_args *sa)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct btrfs_trans_handle *trans;
|
|
struct timespec64 ct = current_time(inode);
|
|
int ret = 0;
|
|
int received_uuid_changed;
|
|
|
|
if (!inode_owner_or_capable(inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 1 - root item
|
|
* 2 - uuid items (received uuid + subvol uuid)
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
sa->rtransid = trans->transid;
|
|
sa->rtime.sec = ct.tv_sec;
|
|
sa->rtime.nsec = ct.tv_nsec;
|
|
|
|
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (received_uuid_changed &&
|
|
!btrfs_is_empty_uuid(root_item->received_uuid)) {
|
|
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_root_stransid(root_item, sa->stransid);
|
|
btrfs_set_root_rtransid(root_item, sa->rtransid);
|
|
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
|
|
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, sa->uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret < 0 && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_commit_transaction(trans);
|
|
out:
|
|
up_write(&fs_info->subvol_sem);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
|
|
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
|
|
int ret = 0;
|
|
|
|
args32 = memdup_user(arg, sizeof(*args32));
|
|
if (IS_ERR(args32))
|
|
return PTR_ERR(args32);
|
|
|
|
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
|
|
if (!args64) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
|
|
args64->stransid = args32->stransid;
|
|
args64->rtransid = args32->rtransid;
|
|
args64->stime.sec = args32->stime.sec;
|
|
args64->stime.nsec = args32->stime.nsec;
|
|
args64->rtime.sec = args32->rtime.sec;
|
|
args64->rtime.nsec = args32->rtime.nsec;
|
|
args64->flags = args32->flags;
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, args64);
|
|
if (ret)
|
|
goto out;
|
|
|
|
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
|
|
args32->stransid = args64->stransid;
|
|
args32->rtransid = args64->rtransid;
|
|
args32->stime.sec = args64->stime.sec;
|
|
args32->stime.nsec = args64->stime.nsec;
|
|
args32->rtime.sec = args64->rtime.sec;
|
|
args32->rtime.nsec = args64->rtime.nsec;
|
|
args32->flags = args64->flags;
|
|
|
|
ret = copy_to_user(arg, args32, sizeof(*args32));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(args32);
|
|
kfree(args64);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static long btrfs_ioctl_set_received_subvol(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args *sa = NULL;
|
|
int ret = 0;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, sa);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = copy_to_user(arg, sa, sizeof(*sa));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
size_t len;
|
|
int ret;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
len = strnlen(label, BTRFS_LABEL_SIZE);
|
|
|
|
if (len == BTRFS_LABEL_SIZE) {
|
|
btrfs_warn(fs_info,
|
|
"label is too long, return the first %zu bytes",
|
|
--len);
|
|
}
|
|
|
|
ret = copy_to_user(arg, label, len);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_trans_handle *trans;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(label, arg, sizeof(label)))
|
|
return -EFAULT;
|
|
|
|
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
|
|
btrfs_err(fs_info,
|
|
"unable to set label with more than %d bytes",
|
|
BTRFS_LABEL_SIZE - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
strcpy(super_block->label, label);
|
|
spin_unlock(&fs_info->super_lock);
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_unlock:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#define INIT_FEATURE_FLAGS(suffix) \
|
|
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
|
|
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
|
|
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
|
|
|
|
int btrfs_ioctl_get_supported_features(void __user *arg)
|
|
{
|
|
static const struct btrfs_ioctl_feature_flags features[3] = {
|
|
INIT_FEATURE_FLAGS(SUPP),
|
|
INIT_FEATURE_FLAGS(SAFE_SET),
|
|
INIT_FEATURE_FLAGS(SAFE_CLEAR)
|
|
};
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags features;
|
|
|
|
features.compat_flags = btrfs_super_compat_flags(super_block);
|
|
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
|
|
features.incompat_flags = btrfs_super_incompat_flags(super_block);
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_feature_bits(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_feature_set set,
|
|
u64 change_mask, u64 flags, u64 supported_flags,
|
|
u64 safe_set, u64 safe_clear)
|
|
{
|
|
const char *type = btrfs_feature_set_names[set];
|
|
char *names;
|
|
u64 disallowed, unsupported;
|
|
u64 set_mask = flags & change_mask;
|
|
u64 clear_mask = ~flags & change_mask;
|
|
|
|
unsupported = set_mask & ~supported_flags;
|
|
if (unsupported) {
|
|
names = btrfs_printable_features(set, unsupported);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support the %s feature bit%s",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support %s bits 0x%llx",
|
|
type, unsupported);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
disallowed = set_mask & ~safe_set;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't set the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't set %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
disallowed = clear_mask & ~safe_clear;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't clear the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't clear %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define check_feature(fs_info, change_mask, flags, mask_base) \
|
|
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
|
|
|
|
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags flags[2];
|
|
struct btrfs_trans_handle *trans;
|
|
u64 newflags;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(flags, arg, sizeof(flags)))
|
|
return -EFAULT;
|
|
|
|
/* Nothing to do */
|
|
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
|
|
!flags[0].incompat_flags)
|
|
return 0;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_flags,
|
|
flags[1].compat_flags, COMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_ro_flags,
|
|
flags[1].compat_ro_flags, COMPAT_RO);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].incompat_flags,
|
|
flags[1].incompat_flags, INCOMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
newflags = btrfs_super_compat_flags(super_block);
|
|
newflags |= flags[0].compat_flags & flags[1].compat_flags;
|
|
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
|
|
btrfs_set_super_compat_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_compat_ro_flags(super_block);
|
|
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
|
|
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
|
|
btrfs_set_super_compat_ro_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_incompat_flags(super_block);
|
|
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
|
|
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
|
|
btrfs_set_super_incompat_flags(super_block, newflags);
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
|
|
{
|
|
struct btrfs_ioctl_send_args *arg;
|
|
int ret;
|
|
|
|
if (compat) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 args32;
|
|
|
|
ret = copy_from_user(&args32, argp, sizeof(args32));
|
|
if (ret)
|
|
return -EFAULT;
|
|
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
|
|
if (!arg)
|
|
return -ENOMEM;
|
|
arg->send_fd = args32.send_fd;
|
|
arg->clone_sources_count = args32.clone_sources_count;
|
|
arg->clone_sources = compat_ptr(args32.clone_sources);
|
|
arg->parent_root = args32.parent_root;
|
|
arg->flags = args32.flags;
|
|
memcpy(arg->reserved, args32.reserved,
|
|
sizeof(args32.reserved));
|
|
#else
|
|
return -ENOTTY;
|
|
#endif
|
|
} else {
|
|
arg = memdup_user(argp, sizeof(*arg));
|
|
if (IS_ERR(arg))
|
|
return PTR_ERR(arg);
|
|
}
|
|
ret = btrfs_ioctl_send(file, arg);
|
|
kfree(arg);
|
|
return ret;
|
|
}
|
|
|
|
long btrfs_ioctl(struct file *file, unsigned int
|
|
cmd, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case FS_IOC_GETFLAGS:
|
|
return btrfs_ioctl_getflags(file, argp);
|
|
case FS_IOC_SETFLAGS:
|
|
return btrfs_ioctl_setflags(file, argp);
|
|
case FS_IOC_GETVERSION:
|
|
return btrfs_ioctl_getversion(file, argp);
|
|
case FITRIM:
|
|
return btrfs_ioctl_fitrim(file, argp);
|
|
case BTRFS_IOC_SNAP_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 0);
|
|
case BTRFS_IOC_SNAP_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 0);
|
|
case BTRFS_IOC_SUBVOL_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 1);
|
|
case BTRFS_IOC_SUBVOL_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 1);
|
|
case BTRFS_IOC_SNAP_DESTROY:
|
|
return btrfs_ioctl_snap_destroy(file, argp);
|
|
case BTRFS_IOC_SUBVOL_GETFLAGS:
|
|
return btrfs_ioctl_subvol_getflags(file, argp);
|
|
case BTRFS_IOC_SUBVOL_SETFLAGS:
|
|
return btrfs_ioctl_subvol_setflags(file, argp);
|
|
case BTRFS_IOC_DEFAULT_SUBVOL:
|
|
return btrfs_ioctl_default_subvol(file, argp);
|
|
case BTRFS_IOC_DEFRAG:
|
|
return btrfs_ioctl_defrag(file, NULL);
|
|
case BTRFS_IOC_DEFRAG_RANGE:
|
|
return btrfs_ioctl_defrag(file, argp);
|
|
case BTRFS_IOC_RESIZE:
|
|
return btrfs_ioctl_resize(file, argp);
|
|
case BTRFS_IOC_ADD_DEV:
|
|
return btrfs_ioctl_add_dev(fs_info, argp);
|
|
case BTRFS_IOC_RM_DEV:
|
|
return btrfs_ioctl_rm_dev(file, argp);
|
|
case BTRFS_IOC_RM_DEV_V2:
|
|
return btrfs_ioctl_rm_dev_v2(file, argp);
|
|
case BTRFS_IOC_FS_INFO:
|
|
return btrfs_ioctl_fs_info(fs_info, argp);
|
|
case BTRFS_IOC_DEV_INFO:
|
|
return btrfs_ioctl_dev_info(fs_info, argp);
|
|
case BTRFS_IOC_BALANCE:
|
|
return btrfs_ioctl_balance(file, NULL);
|
|
case BTRFS_IOC_TREE_SEARCH:
|
|
return btrfs_ioctl_tree_search(file, argp);
|
|
case BTRFS_IOC_TREE_SEARCH_V2:
|
|
return btrfs_ioctl_tree_search_v2(file, argp);
|
|
case BTRFS_IOC_INO_LOOKUP:
|
|
return btrfs_ioctl_ino_lookup(file, argp);
|
|
case BTRFS_IOC_INO_PATHS:
|
|
return btrfs_ioctl_ino_to_path(root, argp);
|
|
case BTRFS_IOC_LOGICAL_INO:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
|
|
case BTRFS_IOC_LOGICAL_INO_V2:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
|
|
case BTRFS_IOC_SPACE_INFO:
|
|
return btrfs_ioctl_space_info(fs_info, argp);
|
|
case BTRFS_IOC_SYNC: {
|
|
int ret;
|
|
|
|
ret = btrfs_start_delalloc_roots(fs_info, -1);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_sync_fs(inode->i_sb, 1);
|
|
/*
|
|
* The transaction thread may want to do more work,
|
|
* namely it pokes the cleaner kthread that will start
|
|
* processing uncleaned subvols.
|
|
*/
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
return ret;
|
|
}
|
|
case BTRFS_IOC_START_SYNC:
|
|
return btrfs_ioctl_start_sync(root, argp);
|
|
case BTRFS_IOC_WAIT_SYNC:
|
|
return btrfs_ioctl_wait_sync(fs_info, argp);
|
|
case BTRFS_IOC_SCRUB:
|
|
return btrfs_ioctl_scrub(file, argp);
|
|
case BTRFS_IOC_SCRUB_CANCEL:
|
|
return btrfs_ioctl_scrub_cancel(fs_info);
|
|
case BTRFS_IOC_SCRUB_PROGRESS:
|
|
return btrfs_ioctl_scrub_progress(fs_info, argp);
|
|
case BTRFS_IOC_BALANCE_V2:
|
|
return btrfs_ioctl_balance(file, argp);
|
|
case BTRFS_IOC_BALANCE_CTL:
|
|
return btrfs_ioctl_balance_ctl(fs_info, arg);
|
|
case BTRFS_IOC_BALANCE_PROGRESS:
|
|
return btrfs_ioctl_balance_progress(fs_info, argp);
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
|
|
return btrfs_ioctl_set_received_subvol(file, argp);
|
|
#ifdef CONFIG_64BIT
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
|
|
return btrfs_ioctl_set_received_subvol_32(file, argp);
|
|
#endif
|
|
case BTRFS_IOC_SEND:
|
|
return _btrfs_ioctl_send(file, argp, false);
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
case BTRFS_IOC_SEND_32:
|
|
return _btrfs_ioctl_send(file, argp, true);
|
|
#endif
|
|
case BTRFS_IOC_GET_DEV_STATS:
|
|
return btrfs_ioctl_get_dev_stats(fs_info, argp);
|
|
case BTRFS_IOC_QUOTA_CTL:
|
|
return btrfs_ioctl_quota_ctl(file, argp);
|
|
case BTRFS_IOC_QGROUP_ASSIGN:
|
|
return btrfs_ioctl_qgroup_assign(file, argp);
|
|
case BTRFS_IOC_QGROUP_CREATE:
|
|
return btrfs_ioctl_qgroup_create(file, argp);
|
|
case BTRFS_IOC_QGROUP_LIMIT:
|
|
return btrfs_ioctl_qgroup_limit(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN:
|
|
return btrfs_ioctl_quota_rescan(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
|
|
return btrfs_ioctl_quota_rescan_status(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
|
|
return btrfs_ioctl_quota_rescan_wait(file, argp);
|
|
case BTRFS_IOC_DEV_REPLACE:
|
|
return btrfs_ioctl_dev_replace(fs_info, argp);
|
|
case BTRFS_IOC_GET_FSLABEL:
|
|
return btrfs_ioctl_get_fslabel(file, argp);
|
|
case BTRFS_IOC_SET_FSLABEL:
|
|
return btrfs_ioctl_set_fslabel(file, argp);
|
|
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
|
|
return btrfs_ioctl_get_supported_features(argp);
|
|
case BTRFS_IOC_GET_FEATURES:
|
|
return btrfs_ioctl_get_features(file, argp);
|
|
case BTRFS_IOC_SET_FEATURES:
|
|
return btrfs_ioctl_set_features(file, argp);
|
|
case FS_IOC_FSGETXATTR:
|
|
return btrfs_ioctl_fsgetxattr(file, argp);
|
|
case FS_IOC_FSSETXATTR:
|
|
return btrfs_ioctl_fssetxattr(file, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_INFO:
|
|
return btrfs_ioctl_get_subvol_info(file, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
|
|
return btrfs_ioctl_get_subvol_rootref(file, argp);
|
|
case BTRFS_IOC_INO_LOOKUP_USER:
|
|
return btrfs_ioctl_ino_lookup_user(file, argp);
|
|
}
|
|
|
|
return -ENOTTY;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
/*
|
|
* These all access 32-bit values anyway so no further
|
|
* handling is necessary.
|
|
*/
|
|
switch (cmd) {
|
|
case FS_IOC32_GETFLAGS:
|
|
cmd = FS_IOC_GETFLAGS;
|
|
break;
|
|
case FS_IOC32_SETFLAGS:
|
|
cmd = FS_IOC_SETFLAGS;
|
|
break;
|
|
case FS_IOC32_GETVERSION:
|
|
cmd = FS_IOC_GETVERSION;
|
|
break;
|
|
}
|
|
|
|
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
|
|
}
|
|
#endif
|