linux/Documentation/devicetree/bindings/arm/cpus.yaml
Linus Torvalds 854e80bcfd ARM: devicetree updates for v5.7
Most of the commits are for additional hardware support and minor fixes
 for existing machines for all the usual platforms: qcom, amlogic, at91,
 gemini, mediatek, ti, socfpga, i.mx, layerscape, uniphier, rockchip,
 exynos, ux500, mvebu, tegra, stm32, renesas, sunxi, broadcom, omap,
 and versatile.
 
 The conversion of binding files to machine-readable yaml format
 continues, along with fixes found during the validation.
 Andre Przywara takes over maintainership for the old Calxeda Highbank
 platform and provides a number of updates.
 
 The OMAP2+ platforms see a continued move from platform data into
 dts files, for many devices that relied on a mix of auxiliary data
 in addition to the DT description
 
 A moderate number of new SoCs and machines are added, here is a full
 list:
 
 - Two new Qualcomm SoCs with their evaluation boards: Snapdragon 865
   (SM8250) is the current high-end phone chip, and IPQ6018 is a new
   WiFi-6 router chip.
 
 - Mediatek MT8516 application processor SoC for voice assistants, along
   with the "pumpkin" development board
 
 - NXP i.MX8M Plus SoC, a variant of the popular i.MX8M, along with an
   evaluation board.
 
 - Kontron "sl28" board family based on NXP LS1028A
 
 - Eleven variations of the new i.MX6 TechNexion Pico board, combining
   the "dwarf", "hobbit", "nymph" and "pi" baseboards with i.MX6/i.MX7
   SoM carriers
 
 - Three additional variants of the Toradex Colibri board family, all
   based on versions of the NXP i.MX7.
 
 - The Pinebook Pro laptop based on Rockchip RK3399
 
 - Samsung S7710 Galaxy Xcover 2, a 2013 vintage Android phone based on
   the ST-Ericsson u8500 platform
 
 - DH Electronics DHCOM SoM and PDK2 rev. 400 carrier based on
   STMicroelectronics stm32mp157
 
 - Renesas M3ULCB starter kit for R-Car M3-W+
 
 - Hoperun HiHope development board with Renesas RZ/G2M
 
 - Pine64 PineTab tablet and PinePhone phone, both based on Allwinner A64
 
 - Linutronix Testbox v2 for the Lamobo R1 router, based on Allwinner A20
 
 - PocketBook Touch Lux 3 ebook reader, based on Allwinner A13
 
 Signed-off-by: Arnd Bergmann <arnd@arndb.de>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl6HpMkACgkQmmx57+YA
 GNkGsQ/+KRbE74XGQvZww5PleaesqoZZhrt2gbi0pEJZ/JTgNa3dBkT+JwlToe/H
 x7nFVfMZeEl4O9GO0+/CH2tsmQa5BA8R9JddhFxwnZ48ZYLQAdaukwt94LM2zj3K
 GFgs47N4DAAF5QJoXNtmmQCXUWbj7A/0S5TTpXe94TYPN9XiJCdsyNNLpW3undTe
 K1HLnd4yWGforQc/VfRsV/Gsqi1VNHgL34M3belahiG7x0lytJDCHfhsfmIdxdGR
 n3LVRRJr6NhKcuUw3XtA8MxT4dTAcgHjbbDLkS/b1nHfuXMi0/zW8VPBzD/xyHL7
 fbFl8ayUMANB6FD/U7ptUC/0IMXuHDUn4B60CEEzK8ddkEbErrmXlYVGogpFHxvm
 MqrW8CnO0YEr0YMNAIyZoqHYGq8+8DCq+SRH48brdPzuiKI6OahdV1o07ulGhOjq
 ihwoZNE+J0NjeaX7C1xBX3DT1XqdcNPCmu3gx6r06u2FVXVm1J19YkIzQnEXQvKy
 NRIw5LIOfEsxkMSQ0oUuAUUUY1Fq1zuHqD8MmgBd3jqIULQqgfahmPL6Dtwm5QFf
 R17YsMcQ7ae1Pp7a+D3Jrkbn+s2y8wmJZIqH3eWebps9RvpWmrxzsRfOJ2czhqM1
 NY7Z/TGMM7lGM75DZ+xskfk7UCAX+hqMSTiNg9xbRo8946GAbV4=
 =ye2F
 -----END PGP SIGNATURE-----

Merge tag 'arm-dt-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc

Pull ARM devicetree updates from Arnd Bergmann:
 "Most of the commits are for additional hardware support and minor
  fixes for existing machines for all the usual platforms: qcom,
  amlogic, at91, gemini, mediatek, ti, socfpga, i.mx, layerscape,
  uniphier, rockchip, exynos, ux500, mvebu, tegra, stm32, renesas,
  sunxi, broadcom, omap, and versatile.

  The conversion of binding files to machine-readable yaml format
  continues, along with fixes found during the validation. Andre
  Przywara takes over maintainership for the old Calxeda Highbank
  platform and provides a number of updates.

  The OMAP2+ platforms see a continued move from platform data into dts
  files, for many devices that relied on a mix of auxiliary data in
  addition to the DT description

  A moderate number of new SoCs and machines are added, here is a full
  list:

   - Two new Qualcomm SoCs with their evaluation boards: Snapdragon 865
     (SM8250) is the current high-end phone chip, and IPQ6018 is a new
     WiFi-6 router chip.

   - Mediatek MT8516 application processor SoC for voice assistants,
     along with the "pumpkin" development board

   - NXP i.MX8M Plus SoC, a variant of the popular i.MX8M, along with an
     evaluation board.

   - Kontron "sl28" board family based on NXP LS1028A

   - Eleven variations of the new i.MX6 TechNexion Pico board, combining
     the "dwarf", "hobbit", "nymph" and "pi" baseboards with i.MX6/i.MX7
     SoM carriers

   - Three additional variants of the Toradex Colibri board family, all
     based on versions of the NXP i.MX7.

   - The Pinebook Pro laptop based on Rockchip RK3399

   - Samsung S7710 Galaxy Xcover 2, a 2013 vintage Android phone based
     on the ST-Ericsson u8500 platform

   - DH Electronics DHCOM SoM and PDK2 rev. 400 carrier based on
     STMicroelectronics stm32mp157

   - Renesas M3ULCB starter kit for R-Car M3-W+

   - Hoperun HiHope development board with Renesas RZ/G2M

   - Pine64 PineTab tablet and PinePhone phone, both based on Allwinner
     A64

   - Linutronix Testbox v2 for the Lamobo R1 router, based on Allwinner
     A20

   - PocketBook Touch Lux 3 ebook reader, based on Allwinner A13"

* tag 'arm-dt-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (520 commits)
  ARM: dts: ux500: Fix missing node renames
  arm64: dts: Revert "specify console via command line"
  MAINTAINERS: Update Calxeda Highbank maintainership
  arm: dts: calxeda: Group port-phys and sgpio-gpio items
  arm: dts: calxeda: Fix interrupt grouping
  arm: dts: calxeda: Provide UART clock
  arm: dts: calxeda: Basic DT file fixes
  arm64: dts: specify console via command line
  ARM: dts: at91: sama5d27_wlsom1_ek: add USB device node
  ARM: dts: gemini: Add thermal zone to DIR-685
  ARM: dts: gemini: Rename IDE nodes
  ARM: socfpga: arria10: Add ptp_ref clock to ethernet nodes
  arm64: dts: ti: k3-j721e-mcu: add scm node and phy-gmii-sel nodes
  arm64: dts: ti: k3-am65-mcu: add phy-gmii-sel node
  arm64: dts: ti: k3-am65-mcu: Add DMA entries for ADC
  arm64: dts: ti: k3-am65-main: Add DMA entries for main_spi0
  arm64: dts: ti: k3-j721e-mcu-wakeup: Add DMA entries for ADC
  arm64: dts: ti: k3-am65: Add clocks to dwc3 nodes
  arm64: dts: meson-g12b-odroid-n2: add SPIFC controller node
  arm64: dts: khadas-vim3: add SPIFC controller node
  ...
2020-04-03 15:22:05 -07:00

536 lines
14 KiB
YAML

# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/cpus.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: ARM CPUs bindings
maintainers:
- Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
description: |+
The device tree allows to describe the layout of CPUs in a system through
the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
defining properties for every cpu.
Bindings for CPU nodes follow the Devicetree Specification, available from:
https://www.devicetree.org/specifications/
with updates for 32-bit and 64-bit ARM systems provided in this document.
================================
Convention used in this document
================================
This document follows the conventions described in the Devicetree
Specification, with the addition:
- square brackets define bitfields, eg reg[7:0] value of the bitfield in
the reg property contained in bits 7 down to 0
=====================================
cpus and cpu node bindings definition
=====================================
The ARM architecture, in accordance with the Devicetree Specification,
requires the cpus and cpu nodes to be present and contain the properties
described below.
properties:
reg:
maxItems: 1
description: |
Usage and definition depend on ARM architecture version and
configuration:
On uniprocessor ARM architectures previous to v7
this property is required and must be set to 0.
On ARM 11 MPcore based systems this property is
required and matches the CPUID[11:0] register bits.
Bits [11:0] in the reg cell must be set to
bits [11:0] in CPU ID register.
All other bits in the reg cell must be set to 0.
On 32-bit ARM v7 or later systems this property is
required and matches the CPU MPIDR[23:0] register
bits.
Bits [23:0] in the reg cell must be set to
bits [23:0] in MPIDR.
All other bits in the reg cell must be set to 0.
On ARM v8 64-bit systems this property is required
and matches the MPIDR_EL1 register affinity bits.
* If cpus node's #address-cells property is set to 2
The first reg cell bits [7:0] must be set to
bits [39:32] of MPIDR_EL1.
The second reg cell bits [23:0] must be set to
bits [23:0] of MPIDR_EL1.
* If cpus node's #address-cells property is set to 1
The reg cell bits [23:0] must be set to bits [23:0]
of MPIDR_EL1.
All other bits in the reg cells must be set to 0.
compatible:
enum:
- arm,arm710t
- arm,arm720t
- arm,arm740t
- arm,arm7ej-s
- arm,arm7tdmi
- arm,arm7tdmi-s
- arm,arm9es
- arm,arm9ej-s
- arm,arm920t
- arm,arm922t
- arm,arm925
- arm,arm926e-s
- arm,arm926ej-s
- arm,arm940t
- arm,arm946e-s
- arm,arm966e-s
- arm,arm968e-s
- arm,arm9tdmi
- arm,arm1020e
- arm,arm1020t
- arm,arm1022e
- arm,arm1026ej-s
- arm,arm1136j-s
- arm,arm1136jf-s
- arm,arm1156t2-s
- arm,arm1156t2f-s
- arm,arm1176jzf
- arm,arm1176jz-s
- arm,arm1176jzf-s
- arm,arm11mpcore
- arm,armv8 # Only for s/w models
- arm,cortex-a5
- arm,cortex-a7
- arm,cortex-a8
- arm,cortex-a9
- arm,cortex-a12
- arm,cortex-a15
- arm,cortex-a17
- arm,cortex-a32
- arm,cortex-a34
- arm,cortex-a35
- arm,cortex-a53
- arm,cortex-a55
- arm,cortex-a57
- arm,cortex-a65
- arm,cortex-a72
- arm,cortex-a73
- arm,cortex-a75
- arm,cortex-a76
- arm,cortex-a77
- arm,cortex-m0
- arm,cortex-m0+
- arm,cortex-m1
- arm,cortex-m3
- arm,cortex-m4
- arm,cortex-r4
- arm,cortex-r5
- arm,cortex-r7
- arm,neoverse-e1
- arm,neoverse-n1
- brcm,brahma-b15
- brcm,brahma-b53
- brcm,vulcan
- cavium,thunder
- cavium,thunder2
- faraday,fa526
- intel,sa110
- intel,sa1100
- marvell,feroceon
- marvell,mohawk
- marvell,pj4a
- marvell,pj4b
- marvell,sheeva-v5
- marvell,sheeva-v7
- nvidia,tegra132-denver
- nvidia,tegra186-denver
- nvidia,tegra194-carmel
- qcom,krait
- qcom,kryo
- qcom,kryo260
- qcom,kryo280
- qcom,kryo385
- qcom,kryo485
- qcom,scorpion
enable-method:
allOf:
- $ref: '/schemas/types.yaml#/definitions/string'
- oneOf:
# On ARM v8 64-bit this property is required
- enum:
- psci
- spin-table
# On ARM 32-bit systems this property is optional
- enum:
- actions,s500-smp
- allwinner,sun6i-a31
- allwinner,sun8i-a23
- allwinner,sun9i-a80-smp
- allwinner,sun8i-a83t-smp
- amlogic,meson8-smp
- amlogic,meson8b-smp
- arm,realview-smp
- aspeed,ast2600-smp
- brcm,bcm11351-cpu-method
- brcm,bcm23550
- brcm,bcm2836-smp
- brcm,bcm63138
- brcm,bcm-nsp-smp
- brcm,brahma-b15
- marvell,armada-375-smp
- marvell,armada-380-smp
- marvell,armada-390-smp
- marvell,armada-xp-smp
- marvell,98dx3236-smp
- marvell,mmp3-smp
- mediatek,mt6589-smp
- mediatek,mt81xx-tz-smp
- qcom,gcc-msm8660
- qcom,kpss-acc-v1
- qcom,kpss-acc-v2
- renesas,apmu
- renesas,r9a06g032-smp
- rockchip,rk3036-smp
- rockchip,rk3066-smp
- socionext,milbeaut-m10v-smp
- ste,dbx500-smp
- ti,am3352
- ti,am4372
cpu-release-addr:
$ref: '/schemas/types.yaml#/definitions/uint64'
description:
Required for systems that have an "enable-method"
property value of "spin-table".
On ARM v8 64-bit systems must be a two cell
property identifying a 64-bit zero-initialised
memory location.
cpu-idle-states:
$ref: '/schemas/types.yaml#/definitions/phandle-array'
description: |
List of phandles to idle state nodes supported
by this cpu (see ./idle-states.yaml).
capacity-dmips-mhz:
$ref: '/schemas/types.yaml#/definitions/uint32'
description:
u32 value representing CPU capacity (see ./cpu-capacity.txt) in
DMIPS/MHz, relative to highest capacity-dmips-mhz
in the system.
dynamic-power-coefficient:
$ref: '/schemas/types.yaml#/definitions/uint32'
description:
A u32 value that represents the running time dynamic
power coefficient in units of uW/MHz/V^2. The
coefficient can either be calculated from power
measurements or derived by analysis.
The dynamic power consumption of the CPU is
proportional to the square of the Voltage (V) and
the clock frequency (f). The coefficient is used to
calculate the dynamic power as below -
Pdyn = dynamic-power-coefficient * V^2 * f
where voltage is in V, frequency is in MHz.
power-domains:
$ref: '/schemas/types.yaml#/definitions/phandle-array'
description:
List of phandles and PM domain specifiers, as defined by bindings of the
PM domain provider (see also ../power_domain.txt).
power-domain-names:
$ref: '/schemas/types.yaml#/definitions/string-array'
description:
A list of power domain name strings sorted in the same order as the
power-domains property.
For PSCI based platforms, the name corresponding to the index of the PSCI
PM domain provider, must be "psci".
qcom,saw:
$ref: '/schemas/types.yaml#/definitions/phandle'
description: |
Specifies the SAW* node associated with this CPU.
Required for systems that have an "enable-method" property
value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
* arm/msm/qcom,saw2.txt
qcom,acc:
$ref: '/schemas/types.yaml#/definitions/phandle'
description: |
Specifies the ACC* node associated with this CPU.
Required for systems that have an "enable-method" property
value of "qcom,kpss-acc-v1" or "qcom,kpss-acc-v2"
* arm/msm/qcom,kpss-acc.txt
rockchip,pmu:
$ref: '/schemas/types.yaml#/definitions/phandle'
description: |
Specifies the syscon node controlling the cpu core power domains.
Optional for systems that have an "enable-method"
property value of "rockchip,rk3066-smp"
While optional, it is the preferred way to get access to
the cpu-core power-domains.
secondary-boot-reg:
$ref: '/schemas/types.yaml#/definitions/uint32'
description: |
Required for systems that have an "enable-method" property value of
"brcm,bcm11351-cpu-method", "brcm,bcm23550" or "brcm,bcm-nsp-smp".
This includes the following SoCs: |
BCM11130, BCM11140, BCM11351, BCM28145, BCM28155, BCM21664, BCM23550
BCM58522, BCM58525, BCM58535, BCM58622, BCM58623, BCM58625, BCM88312
The secondary-boot-reg property is a u32 value that specifies the
physical address of the register used to request the ROM holding pen
code release a secondary CPU. The value written to the register is
formed by encoding the target CPU id into the low bits of the
physical start address it should jump to.
if:
# If the enable-method property contains one of those values
properties:
enable-method:
contains:
enum:
- brcm,bcm11351-cpu-method
- brcm,bcm23550
- brcm,bcm-nsp-smp
# and if enable-method is present
required:
- enable-method
then:
required:
- secondary-boot-reg
required:
- device_type
- reg
- compatible
dependencies:
rockchip,pmu: [enable-method]
examples:
- |
cpus {
#size-cells = <0>;
#address-cells = <1>;
cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x0>;
};
cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x1>;
};
cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x100>;
};
cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x101>;
};
};
- |
// Example 2 (Cortex-A8 uniprocessor 32-bit system):
cpus {
#size-cells = <0>;
#address-cells = <1>;
cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a8";
reg = <0x0>;
};
};
- |
// Example 3 (ARM 926EJ-S uniprocessor 32-bit system):
cpus {
#size-cells = <0>;
#address-cells = <1>;
cpu@0 {
device_type = "cpu";
compatible = "arm,arm926ej-s";
reg = <0x0>;
};
};
- |
// Example 4 (ARM Cortex-A57 64-bit system):
cpus {
#size-cells = <0>;
#address-cells = <2>;
cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x0>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x1>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x100>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x101>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@10000 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x10000>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@10001 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x10001>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@10100 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x10100>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@10101 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x0 0x10101>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100000000 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x0>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100000001 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x1>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100000100 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x100>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100000101 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x101>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100010000 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x10000>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100010001 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x10001>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100010100 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x10100>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
cpu@100010101 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x1 0x10101>;
enable-method = "spin-table";
cpu-release-addr = <0 0x20000000>;
};
};
...