forked from Minki/linux
d9fd428a30
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293
("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Ludovic Desroches<ludovic.desroches@microchip.com>
Link: https://lore.kernel.org/r/20200507190046.GA15298@embeddedor
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2157 lines
66 KiB
C
2157 lines
66 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
|
|
*
|
|
* Copyright (C) 2014 Atmel Corporation
|
|
*
|
|
* Author: Ludovic Desroches <ludovic.desroches@atmel.com>
|
|
*/
|
|
|
|
#include <asm/barrier.h>
|
|
#include <dt-bindings/dma/at91.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm.h>
|
|
|
|
#include "dmaengine.h"
|
|
|
|
/* Global registers */
|
|
#define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
|
|
#define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
|
|
#define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
|
|
#define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
|
|
#define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
|
|
#define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
|
|
#define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
|
|
#define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
|
|
#define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
|
|
#define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
|
|
#define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
|
|
#define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
|
|
#define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
|
|
#define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */
|
|
#define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */
|
|
#define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */
|
|
#define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */
|
|
#define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */
|
|
#define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */
|
|
#define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */
|
|
#define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
|
|
|
|
/* Channel relative registers offsets */
|
|
#define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
|
|
#define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
|
|
#define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
|
|
#define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
|
|
#define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
|
|
#define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
|
|
#define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
|
|
#define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
|
|
#define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
|
|
#define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
|
|
#define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
|
|
#define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
|
|
#define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
|
|
#define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
|
|
#define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
|
|
#define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
|
|
#define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
|
|
#define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
|
|
#define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
|
|
#define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
|
|
#define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
|
|
#define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
|
|
#define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
|
|
#define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
|
|
#define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
|
|
#define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
|
|
#define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
|
|
#define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
|
|
#define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
|
|
#define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
|
|
#define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
|
|
#define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
|
|
#define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
|
|
#define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
|
|
#define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
|
|
#define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
|
|
#define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
|
|
#define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
|
|
#define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
|
|
#define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
|
|
#define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
|
|
#define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
|
|
#define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
|
|
#define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
|
|
#define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
|
|
#define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
|
|
#define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
|
|
#define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
|
|
#define AT_XDMAC_CC_DWIDTH_OFFSET 11
|
|
#define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
|
|
#define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
|
|
#define AT_XDMAC_CC_DWIDTH_BYTE 0x0
|
|
#define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
|
|
#define AT_XDMAC_CC_DWIDTH_WORD 0x2
|
|
#define AT_XDMAC_CC_DWIDTH_DWORD 0x3
|
|
#define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
|
|
#define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
|
|
#define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
|
|
#define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
|
|
#define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
|
|
#define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
|
|
#define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
|
|
#define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
|
|
#define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
|
|
#define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
|
|
#define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
|
|
#define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
|
|
#define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
|
|
#define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
|
|
#define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
|
|
#define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
|
|
#define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
|
|
#define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
|
|
#define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
|
|
#define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
|
|
#define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
|
|
#define AT_XDMAC_CC_PERID(i) (0x7f & (i) << 24) /* Channel Peripheral Identifier */
|
|
#define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
|
|
#define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
|
|
#define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
|
|
|
|
#define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */
|
|
|
|
/* Microblock control members */
|
|
#define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
|
|
#define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
|
|
#define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
|
|
#define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
|
|
#define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
|
|
#define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
|
|
#define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
|
|
#define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
|
|
|
|
#define AT_XDMAC_MAX_CHAN 0x20
|
|
#define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
|
|
#define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
|
|
#define AT_XDMAC_RESIDUE_MAX_RETRIES 5
|
|
|
|
#define AT_XDMAC_DMA_BUSWIDTHS\
|
|
(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
|
|
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
|
|
|
|
enum atc_status {
|
|
AT_XDMAC_CHAN_IS_CYCLIC = 0,
|
|
AT_XDMAC_CHAN_IS_PAUSED,
|
|
};
|
|
|
|
/* ----- Channels ----- */
|
|
struct at_xdmac_chan {
|
|
struct dma_chan chan;
|
|
void __iomem *ch_regs;
|
|
u32 mask; /* Channel Mask */
|
|
u32 cfg; /* Channel Configuration Register */
|
|
u8 perid; /* Peripheral ID */
|
|
u8 perif; /* Peripheral Interface */
|
|
u8 memif; /* Memory Interface */
|
|
u32 save_cc;
|
|
u32 save_cim;
|
|
u32 save_cnda;
|
|
u32 save_cndc;
|
|
u32 irq_status;
|
|
unsigned long status;
|
|
struct tasklet_struct tasklet;
|
|
struct dma_slave_config sconfig;
|
|
|
|
spinlock_t lock;
|
|
|
|
struct list_head xfers_list;
|
|
struct list_head free_descs_list;
|
|
};
|
|
|
|
|
|
/* ----- Controller ----- */
|
|
struct at_xdmac {
|
|
struct dma_device dma;
|
|
void __iomem *regs;
|
|
int irq;
|
|
struct clk *clk;
|
|
u32 save_gim;
|
|
struct dma_pool *at_xdmac_desc_pool;
|
|
struct at_xdmac_chan chan[];
|
|
};
|
|
|
|
|
|
/* ----- Descriptors ----- */
|
|
|
|
/* Linked List Descriptor */
|
|
struct at_xdmac_lld {
|
|
dma_addr_t mbr_nda; /* Next Descriptor Member */
|
|
u32 mbr_ubc; /* Microblock Control Member */
|
|
dma_addr_t mbr_sa; /* Source Address Member */
|
|
dma_addr_t mbr_da; /* Destination Address Member */
|
|
u32 mbr_cfg; /* Configuration Register */
|
|
u32 mbr_bc; /* Block Control Register */
|
|
u32 mbr_ds; /* Data Stride Register */
|
|
u32 mbr_sus; /* Source Microblock Stride Register */
|
|
u32 mbr_dus; /* Destination Microblock Stride Register */
|
|
};
|
|
|
|
/* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
|
|
struct at_xdmac_desc {
|
|
struct at_xdmac_lld lld;
|
|
enum dma_transfer_direction direction;
|
|
struct dma_async_tx_descriptor tx_dma_desc;
|
|
struct list_head desc_node;
|
|
/* Following members are only used by the first descriptor */
|
|
bool active_xfer;
|
|
unsigned int xfer_size;
|
|
struct list_head descs_list;
|
|
struct list_head xfer_node;
|
|
} __aligned(sizeof(u64));
|
|
|
|
static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
|
|
{
|
|
return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
|
|
}
|
|
|
|
#define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
|
|
#define at_xdmac_write(atxdmac, reg, value) \
|
|
writel_relaxed((value), (atxdmac)->regs + (reg))
|
|
|
|
#define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
|
|
#define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
|
|
|
|
static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
|
|
{
|
|
return container_of(dchan, struct at_xdmac_chan, chan);
|
|
}
|
|
|
|
static struct device *chan2dev(struct dma_chan *chan)
|
|
{
|
|
return &chan->dev->device;
|
|
}
|
|
|
|
static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
|
|
{
|
|
return container_of(ddev, struct at_xdmac, dma);
|
|
}
|
|
|
|
static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
|
|
{
|
|
return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
|
|
}
|
|
|
|
static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
|
|
{
|
|
return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
|
|
}
|
|
|
|
static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
|
|
{
|
|
return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
|
|
}
|
|
|
|
static inline int at_xdmac_csize(u32 maxburst)
|
|
{
|
|
int csize;
|
|
|
|
csize = ffs(maxburst) - 1;
|
|
if (csize > 4)
|
|
csize = -EINVAL;
|
|
|
|
return csize;
|
|
};
|
|
|
|
static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
|
|
{
|
|
return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
|
|
}
|
|
|
|
static inline u8 at_xdmac_get_dwidth(u32 cfg)
|
|
{
|
|
return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
|
|
};
|
|
|
|
static unsigned int init_nr_desc_per_channel = 64;
|
|
module_param(init_nr_desc_per_channel, uint, 0644);
|
|
MODULE_PARM_DESC(init_nr_desc_per_channel,
|
|
"initial descriptors per channel (default: 64)");
|
|
|
|
|
|
static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
|
|
{
|
|
return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
|
|
}
|
|
|
|
static void at_xdmac_off(struct at_xdmac *atxdmac)
|
|
{
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
|
|
|
|
/* Wait that all chans are disabled. */
|
|
while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
|
|
cpu_relax();
|
|
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
|
|
}
|
|
|
|
/* Call with lock hold. */
|
|
static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
|
|
struct at_xdmac_desc *first)
|
|
{
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
u32 reg;
|
|
|
|
dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
|
|
|
|
if (at_xdmac_chan_is_enabled(atchan))
|
|
return;
|
|
|
|
/* Set transfer as active to not try to start it again. */
|
|
first->active_xfer = true;
|
|
|
|
/* Tell xdmac where to get the first descriptor. */
|
|
reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
|
|
| AT_XDMAC_CNDA_NDAIF(atchan->memif);
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
|
|
|
|
/*
|
|
* When doing non cyclic transfer we need to use the next
|
|
* descriptor view 2 since some fields of the configuration register
|
|
* depend on transfer size and src/dest addresses.
|
|
*/
|
|
if (at_xdmac_chan_is_cyclic(atchan))
|
|
reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
|
|
else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
|
|
reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
|
|
else
|
|
reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
|
|
/*
|
|
* Even if the register will be updated from the configuration in the
|
|
* descriptor when using view 2 or higher, the PROT bit won't be set
|
|
* properly. This bit can be modified only by using the channel
|
|
* configuration register.
|
|
*/
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
|
|
|
|
reg |= AT_XDMAC_CNDC_NDDUP
|
|
| AT_XDMAC_CNDC_NDSUP
|
|
| AT_XDMAC_CNDC_NDE;
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
|
|
|
|
dev_vdbg(chan2dev(&atchan->chan),
|
|
"%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
|
|
__func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
|
|
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
|
|
reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
|
|
/*
|
|
* Request Overflow Error is only for peripheral synchronized transfers
|
|
*/
|
|
if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
|
|
reg |= AT_XDMAC_CIE_ROIE;
|
|
|
|
/*
|
|
* There is no end of list when doing cyclic dma, we need to get
|
|
* an interrupt after each periods.
|
|
*/
|
|
if (at_xdmac_chan_is_cyclic(atchan))
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
|
|
reg | AT_XDMAC_CIE_BIE);
|
|
else
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
|
|
reg | AT_XDMAC_CIE_LIE);
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
|
|
dev_vdbg(chan2dev(&atchan->chan),
|
|
"%s: enable channel (0x%08x)\n", __func__, atchan->mask);
|
|
wmb();
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
|
|
|
|
dev_vdbg(chan2dev(&atchan->chan),
|
|
"%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
|
|
__func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
|
|
|
|
}
|
|
|
|
static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct at_xdmac_desc *desc = txd_to_at_desc(tx);
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
|
|
dma_cookie_t cookie;
|
|
unsigned long irqflags;
|
|
|
|
spin_lock_irqsave(&atchan->lock, irqflags);
|
|
cookie = dma_cookie_assign(tx);
|
|
|
|
dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
|
|
__func__, atchan, desc);
|
|
list_add_tail(&desc->xfer_node, &atchan->xfers_list);
|
|
if (list_is_singular(&atchan->xfers_list))
|
|
at_xdmac_start_xfer(atchan, desc);
|
|
|
|
spin_unlock_irqrestore(&atchan->lock, irqflags);
|
|
return cookie;
|
|
}
|
|
|
|
static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
|
|
gfp_t gfp_flags)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
|
|
dma_addr_t phys;
|
|
|
|
desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
|
|
if (desc) {
|
|
INIT_LIST_HEAD(&desc->descs_list);
|
|
dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
|
|
desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
|
|
desc->tx_dma_desc.phys = phys;
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
|
|
{
|
|
memset(&desc->lld, 0, sizeof(desc->lld));
|
|
INIT_LIST_HEAD(&desc->descs_list);
|
|
desc->direction = DMA_TRANS_NONE;
|
|
desc->xfer_size = 0;
|
|
desc->active_xfer = false;
|
|
}
|
|
|
|
/* Call must be protected by lock. */
|
|
static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
|
|
if (list_empty(&atchan->free_descs_list)) {
|
|
desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
|
|
} else {
|
|
desc = list_first_entry(&atchan->free_descs_list,
|
|
struct at_xdmac_desc, desc_node);
|
|
list_del(&desc->desc_node);
|
|
at_xdmac_init_used_desc(desc);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void at_xdmac_queue_desc(struct dma_chan *chan,
|
|
struct at_xdmac_desc *prev,
|
|
struct at_xdmac_desc *desc)
|
|
{
|
|
if (!prev || !desc)
|
|
return;
|
|
|
|
prev->lld.mbr_nda = desc->tx_dma_desc.phys;
|
|
prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
|
|
__func__, prev, &prev->lld.mbr_nda);
|
|
}
|
|
|
|
static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
|
|
struct at_xdmac_desc *desc)
|
|
{
|
|
if (!desc)
|
|
return;
|
|
|
|
desc->lld.mbr_bc++;
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: incrementing the block count of the desc 0x%p\n",
|
|
__func__, desc);
|
|
}
|
|
|
|
static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *of_dma)
|
|
{
|
|
struct at_xdmac *atxdmac = of_dma->of_dma_data;
|
|
struct at_xdmac_chan *atchan;
|
|
struct dma_chan *chan;
|
|
struct device *dev = atxdmac->dma.dev;
|
|
|
|
if (dma_spec->args_count != 1) {
|
|
dev_err(dev, "dma phandler args: bad number of args\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan = dma_get_any_slave_channel(&atxdmac->dma);
|
|
if (!chan) {
|
|
dev_err(dev, "can't get a dma channel\n");
|
|
return NULL;
|
|
}
|
|
|
|
atchan = to_at_xdmac_chan(chan);
|
|
atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
|
|
atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
|
|
atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
|
|
dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
|
|
atchan->memif, atchan->perif, atchan->perid);
|
|
|
|
return chan;
|
|
}
|
|
|
|
static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
|
|
enum dma_transfer_direction direction)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
int csize, dwidth;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
atchan->cfg =
|
|
AT91_XDMAC_DT_PERID(atchan->perid)
|
|
| AT_XDMAC_CC_DAM_INCREMENTED_AM
|
|
| AT_XDMAC_CC_SAM_FIXED_AM
|
|
| AT_XDMAC_CC_DIF(atchan->memif)
|
|
| AT_XDMAC_CC_SIF(atchan->perif)
|
|
| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
|
|
| AT_XDMAC_CC_DSYNC_PER2MEM
|
|
| AT_XDMAC_CC_MBSIZE_SIXTEEN
|
|
| AT_XDMAC_CC_TYPE_PER_TRAN;
|
|
csize = ffs(atchan->sconfig.src_maxburst) - 1;
|
|
if (csize < 0) {
|
|
dev_err(chan2dev(chan), "invalid src maxburst value\n");
|
|
return -EINVAL;
|
|
}
|
|
atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
|
|
dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
|
|
if (dwidth < 0) {
|
|
dev_err(chan2dev(chan), "invalid src addr width value\n");
|
|
return -EINVAL;
|
|
}
|
|
atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
|
|
} else if (direction == DMA_MEM_TO_DEV) {
|
|
atchan->cfg =
|
|
AT91_XDMAC_DT_PERID(atchan->perid)
|
|
| AT_XDMAC_CC_DAM_FIXED_AM
|
|
| AT_XDMAC_CC_SAM_INCREMENTED_AM
|
|
| AT_XDMAC_CC_DIF(atchan->perif)
|
|
| AT_XDMAC_CC_SIF(atchan->memif)
|
|
| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
|
|
| AT_XDMAC_CC_DSYNC_MEM2PER
|
|
| AT_XDMAC_CC_MBSIZE_SIXTEEN
|
|
| AT_XDMAC_CC_TYPE_PER_TRAN;
|
|
csize = ffs(atchan->sconfig.dst_maxburst) - 1;
|
|
if (csize < 0) {
|
|
dev_err(chan2dev(chan), "invalid src maxburst value\n");
|
|
return -EINVAL;
|
|
}
|
|
atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
|
|
dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
|
|
if (dwidth < 0) {
|
|
dev_err(chan2dev(chan), "invalid dst addr width value\n");
|
|
return -EINVAL;
|
|
}
|
|
atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
|
|
}
|
|
|
|
dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only check that maxburst and addr width values are supported by the
|
|
* the controller but not that the configuration is good to perform the
|
|
* transfer since we don't know the direction at this stage.
|
|
*/
|
|
static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
|
|
{
|
|
if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
|
|
|| (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
|
|
return -EINVAL;
|
|
|
|
if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
|
|
|| (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int at_xdmac_set_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *sconfig)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
|
|
if (at_xdmac_check_slave_config(sconfig)) {
|
|
dev_err(chan2dev(chan), "invalid slave configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *first = NULL, *prev = NULL;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
unsigned int xfer_size = 0;
|
|
unsigned long irqflags;
|
|
struct dma_async_tx_descriptor *ret = NULL;
|
|
|
|
if (!sgl)
|
|
return NULL;
|
|
|
|
if (!is_slave_direction(direction)) {
|
|
dev_err(chan2dev(chan), "invalid DMA direction\n");
|
|
return NULL;
|
|
}
|
|
|
|
dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
|
|
__func__, sg_len,
|
|
direction == DMA_MEM_TO_DEV ? "to device" : "from device",
|
|
flags);
|
|
|
|
/* Protect dma_sconfig field that can be modified by set_slave_conf. */
|
|
spin_lock_irqsave(&atchan->lock, irqflags);
|
|
|
|
if (at_xdmac_compute_chan_conf(chan, direction))
|
|
goto spin_unlock;
|
|
|
|
/* Prepare descriptors. */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
struct at_xdmac_desc *desc = NULL;
|
|
u32 len, mem, dwidth, fixed_dwidth;
|
|
|
|
len = sg_dma_len(sg);
|
|
mem = sg_dma_address(sg);
|
|
if (unlikely(!len)) {
|
|
dev_err(chan2dev(chan), "sg data length is zero\n");
|
|
goto spin_unlock;
|
|
}
|
|
dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
|
|
__func__, i, len, mem);
|
|
|
|
desc = at_xdmac_get_desc(atchan);
|
|
if (!desc) {
|
|
dev_err(chan2dev(chan), "can't get descriptor\n");
|
|
if (first)
|
|
list_splice_init(&first->descs_list, &atchan->free_descs_list);
|
|
goto spin_unlock;
|
|
}
|
|
|
|
/* Linked list descriptor setup. */
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
desc->lld.mbr_sa = atchan->sconfig.src_addr;
|
|
desc->lld.mbr_da = mem;
|
|
} else {
|
|
desc->lld.mbr_sa = mem;
|
|
desc->lld.mbr_da = atchan->sconfig.dst_addr;
|
|
}
|
|
dwidth = at_xdmac_get_dwidth(atchan->cfg);
|
|
fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
|
|
? dwidth
|
|
: AT_XDMAC_CC_DWIDTH_BYTE;
|
|
desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
|
|
| AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
|
|
| AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
|
|
| (len >> fixed_dwidth); /* microblock length */
|
|
desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
|
|
AT_XDMAC_CC_DWIDTH(fixed_dwidth);
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
|
|
__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
|
|
|
|
/* Chain lld. */
|
|
if (prev)
|
|
at_xdmac_queue_desc(chan, prev, desc);
|
|
|
|
prev = desc;
|
|
if (!first)
|
|
first = desc;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, desc, first);
|
|
list_add_tail(&desc->desc_node, &first->descs_list);
|
|
xfer_size += len;
|
|
}
|
|
|
|
|
|
first->tx_dma_desc.flags = flags;
|
|
first->xfer_size = xfer_size;
|
|
first->direction = direction;
|
|
ret = &first->tx_dma_desc;
|
|
|
|
spin_unlock:
|
|
spin_unlock_irqrestore(&atchan->lock, irqflags);
|
|
return ret;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
|
|
size_t buf_len, size_t period_len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *first = NULL, *prev = NULL;
|
|
unsigned int periods = buf_len / period_len;
|
|
int i;
|
|
unsigned long irqflags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
|
|
__func__, &buf_addr, buf_len, period_len,
|
|
direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
|
|
|
|
if (!is_slave_direction(direction)) {
|
|
dev_err(chan2dev(chan), "invalid DMA direction\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
|
|
dev_err(chan2dev(chan), "channel currently used\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (at_xdmac_compute_chan_conf(chan, direction))
|
|
return NULL;
|
|
|
|
for (i = 0; i < periods; i++) {
|
|
struct at_xdmac_desc *desc = NULL;
|
|
|
|
spin_lock_irqsave(&atchan->lock, irqflags);
|
|
desc = at_xdmac_get_desc(atchan);
|
|
if (!desc) {
|
|
dev_err(chan2dev(chan), "can't get descriptor\n");
|
|
if (first)
|
|
list_splice_init(&first->descs_list, &atchan->free_descs_list);
|
|
spin_unlock_irqrestore(&atchan->lock, irqflags);
|
|
return NULL;
|
|
}
|
|
spin_unlock_irqrestore(&atchan->lock, irqflags);
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
|
|
__func__, desc, &desc->tx_dma_desc.phys);
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
desc->lld.mbr_sa = atchan->sconfig.src_addr;
|
|
desc->lld.mbr_da = buf_addr + i * period_len;
|
|
} else {
|
|
desc->lld.mbr_sa = buf_addr + i * period_len;
|
|
desc->lld.mbr_da = atchan->sconfig.dst_addr;
|
|
}
|
|
desc->lld.mbr_cfg = atchan->cfg;
|
|
desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
|
|
| AT_XDMAC_MBR_UBC_NDEN
|
|
| AT_XDMAC_MBR_UBC_NSEN
|
|
| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
|
|
__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
|
|
|
|
/* Chain lld. */
|
|
if (prev)
|
|
at_xdmac_queue_desc(chan, prev, desc);
|
|
|
|
prev = desc;
|
|
if (!first)
|
|
first = desc;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, desc, first);
|
|
list_add_tail(&desc->desc_node, &first->descs_list);
|
|
}
|
|
|
|
at_xdmac_queue_desc(chan, prev, first);
|
|
first->tx_dma_desc.flags = flags;
|
|
first->xfer_size = buf_len;
|
|
first->direction = direction;
|
|
|
|
return &first->tx_dma_desc;
|
|
}
|
|
|
|
static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
|
|
{
|
|
u32 width;
|
|
|
|
/*
|
|
* Check address alignment to select the greater data width we
|
|
* can use.
|
|
*
|
|
* Some XDMAC implementations don't provide dword transfer, in
|
|
* this case selecting dword has the same behavior as
|
|
* selecting word transfers.
|
|
*/
|
|
if (!(addr & 7)) {
|
|
width = AT_XDMAC_CC_DWIDTH_DWORD;
|
|
dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
|
|
} else if (!(addr & 3)) {
|
|
width = AT_XDMAC_CC_DWIDTH_WORD;
|
|
dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
|
|
} else if (!(addr & 1)) {
|
|
width = AT_XDMAC_CC_DWIDTH_HALFWORD;
|
|
dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
|
|
} else {
|
|
width = AT_XDMAC_CC_DWIDTH_BYTE;
|
|
dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
|
|
}
|
|
|
|
return width;
|
|
}
|
|
|
|
static struct at_xdmac_desc *
|
|
at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
|
|
struct at_xdmac_chan *atchan,
|
|
struct at_xdmac_desc *prev,
|
|
dma_addr_t src, dma_addr_t dst,
|
|
struct dma_interleaved_template *xt,
|
|
struct data_chunk *chunk)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
u32 dwidth;
|
|
unsigned long flags;
|
|
size_t ublen;
|
|
/*
|
|
* WARNING: The channel configuration is set here since there is no
|
|
* dmaengine_slave_config call in this case. Moreover we don't know the
|
|
* direction, it involves we can't dynamically set the source and dest
|
|
* interface so we have to use the same one. Only interface 0 allows EBI
|
|
* access. Hopefully we can access DDR through both ports (at least on
|
|
* SAMA5D4x), so we can use the same interface for source and dest,
|
|
* that solves the fact we don't know the direction.
|
|
* ERRATA: Even if useless for memory transfers, the PERID has to not
|
|
* match the one of another channel. If not, it could lead to spurious
|
|
* flag status.
|
|
*/
|
|
u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
|
|
| AT_XDMAC_CC_DIF(0)
|
|
| AT_XDMAC_CC_SIF(0)
|
|
| AT_XDMAC_CC_MBSIZE_SIXTEEN
|
|
| AT_XDMAC_CC_TYPE_MEM_TRAN;
|
|
|
|
dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
|
|
if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: chunk too big (%zu, max size %lu)...\n",
|
|
__func__, chunk->size,
|
|
AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
|
|
return NULL;
|
|
}
|
|
|
|
if (prev)
|
|
dev_dbg(chan2dev(chan),
|
|
"Adding items at the end of desc 0x%p\n", prev);
|
|
|
|
if (xt->src_inc) {
|
|
if (xt->src_sgl)
|
|
chan_cc |= AT_XDMAC_CC_SAM_UBS_AM;
|
|
else
|
|
chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
|
|
}
|
|
|
|
if (xt->dst_inc) {
|
|
if (xt->dst_sgl)
|
|
chan_cc |= AT_XDMAC_CC_DAM_UBS_AM;
|
|
else
|
|
chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
|
|
}
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
desc = at_xdmac_get_desc(atchan);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
if (!desc) {
|
|
dev_err(chan2dev(chan), "can't get descriptor\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
|
|
|
|
ublen = chunk->size >> dwidth;
|
|
|
|
desc->lld.mbr_sa = src;
|
|
desc->lld.mbr_da = dst;
|
|
desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
|
|
desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
|
|
|
|
desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
|
|
| AT_XDMAC_MBR_UBC_NDEN
|
|
| AT_XDMAC_MBR_UBC_NSEN
|
|
| ublen;
|
|
desc->lld.mbr_cfg = chan_cc;
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
|
|
__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
|
|
desc->lld.mbr_ubc, desc->lld.mbr_cfg);
|
|
|
|
/* Chain lld. */
|
|
if (prev)
|
|
at_xdmac_queue_desc(chan, prev, desc);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_interleaved(struct dma_chan *chan,
|
|
struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *prev = NULL, *first = NULL;
|
|
dma_addr_t dst_addr, src_addr;
|
|
size_t src_skip = 0, dst_skip = 0, len = 0;
|
|
struct data_chunk *chunk;
|
|
int i;
|
|
|
|
if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
|
|
return NULL;
|
|
|
|
/*
|
|
* TODO: Handle the case where we have to repeat a chain of
|
|
* descriptors...
|
|
*/
|
|
if ((xt->numf > 1) && (xt->frame_size > 1))
|
|
return NULL;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
|
|
__func__, &xt->src_start, &xt->dst_start, xt->numf,
|
|
xt->frame_size, flags);
|
|
|
|
src_addr = xt->src_start;
|
|
dst_addr = xt->dst_start;
|
|
|
|
if (xt->numf > 1) {
|
|
first = at_xdmac_interleaved_queue_desc(chan, atchan,
|
|
NULL,
|
|
src_addr, dst_addr,
|
|
xt, xt->sgl);
|
|
|
|
/* Length of the block is (BLEN+1) microblocks. */
|
|
for (i = 0; i < xt->numf - 1; i++)
|
|
at_xdmac_increment_block_count(chan, first);
|
|
|
|
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, first, first);
|
|
list_add_tail(&first->desc_node, &first->descs_list);
|
|
} else {
|
|
for (i = 0; i < xt->frame_size; i++) {
|
|
size_t src_icg = 0, dst_icg = 0;
|
|
struct at_xdmac_desc *desc;
|
|
|
|
chunk = xt->sgl + i;
|
|
|
|
dst_icg = dmaengine_get_dst_icg(xt, chunk);
|
|
src_icg = dmaengine_get_src_icg(xt, chunk);
|
|
|
|
src_skip = chunk->size + src_icg;
|
|
dst_skip = chunk->size + dst_icg;
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
|
|
__func__, chunk->size, src_icg, dst_icg);
|
|
|
|
desc = at_xdmac_interleaved_queue_desc(chan, atchan,
|
|
prev,
|
|
src_addr, dst_addr,
|
|
xt, chunk);
|
|
if (!desc) {
|
|
list_splice_init(&first->descs_list,
|
|
&atchan->free_descs_list);
|
|
return NULL;
|
|
}
|
|
|
|
if (!first)
|
|
first = desc;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, desc, first);
|
|
list_add_tail(&desc->desc_node, &first->descs_list);
|
|
|
|
if (xt->src_sgl)
|
|
src_addr += src_skip;
|
|
|
|
if (xt->dst_sgl)
|
|
dst_addr += dst_skip;
|
|
|
|
len += chunk->size;
|
|
prev = desc;
|
|
}
|
|
}
|
|
|
|
first->tx_dma_desc.cookie = -EBUSY;
|
|
first->tx_dma_desc.flags = flags;
|
|
first->xfer_size = len;
|
|
|
|
return &first->tx_dma_desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *first = NULL, *prev = NULL;
|
|
size_t remaining_size = len, xfer_size = 0, ublen;
|
|
dma_addr_t src_addr = src, dst_addr = dest;
|
|
u32 dwidth;
|
|
/*
|
|
* WARNING: We don't know the direction, it involves we can't
|
|
* dynamically set the source and dest interface so we have to use the
|
|
* same one. Only interface 0 allows EBI access. Hopefully we can
|
|
* access DDR through both ports (at least on SAMA5D4x), so we can use
|
|
* the same interface for source and dest, that solves the fact we
|
|
* don't know the direction.
|
|
* ERRATA: Even if useless for memory transfers, the PERID has to not
|
|
* match the one of another channel. If not, it could lead to spurious
|
|
* flag status.
|
|
*/
|
|
u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
|
|
| AT_XDMAC_CC_DAM_INCREMENTED_AM
|
|
| AT_XDMAC_CC_SAM_INCREMENTED_AM
|
|
| AT_XDMAC_CC_DIF(0)
|
|
| AT_XDMAC_CC_SIF(0)
|
|
| AT_XDMAC_CC_MBSIZE_SIXTEEN
|
|
| AT_XDMAC_CC_TYPE_MEM_TRAN;
|
|
unsigned long irqflags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
|
|
__func__, &src, &dest, len, flags);
|
|
|
|
if (unlikely(!len))
|
|
return NULL;
|
|
|
|
dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
|
|
|
|
/* Prepare descriptors. */
|
|
while (remaining_size) {
|
|
struct at_xdmac_desc *desc = NULL;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
|
|
|
|
spin_lock_irqsave(&atchan->lock, irqflags);
|
|
desc = at_xdmac_get_desc(atchan);
|
|
spin_unlock_irqrestore(&atchan->lock, irqflags);
|
|
if (!desc) {
|
|
dev_err(chan2dev(chan), "can't get descriptor\n");
|
|
if (first)
|
|
list_splice_init(&first->descs_list, &atchan->free_descs_list);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update src and dest addresses. */
|
|
src_addr += xfer_size;
|
|
dst_addr += xfer_size;
|
|
|
|
if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
|
|
xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
|
|
else
|
|
xfer_size = remaining_size;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
|
|
|
|
/* Check remaining length and change data width if needed. */
|
|
dwidth = at_xdmac_align_width(chan,
|
|
src_addr | dst_addr | xfer_size);
|
|
chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
|
|
chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
|
|
|
|
ublen = xfer_size >> dwidth;
|
|
remaining_size -= xfer_size;
|
|
|
|
desc->lld.mbr_sa = src_addr;
|
|
desc->lld.mbr_da = dst_addr;
|
|
desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
|
|
| AT_XDMAC_MBR_UBC_NDEN
|
|
| AT_XDMAC_MBR_UBC_NSEN
|
|
| ublen;
|
|
desc->lld.mbr_cfg = chan_cc;
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
|
|
__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
|
|
|
|
/* Chain lld. */
|
|
if (prev)
|
|
at_xdmac_queue_desc(chan, prev, desc);
|
|
|
|
prev = desc;
|
|
if (!first)
|
|
first = desc;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, desc, first);
|
|
list_add_tail(&desc->desc_node, &first->descs_list);
|
|
}
|
|
|
|
first->tx_dma_desc.flags = flags;
|
|
first->xfer_size = len;
|
|
|
|
return &first->tx_dma_desc;
|
|
}
|
|
|
|
static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
|
|
struct at_xdmac_chan *atchan,
|
|
dma_addr_t dst_addr,
|
|
size_t len,
|
|
int value)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
unsigned long flags;
|
|
size_t ublen;
|
|
u32 dwidth;
|
|
/*
|
|
* WARNING: The channel configuration is set here since there is no
|
|
* dmaengine_slave_config call in this case. Moreover we don't know the
|
|
* direction, it involves we can't dynamically set the source and dest
|
|
* interface so we have to use the same one. Only interface 0 allows EBI
|
|
* access. Hopefully we can access DDR through both ports (at least on
|
|
* SAMA5D4x), so we can use the same interface for source and dest,
|
|
* that solves the fact we don't know the direction.
|
|
* ERRATA: Even if useless for memory transfers, the PERID has to not
|
|
* match the one of another channel. If not, it could lead to spurious
|
|
* flag status.
|
|
*/
|
|
u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
|
|
| AT_XDMAC_CC_DAM_UBS_AM
|
|
| AT_XDMAC_CC_SAM_INCREMENTED_AM
|
|
| AT_XDMAC_CC_DIF(0)
|
|
| AT_XDMAC_CC_SIF(0)
|
|
| AT_XDMAC_CC_MBSIZE_SIXTEEN
|
|
| AT_XDMAC_CC_MEMSET_HW_MODE
|
|
| AT_XDMAC_CC_TYPE_MEM_TRAN;
|
|
|
|
dwidth = at_xdmac_align_width(chan, dst_addr);
|
|
|
|
if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
|
|
dev_err(chan2dev(chan),
|
|
"%s: Transfer too large, aborting...\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
desc = at_xdmac_get_desc(atchan);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
if (!desc) {
|
|
dev_err(chan2dev(chan), "can't get descriptor\n");
|
|
return NULL;
|
|
}
|
|
|
|
chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
|
|
|
|
ublen = len >> dwidth;
|
|
|
|
desc->lld.mbr_da = dst_addr;
|
|
desc->lld.mbr_ds = value;
|
|
desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
|
|
| AT_XDMAC_MBR_UBC_NDEN
|
|
| AT_XDMAC_MBR_UBC_NSEN
|
|
| ublen;
|
|
desc->lld.mbr_cfg = chan_cc;
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
|
|
__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
|
|
desc->lld.mbr_cfg);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *desc;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
|
|
__func__, &dest, len, value, flags);
|
|
|
|
if (unlikely(!len))
|
|
return NULL;
|
|
|
|
desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
|
|
list_add_tail(&desc->desc_node, &desc->descs_list);
|
|
|
|
desc->tx_dma_desc.cookie = -EBUSY;
|
|
desc->tx_dma_desc.flags = flags;
|
|
desc->xfer_size = len;
|
|
|
|
return &desc->tx_dma_desc;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, int value,
|
|
unsigned long flags)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *desc, *pdesc = NULL,
|
|
*ppdesc = NULL, *first = NULL;
|
|
struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
|
|
size_t stride = 0, pstride = 0, len = 0;
|
|
int i;
|
|
|
|
if (!sgl)
|
|
return NULL;
|
|
|
|
dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
|
|
__func__, sg_len, value, flags);
|
|
|
|
/* Prepare descriptors. */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
|
|
__func__, &sg_dma_address(sg), sg_dma_len(sg),
|
|
value, flags);
|
|
desc = at_xdmac_memset_create_desc(chan, atchan,
|
|
sg_dma_address(sg),
|
|
sg_dma_len(sg),
|
|
value);
|
|
if (!desc && first)
|
|
list_splice_init(&first->descs_list,
|
|
&atchan->free_descs_list);
|
|
|
|
if (!first)
|
|
first = desc;
|
|
|
|
/* Update our strides */
|
|
pstride = stride;
|
|
if (psg)
|
|
stride = sg_dma_address(sg) -
|
|
(sg_dma_address(psg) + sg_dma_len(psg));
|
|
|
|
/*
|
|
* The scatterlist API gives us only the address and
|
|
* length of each elements.
|
|
*
|
|
* Unfortunately, we don't have the stride, which we
|
|
* will need to compute.
|
|
*
|
|
* That make us end up in a situation like this one:
|
|
* len stride len stride len
|
|
* +-------+ +-------+ +-------+
|
|
* | N-2 | | N-1 | | N |
|
|
* +-------+ +-------+ +-------+
|
|
*
|
|
* We need all these three elements (N-2, N-1 and N)
|
|
* to actually take the decision on whether we need to
|
|
* queue N-1 or reuse N-2.
|
|
*
|
|
* We will only consider N if it is the last element.
|
|
*/
|
|
if (ppdesc && pdesc) {
|
|
if ((stride == pstride) &&
|
|
(sg_dma_len(ppsg) == sg_dma_len(psg))) {
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: desc 0x%p can be merged with desc 0x%p\n",
|
|
__func__, pdesc, ppdesc);
|
|
|
|
/*
|
|
* Increment the block count of the
|
|
* N-2 descriptor
|
|
*/
|
|
at_xdmac_increment_block_count(chan, ppdesc);
|
|
ppdesc->lld.mbr_dus = stride;
|
|
|
|
/*
|
|
* Put back the N-1 descriptor in the
|
|
* free descriptor list
|
|
*/
|
|
list_add_tail(&pdesc->desc_node,
|
|
&atchan->free_descs_list);
|
|
|
|
/*
|
|
* Make our N-1 descriptor pointer
|
|
* point to the N-2 since they were
|
|
* actually merged.
|
|
*/
|
|
pdesc = ppdesc;
|
|
|
|
/*
|
|
* Rule out the case where we don't have
|
|
* pstride computed yet (our second sg
|
|
* element)
|
|
*
|
|
* We also want to catch the case where there
|
|
* would be a negative stride,
|
|
*/
|
|
} else if (pstride ||
|
|
sg_dma_address(sg) < sg_dma_address(psg)) {
|
|
/*
|
|
* Queue the N-1 descriptor after the
|
|
* N-2
|
|
*/
|
|
at_xdmac_queue_desc(chan, ppdesc, pdesc);
|
|
|
|
/*
|
|
* Add the N-1 descriptor to the list
|
|
* of the descriptors used for this
|
|
* transfer
|
|
*/
|
|
list_add_tail(&desc->desc_node,
|
|
&first->descs_list);
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: add desc 0x%p to descs_list 0x%p\n",
|
|
__func__, desc, first);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are the last element, just see if we have the
|
|
* same size than the previous element.
|
|
*
|
|
* If so, we can merge it with the previous descriptor
|
|
* since we don't care about the stride anymore.
|
|
*/
|
|
if ((i == (sg_len - 1)) &&
|
|
sg_dma_len(psg) == sg_dma_len(sg)) {
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: desc 0x%p can be merged with desc 0x%p\n",
|
|
__func__, desc, pdesc);
|
|
|
|
/*
|
|
* Increment the block count of the N-1
|
|
* descriptor
|
|
*/
|
|
at_xdmac_increment_block_count(chan, pdesc);
|
|
pdesc->lld.mbr_dus = stride;
|
|
|
|
/*
|
|
* Put back the N descriptor in the free
|
|
* descriptor list
|
|
*/
|
|
list_add_tail(&desc->desc_node,
|
|
&atchan->free_descs_list);
|
|
}
|
|
|
|
/* Update our descriptors */
|
|
ppdesc = pdesc;
|
|
pdesc = desc;
|
|
|
|
/* Update our scatter pointers */
|
|
ppsg = psg;
|
|
psg = sg;
|
|
|
|
len += sg_dma_len(sg);
|
|
}
|
|
|
|
first->tx_dma_desc.cookie = -EBUSY;
|
|
first->tx_dma_desc.flags = flags;
|
|
first->xfer_size = len;
|
|
|
|
return &first->tx_dma_desc;
|
|
}
|
|
|
|
static enum dma_status
|
|
at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
struct at_xdmac_desc *desc, *_desc;
|
|
struct list_head *descs_list;
|
|
enum dma_status ret;
|
|
int residue, retry;
|
|
u32 cur_nda, check_nda, cur_ubc, mask, value;
|
|
u8 dwidth = 0;
|
|
unsigned long flags;
|
|
bool initd;
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
if (!txstate)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
|
|
desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
|
|
|
|
/*
|
|
* If the transfer has not been started yet, don't need to compute the
|
|
* residue, it's the transfer length.
|
|
*/
|
|
if (!desc->active_xfer) {
|
|
dma_set_residue(txstate, desc->xfer_size);
|
|
goto spin_unlock;
|
|
}
|
|
|
|
residue = desc->xfer_size;
|
|
/*
|
|
* Flush FIFO: only relevant when the transfer is source peripheral
|
|
* synchronized. Flush is needed before reading CUBC because data in
|
|
* the FIFO are not reported by CUBC. Reporting a residue of the
|
|
* transfer length while we have data in FIFO can cause issue.
|
|
* Usecase: atmel USART has a timeout which means I have received
|
|
* characters but there is no more character received for a while. On
|
|
* timeout, it requests the residue. If the data are in the DMA FIFO,
|
|
* we will return a residue of the transfer length. It means no data
|
|
* received. If an application is waiting for these data, it will hang
|
|
* since we won't have another USART timeout without receiving new
|
|
* data.
|
|
*/
|
|
mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
|
|
value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
|
|
if ((desc->lld.mbr_cfg & mask) == value) {
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
|
|
while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* The easiest way to compute the residue should be to pause the DMA
|
|
* but doing this can lead to miss some data as some devices don't
|
|
* have FIFO.
|
|
* We need to read several registers because:
|
|
* - DMA is running therefore a descriptor change is possible while
|
|
* reading these registers
|
|
* - When the block transfer is done, the value of the CUBC register
|
|
* is set to its initial value until the fetch of the next descriptor.
|
|
* This value will corrupt the residue calculation so we have to skip
|
|
* it.
|
|
*
|
|
* INITD -------- ------------
|
|
* |____________________|
|
|
* _______________________ _______________
|
|
* NDA @desc2 \/ @desc3
|
|
* _______________________/\_______________
|
|
* __________ ___________ _______________
|
|
* CUBC 0 \/ MAX desc1 \/ MAX desc2
|
|
* __________/\___________/\_______________
|
|
*
|
|
* Since descriptors are aligned on 64 bits, we can assume that
|
|
* the update of NDA and CUBC is atomic.
|
|
* Memory barriers are used to ensure the read order of the registers.
|
|
* A max number of retries is set because unlikely it could never ends.
|
|
*/
|
|
for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
|
|
check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
|
|
rmb();
|
|
cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
|
|
rmb();
|
|
initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
|
|
rmb();
|
|
cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
|
|
rmb();
|
|
|
|
if ((check_nda == cur_nda) && initd)
|
|
break;
|
|
}
|
|
|
|
if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
|
|
ret = DMA_ERROR;
|
|
goto spin_unlock;
|
|
}
|
|
|
|
/*
|
|
* Flush FIFO: only relevant when the transfer is source peripheral
|
|
* synchronized. Another flush is needed here because CUBC is updated
|
|
* when the controller sends the data write command. It can lead to
|
|
* report data that are not written in the memory or the device. The
|
|
* FIFO flush ensures that data are really written.
|
|
*/
|
|
if ((desc->lld.mbr_cfg & mask) == value) {
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
|
|
while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Remove size of all microblocks already transferred and the current
|
|
* one. Then add the remaining size to transfer of the current
|
|
* microblock.
|
|
*/
|
|
descs_list = &desc->descs_list;
|
|
list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
|
|
dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
|
|
residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
|
|
if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
|
|
break;
|
|
}
|
|
residue += cur_ubc << dwidth;
|
|
|
|
dma_set_residue(txstate, residue);
|
|
|
|
dev_dbg(chan2dev(chan),
|
|
"%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
|
|
__func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
|
|
|
|
spin_unlock:
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* Call must be protected by lock. */
|
|
static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
|
|
struct at_xdmac_desc *desc)
|
|
{
|
|
dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
|
|
|
|
/*
|
|
* Remove the transfer from the transfer list then move the transfer
|
|
* descriptors into the free descriptors list.
|
|
*/
|
|
list_del(&desc->xfer_node);
|
|
list_splice_init(&desc->descs_list, &atchan->free_descs_list);
|
|
}
|
|
|
|
static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
|
|
/*
|
|
* If channel is enabled, do nothing, advance_work will be triggered
|
|
* after the interruption.
|
|
*/
|
|
if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
|
|
desc = list_first_entry(&atchan->xfers_list,
|
|
struct at_xdmac_desc,
|
|
xfer_node);
|
|
dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
|
|
if (!desc->active_xfer)
|
|
at_xdmac_start_xfer(atchan, desc);
|
|
}
|
|
}
|
|
|
|
static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
|
|
{
|
|
struct at_xdmac_desc *desc;
|
|
struct dma_async_tx_descriptor *txd;
|
|
|
|
if (!list_empty(&atchan->xfers_list)) {
|
|
desc = list_first_entry(&atchan->xfers_list,
|
|
struct at_xdmac_desc, xfer_node);
|
|
txd = &desc->tx_dma_desc;
|
|
|
|
if (txd->flags & DMA_PREP_INTERRUPT)
|
|
dmaengine_desc_get_callback_invoke(txd, NULL);
|
|
}
|
|
}
|
|
|
|
static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
|
|
{
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
struct at_xdmac_desc *bad_desc;
|
|
|
|
/*
|
|
* The descriptor currently at the head of the active list is
|
|
* broken. Since we don't have any way to report errors, we'll
|
|
* just have to scream loudly and try to continue with other
|
|
* descriptors queued (if any).
|
|
*/
|
|
if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
|
|
dev_err(chan2dev(&atchan->chan), "read bus error!!!");
|
|
if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
|
|
dev_err(chan2dev(&atchan->chan), "write bus error!!!");
|
|
if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
|
|
dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
|
|
|
|
spin_lock_irq(&atchan->lock);
|
|
|
|
/* Channel must be disabled first as it's not done automatically */
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
|
|
while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
|
|
cpu_relax();
|
|
|
|
bad_desc = list_first_entry(&atchan->xfers_list,
|
|
struct at_xdmac_desc,
|
|
xfer_node);
|
|
|
|
spin_unlock_irq(&atchan->lock);
|
|
|
|
/* Print bad descriptor's details if needed */
|
|
dev_dbg(chan2dev(&atchan->chan),
|
|
"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
|
|
__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
|
|
bad_desc->lld.mbr_ubc);
|
|
|
|
/* Then continue with usual descriptor management */
|
|
}
|
|
|
|
static void at_xdmac_tasklet(unsigned long data)
|
|
{
|
|
struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data;
|
|
struct at_xdmac_desc *desc;
|
|
u32 error_mask;
|
|
|
|
dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
|
|
__func__, atchan->irq_status);
|
|
|
|
error_mask = AT_XDMAC_CIS_RBEIS
|
|
| AT_XDMAC_CIS_WBEIS
|
|
| AT_XDMAC_CIS_ROIS;
|
|
|
|
if (at_xdmac_chan_is_cyclic(atchan)) {
|
|
at_xdmac_handle_cyclic(atchan);
|
|
} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
|
|
|| (atchan->irq_status & error_mask)) {
|
|
struct dma_async_tx_descriptor *txd;
|
|
|
|
if (atchan->irq_status & error_mask)
|
|
at_xdmac_handle_error(atchan);
|
|
|
|
spin_lock_irq(&atchan->lock);
|
|
desc = list_first_entry(&atchan->xfers_list,
|
|
struct at_xdmac_desc,
|
|
xfer_node);
|
|
dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
|
|
if (!desc->active_xfer) {
|
|
dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
|
|
spin_unlock_irq(&atchan->lock);
|
|
return;
|
|
}
|
|
|
|
txd = &desc->tx_dma_desc;
|
|
|
|
at_xdmac_remove_xfer(atchan, desc);
|
|
spin_unlock_irq(&atchan->lock);
|
|
|
|
dma_cookie_complete(txd);
|
|
if (txd->flags & DMA_PREP_INTERRUPT)
|
|
dmaengine_desc_get_callback_invoke(txd, NULL);
|
|
|
|
dma_run_dependencies(txd);
|
|
|
|
spin_lock_irq(&atchan->lock);
|
|
at_xdmac_advance_work(atchan);
|
|
spin_unlock_irq(&atchan->lock);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
|
|
struct at_xdmac_chan *atchan;
|
|
u32 imr, status, pending;
|
|
u32 chan_imr, chan_status;
|
|
int i, ret = IRQ_NONE;
|
|
|
|
do {
|
|
imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
|
|
status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
|
|
pending = status & imr;
|
|
|
|
dev_vdbg(atxdmac->dma.dev,
|
|
"%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
|
|
__func__, status, imr, pending);
|
|
|
|
if (!pending)
|
|
break;
|
|
|
|
/* We have to find which channel has generated the interrupt. */
|
|
for (i = 0; i < atxdmac->dma.chancnt; i++) {
|
|
if (!((1 << i) & pending))
|
|
continue;
|
|
|
|
atchan = &atxdmac->chan[i];
|
|
chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
|
|
chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
|
|
atchan->irq_status = chan_status & chan_imr;
|
|
dev_vdbg(atxdmac->dma.dev,
|
|
"%s: chan%d: imr=0x%x, status=0x%x\n",
|
|
__func__, i, chan_imr, chan_status);
|
|
dev_vdbg(chan2dev(&atchan->chan),
|
|
"%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
|
|
__func__,
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
|
|
at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
|
|
|
|
if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
|
|
|
|
tasklet_schedule(&atchan->tasklet);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
} while (pending);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void at_xdmac_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
|
|
|
|
if (!at_xdmac_chan_is_cyclic(atchan)) {
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
at_xdmac_advance_work(atchan);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int at_xdmac_device_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
ret = at_xdmac_set_slave_config(chan, config);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int at_xdmac_device_pause(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
|
|
while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
|
|
& (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
|
|
cpu_relax();
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int at_xdmac_device_resume(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
if (!at_xdmac_chan_is_paused(atchan)) {
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
|
|
clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int at_xdmac_device_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_desc *desc, *_desc;
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
|
|
unsigned long flags;
|
|
|
|
dev_dbg(chan2dev(chan), "%s\n", __func__);
|
|
|
|
spin_lock_irqsave(&atchan->lock, flags);
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
|
|
while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
|
|
cpu_relax();
|
|
|
|
/* Cancel all pending transfers. */
|
|
list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
|
|
at_xdmac_remove_xfer(atchan, desc);
|
|
|
|
clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
|
|
clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
|
|
spin_unlock_irqrestore(&atchan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac_desc *desc;
|
|
int i;
|
|
|
|
if (at_xdmac_chan_is_enabled(atchan)) {
|
|
dev_err(chan2dev(chan),
|
|
"can't allocate channel resources (channel enabled)\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (!list_empty(&atchan->free_descs_list)) {
|
|
dev_err(chan2dev(chan),
|
|
"can't allocate channel resources (channel not free from a previous use)\n");
|
|
return -EIO;
|
|
}
|
|
|
|
for (i = 0; i < init_nr_desc_per_channel; i++) {
|
|
desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
|
|
if (!desc) {
|
|
dev_warn(chan2dev(chan),
|
|
"only %d descriptors have been allocated\n", i);
|
|
break;
|
|
}
|
|
list_add_tail(&desc->desc_node, &atchan->free_descs_list);
|
|
}
|
|
|
|
dma_cookie_init(chan);
|
|
|
|
dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
|
|
|
|
return i;
|
|
}
|
|
|
|
static void at_xdmac_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
|
|
struct at_xdmac_desc *desc, *_desc;
|
|
|
|
list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
|
|
dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
|
|
list_del(&desc->desc_node);
|
|
dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int atmel_xdmac_prepare(struct device *dev)
|
|
{
|
|
struct at_xdmac *atxdmac = dev_get_drvdata(dev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
|
|
/* Wait for transfer completion, except in cyclic case. */
|
|
if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
# define atmel_xdmac_prepare NULL
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int atmel_xdmac_suspend(struct device *dev)
|
|
{
|
|
struct at_xdmac *atxdmac = dev_get_drvdata(dev);
|
|
struct dma_chan *chan, *_chan;
|
|
|
|
list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
|
|
struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
|
|
|
|
atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
|
|
if (at_xdmac_chan_is_cyclic(atchan)) {
|
|
if (!at_xdmac_chan_is_paused(atchan))
|
|
at_xdmac_device_pause(chan);
|
|
atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
|
|
atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
|
|
atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
|
|
}
|
|
}
|
|
atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
|
|
|
|
at_xdmac_off(atxdmac);
|
|
clk_disable_unprepare(atxdmac->clk);
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_xdmac_resume(struct device *dev)
|
|
{
|
|
struct at_xdmac *atxdmac = dev_get_drvdata(dev);
|
|
struct at_xdmac_chan *atchan;
|
|
struct dma_chan *chan, *_chan;
|
|
int i;
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(atxdmac->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Clear pending interrupts. */
|
|
for (i = 0; i < atxdmac->dma.chancnt; i++) {
|
|
atchan = &atxdmac->chan[i];
|
|
while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
|
|
cpu_relax();
|
|
}
|
|
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
|
|
list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
|
|
atchan = to_at_xdmac_chan(chan);
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
|
|
if (at_xdmac_chan_is_cyclic(atchan)) {
|
|
if (at_xdmac_chan_is_paused(atchan))
|
|
at_xdmac_device_resume(chan);
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
|
|
at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
|
|
wmb();
|
|
at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static int at_xdmac_probe(struct platform_device *pdev)
|
|
{
|
|
struct at_xdmac *atxdmac;
|
|
int irq, size, nr_channels, i, ret;
|
|
void __iomem *base;
|
|
u32 reg;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return irq;
|
|
|
|
base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
/*
|
|
* Read number of xdmac channels, read helper function can't be used
|
|
* since atxdmac is not yet allocated and we need to know the number
|
|
* of channels to do the allocation.
|
|
*/
|
|
reg = readl_relaxed(base + AT_XDMAC_GTYPE);
|
|
nr_channels = AT_XDMAC_NB_CH(reg);
|
|
if (nr_channels > AT_XDMAC_MAX_CHAN) {
|
|
dev_err(&pdev->dev, "invalid number of channels (%u)\n",
|
|
nr_channels);
|
|
return -EINVAL;
|
|
}
|
|
|
|
size = sizeof(*atxdmac);
|
|
size += nr_channels * sizeof(struct at_xdmac_chan);
|
|
atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
|
|
if (!atxdmac) {
|
|
dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
atxdmac->regs = base;
|
|
atxdmac->irq = irq;
|
|
|
|
atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
|
|
if (IS_ERR(atxdmac->clk)) {
|
|
dev_err(&pdev->dev, "can't get dma_clk\n");
|
|
return PTR_ERR(atxdmac->clk);
|
|
}
|
|
|
|
/* Do not use dev res to prevent races with tasklet */
|
|
ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "can't request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_prepare_enable(atxdmac->clk);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "can't prepare or enable clock\n");
|
|
goto err_free_irq;
|
|
}
|
|
|
|
atxdmac->at_xdmac_desc_pool =
|
|
dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
|
|
sizeof(struct at_xdmac_desc), 4, 0);
|
|
if (!atxdmac->at_xdmac_desc_pool) {
|
|
dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
|
|
ret = -ENOMEM;
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
|
|
dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
|
|
dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
|
|
/*
|
|
* Without DMA_PRIVATE the driver is not able to allocate more than
|
|
* one channel, second allocation fails in private_candidate.
|
|
*/
|
|
dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
|
|
atxdmac->dma.dev = &pdev->dev;
|
|
atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
|
|
atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
|
|
atxdmac->dma.device_tx_status = at_xdmac_tx_status;
|
|
atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
|
|
atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
|
|
atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
|
|
atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
|
|
atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
|
|
atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
|
|
atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
|
|
atxdmac->dma.device_config = at_xdmac_device_config;
|
|
atxdmac->dma.device_pause = at_xdmac_device_pause;
|
|
atxdmac->dma.device_resume = at_xdmac_device_resume;
|
|
atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
|
|
atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
|
|
atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
|
|
atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
|
|
atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
|
|
/* Disable all chans and interrupts. */
|
|
at_xdmac_off(atxdmac);
|
|
|
|
/* Init channels. */
|
|
INIT_LIST_HEAD(&atxdmac->dma.channels);
|
|
for (i = 0; i < nr_channels; i++) {
|
|
struct at_xdmac_chan *atchan = &atxdmac->chan[i];
|
|
|
|
atchan->chan.device = &atxdmac->dma;
|
|
list_add_tail(&atchan->chan.device_node,
|
|
&atxdmac->dma.channels);
|
|
|
|
atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
|
|
atchan->mask = 1 << i;
|
|
|
|
spin_lock_init(&atchan->lock);
|
|
INIT_LIST_HEAD(&atchan->xfers_list);
|
|
INIT_LIST_HEAD(&atchan->free_descs_list);
|
|
tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
|
|
(unsigned long)atchan);
|
|
|
|
/* Clear pending interrupts. */
|
|
while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
|
|
cpu_relax();
|
|
}
|
|
platform_set_drvdata(pdev, atxdmac);
|
|
|
|
ret = dma_async_device_register(&atxdmac->dma);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "fail to register DMA engine device\n");
|
|
goto err_clk_disable;
|
|
}
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
at_xdmac_xlate, atxdmac);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "could not register of dma controller\n");
|
|
goto err_dma_unregister;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
|
|
nr_channels, atxdmac->regs);
|
|
|
|
return 0;
|
|
|
|
err_dma_unregister:
|
|
dma_async_device_unregister(&atxdmac->dma);
|
|
err_clk_disable:
|
|
clk_disable_unprepare(atxdmac->clk);
|
|
err_free_irq:
|
|
free_irq(atxdmac->irq, atxdmac);
|
|
return ret;
|
|
}
|
|
|
|
static int at_xdmac_remove(struct platform_device *pdev)
|
|
{
|
|
struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
|
|
int i;
|
|
|
|
at_xdmac_off(atxdmac);
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
dma_async_device_unregister(&atxdmac->dma);
|
|
clk_disable_unprepare(atxdmac->clk);
|
|
|
|
free_irq(atxdmac->irq, atxdmac);
|
|
|
|
for (i = 0; i < atxdmac->dma.chancnt; i++) {
|
|
struct at_xdmac_chan *atchan = &atxdmac->chan[i];
|
|
|
|
tasklet_kill(&atchan->tasklet);
|
|
at_xdmac_free_chan_resources(&atchan->chan);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
|
|
.prepare = atmel_xdmac_prepare,
|
|
SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
|
|
};
|
|
|
|
static const struct of_device_id atmel_xdmac_dt_ids[] = {
|
|
{
|
|
.compatible = "atmel,sama5d4-dma",
|
|
}, {
|
|
/* sentinel */
|
|
}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
|
|
|
|
static struct platform_driver at_xdmac_driver = {
|
|
.probe = at_xdmac_probe,
|
|
.remove = at_xdmac_remove,
|
|
.driver = {
|
|
.name = "at_xdmac",
|
|
.of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
|
|
.pm = &atmel_xdmac_dev_pm_ops,
|
|
}
|
|
};
|
|
|
|
static int __init at_xdmac_init(void)
|
|
{
|
|
return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
|
|
}
|
|
subsys_initcall(at_xdmac_init);
|
|
|
|
MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
|
|
MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
|
|
MODULE_LICENSE("GPL");
|