If the hypervisor doesn't support hugepages, the kernel ends up allocating a large
number of page table pages. The early page table allocation was wrongly
setting the max memblock limit to ppc64_rma_size with radix translation
which resulted in boot failure as shown below.
Kernel panic - not syncing:
early_alloc_pgtable: Failed to allocate 16777216 bytes align=0x1000000 nid=-1 from=0x0000000000000000 max_addr=0xffffffffffffffff
CPU: 0 PID: 0 Comm: swapper Not tainted 5.8.0-24.9-default+ #2
Call Trace:
[c0000000016f3d00] [c0000000007c6470] dump_stack+0xc4/0x114 (unreliable)
[c0000000016f3d40] [c00000000014c78c] panic+0x164/0x418
[c0000000016f3dd0] [c000000000098890] early_alloc_pgtable+0xe0/0xec
[c0000000016f3e60] [c0000000010a5440] radix__early_init_mmu+0x360/0x4b4
[c0000000016f3ef0] [c000000001099bac] early_init_mmu+0x1c/0x3c
[c0000000016f3f10] [c00000000109a320] early_setup+0x134/0x170
This was because the kernel was checking for the radix feature before we enable the
feature via mmu_features. This resulted in the kernel using hash restrictions on
radix.
Rework the early init code such that the kernel boot with memblock restrictions
as imposed by hash. At that point, the kernel still hasn't finalized the
translation the kernel will end up using.
We have three different ways of detecting radix.
1. dt_cpu_ftrs_scan -> used only in case of PowerNV
2. ibm,pa-features -> Used when we don't use cpu_dt_ftr_scan
3. CAS -> Where we negotiate with hypervisor about the supported translation.
We look at 1 or 2 early in the boot and after that, we look at the CAS vector to
finalize the translation the kernel will use. We also support a kernel command
line option (disable_radix) to switch to hash.
Update the memblock limit after mmu_early_init_devtree() if the kernel is going
to use radix translation. This forces some of the memblock allocations we do before
mmu_early_init_devtree() to be within the RMA limit.
Fixes: 2bfd65e45e
("powerpc/mm/radix: Add radix callbacks for early init routines")
Reported-by: Shirisha Ganta <shiganta@in.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200828100852.426575-1-aneesh.kumar@linux.ibm.com
1226 lines
28 KiB
C
1226 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Page table handling routines for radix page table.
|
|
*
|
|
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "radix-mmu: " fmt
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/memory.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/trace.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ultravisor.h>
|
|
|
|
#include <trace/events/thp.h>
|
|
|
|
unsigned int mmu_pid_bits;
|
|
unsigned int mmu_base_pid;
|
|
unsigned int radix_mem_block_size __ro_after_init;
|
|
|
|
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
|
|
phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
|
|
void *ptr;
|
|
|
|
if (region_start)
|
|
min_addr = region_start;
|
|
if (region_end)
|
|
max_addr = region_end;
|
|
|
|
ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
|
|
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
|
|
__func__, size, size, nid, &min_addr, &max_addr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* When allocating pud or pmd pointers, we allocate a complete page
|
|
* of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
|
|
* is to ensure that the page obtained from the memblock allocator
|
|
* can be completely used as page table page and can be freed
|
|
* correctly when the page table entries are removed.
|
|
*/
|
|
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
pgdp = pgd_offset_k(ea);
|
|
p4dp = p4d_offset(pgdp, ea);
|
|
if (p4d_none(*p4dp)) {
|
|
pudp = early_alloc_pgtable(PAGE_SIZE, nid,
|
|
region_start, region_end);
|
|
p4d_populate(&init_mm, p4dp, pudp);
|
|
}
|
|
pudp = pud_offset(p4dp, ea);
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
if (pud_none(*pudp)) {
|
|
pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
|
|
region_end);
|
|
pud_populate(&init_mm, pudp, pmdp);
|
|
}
|
|
pmdp = pmd_offset(pudp, ea);
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
if (!pmd_present(*pmdp)) {
|
|
ptep = early_alloc_pgtable(PAGE_SIZE, nid,
|
|
region_start, region_end);
|
|
pmd_populate_kernel(&init_mm, pmdp, ptep);
|
|
}
|
|
ptep = pte_offset_kernel(pmdp, ea);
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* nid, region_start, and region_end are hints to try to place the page
|
|
* table memory in the same node or region.
|
|
*/
|
|
static int __map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
/*
|
|
* Make sure task size is correct as per the max adddr
|
|
*/
|
|
BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
|
|
#endif
|
|
|
|
if (unlikely(!slab_is_available()))
|
|
return early_map_kernel_page(ea, pa, flags, map_page_size,
|
|
nid, region_start, region_end);
|
|
|
|
/*
|
|
* Should make page table allocation functions be able to take a
|
|
* node, so we can place kernel page tables on the right nodes after
|
|
* boot.
|
|
*/
|
|
pgdp = pgd_offset_k(ea);
|
|
p4dp = p4d_offset(pgdp, ea);
|
|
pudp = pud_alloc(&init_mm, p4dp, ea);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
|
if (!pmdp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, ea);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
int radix__map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
void radix__change_memory_range(unsigned long start, unsigned long end,
|
|
unsigned long clear)
|
|
{
|
|
unsigned long idx;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
start = ALIGN_DOWN(start, PAGE_SIZE);
|
|
end = PAGE_ALIGN(end); // aligns up
|
|
|
|
pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
|
|
start, end, clear);
|
|
|
|
for (idx = start; idx < end; idx += PAGE_SIZE) {
|
|
pgdp = pgd_offset_k(idx);
|
|
p4dp = p4d_offset(pgdp, idx);
|
|
pudp = pud_alloc(&init_mm, p4dp, idx);
|
|
if (!pudp)
|
|
continue;
|
|
if (pud_is_leaf(*pudp)) {
|
|
ptep = (pte_t *)pudp;
|
|
goto update_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, idx);
|
|
if (!pmdp)
|
|
continue;
|
|
if (pmd_is_leaf(*pmdp)) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto update_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, idx);
|
|
if (!ptep)
|
|
continue;
|
|
update_the_pte:
|
|
radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
|
|
}
|
|
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
void radix__mark_rodata_ro(void)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
start = (unsigned long)_stext;
|
|
end = (unsigned long)__init_begin;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_WRITE);
|
|
}
|
|
|
|
void radix__mark_initmem_nx(void)
|
|
{
|
|
unsigned long start = (unsigned long)__init_begin;
|
|
unsigned long end = (unsigned long)__init_end;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_EXEC);
|
|
}
|
|
#endif /* CONFIG_STRICT_KERNEL_RWX */
|
|
|
|
static inline void __meminit
|
|
print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
|
|
{
|
|
char buf[10];
|
|
|
|
if (end <= start)
|
|
return;
|
|
|
|
string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
|
|
|
|
pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
|
|
exec ? " (exec)" : "");
|
|
}
|
|
|
|
static unsigned long next_boundary(unsigned long addr, unsigned long end)
|
|
{
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
if (addr < __pa_symbol(__init_begin))
|
|
return __pa_symbol(__init_begin);
|
|
#endif
|
|
return end;
|
|
}
|
|
|
|
static int __meminit create_physical_mapping(unsigned long start,
|
|
unsigned long end,
|
|
unsigned long max_mapping_size,
|
|
int nid, pgprot_t _prot)
|
|
{
|
|
unsigned long vaddr, addr, mapping_size = 0;
|
|
bool prev_exec, exec = false;
|
|
pgprot_t prot;
|
|
int psize;
|
|
|
|
start = ALIGN(start, PAGE_SIZE);
|
|
for (addr = start; addr < end; addr += mapping_size) {
|
|
unsigned long gap, previous_size;
|
|
int rc;
|
|
|
|
gap = next_boundary(addr, end) - addr;
|
|
if (gap > max_mapping_size)
|
|
gap = max_mapping_size;
|
|
previous_size = mapping_size;
|
|
prev_exec = exec;
|
|
|
|
if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_1G].shift) {
|
|
mapping_size = PUD_SIZE;
|
|
psize = MMU_PAGE_1G;
|
|
} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_2M].shift) {
|
|
mapping_size = PMD_SIZE;
|
|
psize = MMU_PAGE_2M;
|
|
} else {
|
|
mapping_size = PAGE_SIZE;
|
|
psize = mmu_virtual_psize;
|
|
}
|
|
|
|
vaddr = (unsigned long)__va(addr);
|
|
|
|
if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
|
|
overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
|
|
prot = PAGE_KERNEL_X;
|
|
exec = true;
|
|
} else {
|
|
prot = _prot;
|
|
exec = false;
|
|
}
|
|
|
|
if (mapping_size != previous_size || exec != prev_exec) {
|
|
print_mapping(start, addr, previous_size, prev_exec);
|
|
start = addr;
|
|
}
|
|
|
|
rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
|
|
if (rc)
|
|
return rc;
|
|
|
|
update_page_count(psize, 1);
|
|
}
|
|
|
|
print_mapping(start, addr, mapping_size, exec);
|
|
return 0;
|
|
}
|
|
|
|
static void __init radix_init_pgtable(void)
|
|
{
|
|
unsigned long rts_field;
|
|
struct memblock_region *reg;
|
|
|
|
/* We don't support slb for radix */
|
|
mmu_slb_size = 0;
|
|
|
|
/*
|
|
* Create the linear mapping
|
|
*/
|
|
for_each_memblock(memory, reg) {
|
|
/*
|
|
* The memblock allocator is up at this point, so the
|
|
* page tables will be allocated within the range. No
|
|
* need or a node (which we don't have yet).
|
|
*/
|
|
|
|
if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
|
|
pr_warn("Outside the supported range\n");
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(create_physical_mapping(reg->base,
|
|
reg->base + reg->size,
|
|
radix_mem_block_size,
|
|
-1, PAGE_KERNEL));
|
|
}
|
|
|
|
/* Find out how many PID bits are supported */
|
|
if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
|
|
if (!mmu_pid_bits)
|
|
mmu_pid_bits = 20;
|
|
mmu_base_pid = 1;
|
|
} else if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
if (!mmu_pid_bits)
|
|
mmu_pid_bits = 20;
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* When KVM is possible, we only use the top half of the
|
|
* PID space to avoid collisions between host and guest PIDs
|
|
* which can cause problems due to prefetch when exiting the
|
|
* guest with AIL=3
|
|
*/
|
|
mmu_base_pid = 1 << (mmu_pid_bits - 1);
|
|
#else
|
|
mmu_base_pid = 1;
|
|
#endif
|
|
} else {
|
|
/* The guest uses the bottom half of the PID space */
|
|
if (!mmu_pid_bits)
|
|
mmu_pid_bits = 19;
|
|
mmu_base_pid = 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate Partition table and process table for the
|
|
* host.
|
|
*/
|
|
BUG_ON(PRTB_SIZE_SHIFT > 36);
|
|
process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
|
|
/*
|
|
* Fill in the process table.
|
|
*/
|
|
rts_field = radix__get_tree_size();
|
|
process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
|
|
|
|
/*
|
|
* The init_mm context is given the first available (non-zero) PID,
|
|
* which is the "guard PID" and contains no page table. PIDR should
|
|
* never be set to zero because that duplicates the kernel address
|
|
* space at the 0x0... offset (quadrant 0)!
|
|
*
|
|
* An arbitrary PID that may later be allocated by the PID allocator
|
|
* for userspace processes must not be used either, because that
|
|
* would cause stale user mappings for that PID on CPUs outside of
|
|
* the TLB invalidation scheme (because it won't be in mm_cpumask).
|
|
*
|
|
* So permanently carve out one PID for the purpose of a guard PID.
|
|
*/
|
|
init_mm.context.id = mmu_base_pid;
|
|
mmu_base_pid++;
|
|
}
|
|
|
|
static void __init radix_init_partition_table(void)
|
|
{
|
|
unsigned long rts_field, dw0, dw1;
|
|
|
|
mmu_partition_table_init();
|
|
rts_field = radix__get_tree_size();
|
|
dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
|
|
dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
|
|
mmu_partition_table_set_entry(0, dw0, dw1, false);
|
|
|
|
pr_info("Initializing Radix MMU\n");
|
|
}
|
|
|
|
static int __init get_idx_from_shift(unsigned int shift)
|
|
{
|
|
int idx = -1;
|
|
|
|
switch (shift) {
|
|
case 0xc:
|
|
idx = MMU_PAGE_4K;
|
|
break;
|
|
case 0x10:
|
|
idx = MMU_PAGE_64K;
|
|
break;
|
|
case 0x15:
|
|
idx = MMU_PAGE_2M;
|
|
break;
|
|
case 0x1e:
|
|
idx = MMU_PAGE_1G;
|
|
break;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int __init radix_dt_scan_page_sizes(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
int size = 0;
|
|
int shift, idx;
|
|
unsigned int ap;
|
|
const __be32 *prop;
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Find MMU PID size */
|
|
prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
|
|
if (prop && size == 4)
|
|
mmu_pid_bits = be32_to_cpup(prop);
|
|
|
|
/* Grab page size encodings */
|
|
prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
|
|
if (!prop)
|
|
return 0;
|
|
|
|
pr_info("Page sizes from device-tree:\n");
|
|
for (; size >= 4; size -= 4, ++prop) {
|
|
|
|
struct mmu_psize_def *def;
|
|
|
|
/* top 3 bit is AP encoding */
|
|
shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
|
|
ap = be32_to_cpu(prop[0]) >> 29;
|
|
pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
|
|
|
|
idx = get_idx_from_shift(shift);
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
def = &mmu_psize_defs[idx];
|
|
def->shift = shift;
|
|
def->ap = ap;
|
|
}
|
|
|
|
/* needed ? */
|
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static int __init probe_memory_block_size(unsigned long node, const char *uname, int
|
|
depth, void *data)
|
|
{
|
|
unsigned long *mem_block_size = (unsigned long *)data;
|
|
const __be64 *prop;
|
|
int len;
|
|
|
|
if (depth != 1)
|
|
return 0;
|
|
|
|
if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
|
|
return 0;
|
|
|
|
prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
|
|
if (!prop || len < sizeof(__be64))
|
|
/*
|
|
* Nothing in the device tree
|
|
*/
|
|
*mem_block_size = MIN_MEMORY_BLOCK_SIZE;
|
|
else
|
|
*mem_block_size = be64_to_cpup(prop);
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long radix_memory_block_size(void)
|
|
{
|
|
unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
|
|
|
|
/*
|
|
* OPAL firmware feature is set by now. Hence we are ok
|
|
* to test OPAL feature.
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_OPAL))
|
|
mem_block_size = 1UL * 1024 * 1024 * 1024;
|
|
else
|
|
of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
|
|
|
|
return mem_block_size;
|
|
}
|
|
|
|
#else /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static unsigned long radix_memory_block_size(void)
|
|
{
|
|
return 1UL * 1024 * 1024 * 1024;
|
|
}
|
|
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
|
|
void __init radix__early_init_devtree(void)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Try to find the available page sizes in the device-tree
|
|
*/
|
|
rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
|
|
if (!rc) {
|
|
/*
|
|
* No page size details found in device tree.
|
|
* Let's assume we have page 4k and 64k support
|
|
*/
|
|
mmu_psize_defs[MMU_PAGE_4K].shift = 12;
|
|
mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
|
|
|
|
mmu_psize_defs[MMU_PAGE_64K].shift = 16;
|
|
mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
|
|
}
|
|
|
|
/*
|
|
* Max mapping size used when mapping pages. We don't use
|
|
* ppc_md.memory_block_size() here because this get called
|
|
* early and we don't have machine probe called yet. Also
|
|
* the pseries implementation only check for ibm,lmb-size.
|
|
* All hypervisor supporting radix do expose that device
|
|
* tree node.
|
|
*/
|
|
radix_mem_block_size = radix_memory_block_size();
|
|
return;
|
|
}
|
|
|
|
static void radix_init_amor(void)
|
|
{
|
|
/*
|
|
* In HV mode, we init AMOR (Authority Mask Override Register) so that
|
|
* the hypervisor and guest can setup IAMR (Instruction Authority Mask
|
|
* Register), enable key 0 and set it to 1.
|
|
*
|
|
* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
|
|
*/
|
|
mtspr(SPRN_AMOR, (3ul << 62));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_KUEP
|
|
void setup_kuep(bool disabled)
|
|
{
|
|
if (disabled || !early_radix_enabled())
|
|
return;
|
|
|
|
if (smp_processor_id() == boot_cpuid) {
|
|
pr_info("Activating Kernel Userspace Execution Prevention\n");
|
|
cur_cpu_spec->mmu_features |= MMU_FTR_KUEP;
|
|
}
|
|
|
|
/*
|
|
* Radix always uses key0 of the IAMR to determine if an access is
|
|
* allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
|
|
* fetch.
|
|
*/
|
|
mtspr(SPRN_IAMR, (1ul << 62));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_KUAP
|
|
void setup_kuap(bool disabled)
|
|
{
|
|
if (disabled || !early_radix_enabled())
|
|
return;
|
|
|
|
if (smp_processor_id() == boot_cpuid) {
|
|
pr_info("Activating Kernel Userspace Access Prevention\n");
|
|
cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
|
|
}
|
|
|
|
/* Make sure userspace can't change the AMR */
|
|
mtspr(SPRN_UAMOR, 0);
|
|
|
|
/*
|
|
* Set the default kernel AMR values on all cpus.
|
|
*/
|
|
mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
|
|
isync();
|
|
}
|
|
#endif
|
|
|
|
void __init radix__early_init_mmu(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/* PAGE_SIZE mappings */
|
|
mmu_virtual_psize = MMU_PAGE_64K;
|
|
#else
|
|
mmu_virtual_psize = MMU_PAGE_4K;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/* vmemmap mapping */
|
|
if (mmu_psize_defs[MMU_PAGE_2M].shift) {
|
|
/*
|
|
* map vmemmap using 2M if available
|
|
*/
|
|
mmu_vmemmap_psize = MMU_PAGE_2M;
|
|
} else
|
|
mmu_vmemmap_psize = mmu_virtual_psize;
|
|
#endif
|
|
/*
|
|
* initialize page table size
|
|
*/
|
|
__pte_index_size = RADIX_PTE_INDEX_SIZE;
|
|
__pmd_index_size = RADIX_PMD_INDEX_SIZE;
|
|
__pud_index_size = RADIX_PUD_INDEX_SIZE;
|
|
__pgd_index_size = RADIX_PGD_INDEX_SIZE;
|
|
__pud_cache_index = RADIX_PUD_INDEX_SIZE;
|
|
__pte_table_size = RADIX_PTE_TABLE_SIZE;
|
|
__pmd_table_size = RADIX_PMD_TABLE_SIZE;
|
|
__pud_table_size = RADIX_PUD_TABLE_SIZE;
|
|
__pgd_table_size = RADIX_PGD_TABLE_SIZE;
|
|
|
|
__pmd_val_bits = RADIX_PMD_VAL_BITS;
|
|
__pud_val_bits = RADIX_PUD_VAL_BITS;
|
|
__pgd_val_bits = RADIX_PGD_VAL_BITS;
|
|
|
|
__kernel_virt_start = RADIX_KERN_VIRT_START;
|
|
__vmalloc_start = RADIX_VMALLOC_START;
|
|
__vmalloc_end = RADIX_VMALLOC_END;
|
|
__kernel_io_start = RADIX_KERN_IO_START;
|
|
__kernel_io_end = RADIX_KERN_IO_END;
|
|
vmemmap = (struct page *)RADIX_VMEMMAP_START;
|
|
ioremap_bot = IOREMAP_BASE;
|
|
|
|
#ifdef CONFIG_PCI
|
|
pci_io_base = ISA_IO_BASE;
|
|
#endif
|
|
__pte_frag_nr = RADIX_PTE_FRAG_NR;
|
|
__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
|
|
__pmd_frag_nr = RADIX_PMD_FRAG_NR;
|
|
__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
|
|
|
|
radix_init_pgtable();
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
radix_init_partition_table();
|
|
radix_init_amor();
|
|
} else {
|
|
radix_init_pseries();
|
|
}
|
|
|
|
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
|
|
|
|
/* Switch to the guard PID before turning on MMU */
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
tlbiel_all();
|
|
}
|
|
|
|
void radix__early_init_mmu_secondary(void)
|
|
{
|
|
unsigned long lpcr;
|
|
/*
|
|
* update partition table control register and UPRT
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
|
|
set_ptcr_when_no_uv(__pa(partition_tb) |
|
|
(PATB_SIZE_SHIFT - 12));
|
|
|
|
radix_init_amor();
|
|
}
|
|
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
tlbiel_all();
|
|
}
|
|
|
|
void radix__mmu_cleanup_all(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
|
|
set_ptcr_when_no_uv(0);
|
|
powernv_set_nmmu_ptcr(0);
|
|
radix__flush_tlb_all();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
pte_free_kernel(&init_mm, pte_start);
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
pmd_free(&init_mm, pmd_start);
|
|
pud_clear(pud);
|
|
}
|
|
|
|
static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
pud_free(&init_mm, pud_start);
|
|
p4d_clear(p4d);
|
|
}
|
|
|
|
static void remove_pte_table(pte_t *pte_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pte_t *pte;
|
|
|
|
pte = pte_start + pte_index(addr);
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
|
|
/*
|
|
* The vmemmap_free() and remove_section_mapping()
|
|
* codepaths call us with aligned addresses.
|
|
*/
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
|
|
pte_clear(&init_mm, addr, pte);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pte_t *pte_base;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_start + pmd_index(addr);
|
|
for (; addr < end; addr = next, pmd++) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (pmd_is_leaf(*pmd)) {
|
|
if (!IS_ALIGNED(addr, PMD_SIZE) ||
|
|
!IS_ALIGNED(next, PMD_SIZE)) {
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
pte_clear(&init_mm, addr, (pte_t *)pmd);
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
|
|
remove_pte_table(pte_base, addr, next);
|
|
free_pte_table(pte_base, pmd);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmd_base;
|
|
pud_t *pud;
|
|
|
|
pud = pud_start + pud_index(addr);
|
|
for (; addr < end; addr = next, pud++) {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (pud_is_leaf(*pud)) {
|
|
if (!IS_ALIGNED(addr, PUD_SIZE) ||
|
|
!IS_ALIGNED(next, PUD_SIZE)) {
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
pte_clear(&init_mm, addr, (pte_t *)pud);
|
|
continue;
|
|
}
|
|
|
|
pmd_base = (pmd_t *)pud_page_vaddr(*pud);
|
|
remove_pmd_table(pmd_base, addr, next);
|
|
free_pmd_table(pmd_base, pud);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pagetable(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr, next;
|
|
pud_t *pud_base;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
if (p4d_is_leaf(*p4d)) {
|
|
if (!IS_ALIGNED(addr, P4D_SIZE) ||
|
|
!IS_ALIGNED(next, P4D_SIZE)) {
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
|
|
pte_clear(&init_mm, addr, (pte_t *)pgd);
|
|
continue;
|
|
}
|
|
|
|
pud_base = (pud_t *)p4d_page_vaddr(*p4d);
|
|
remove_pud_table(pud_base, addr, next);
|
|
free_pud_table(pud_base, p4d);
|
|
}
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
int __meminit radix__create_section_mapping(unsigned long start,
|
|
unsigned long end, int nid,
|
|
pgprot_t prot)
|
|
{
|
|
if (end >= RADIX_VMALLOC_START) {
|
|
pr_warn("Outside the supported range\n");
|
|
return -1;
|
|
}
|
|
|
|
return create_physical_mapping(__pa(start), __pa(end),
|
|
radix_mem_block_size, nid, prot);
|
|
}
|
|
|
|
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
remove_pagetable(start, end);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags, unsigned int map_page_size,
|
|
int nid)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
|
|
}
|
|
|
|
int __meminit radix__vmemmap_create_mapping(unsigned long start,
|
|
unsigned long page_size,
|
|
unsigned long phys)
|
|
{
|
|
/* Create a PTE encoding */
|
|
unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
|
|
int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
|
|
int ret;
|
|
|
|
if ((start + page_size) >= RADIX_VMEMMAP_END) {
|
|
pr_warn("Outside the supported range\n");
|
|
return -1;
|
|
}
|
|
|
|
ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
|
|
{
|
|
remove_pagetable(start, start + page_size);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long old;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
#endif
|
|
|
|
old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
|
|
trace_hugepage_update(addr, old, clr, set);
|
|
|
|
return old;
|
|
}
|
|
|
|
pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
pmd_t pmd;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
|
|
VM_BUG_ON(pmd_devmap(*pmdp));
|
|
/*
|
|
* khugepaged calls this for normal pmd
|
|
*/
|
|
pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
|
|
/*
|
|
* pmdp collapse_flush need to ensure that there are no parallel gup
|
|
* walk after this call. This is needed so that we can have stable
|
|
* page ref count when collapsing a page. We don't allow a collapse page
|
|
* if we have gup taken on the page. We can ensure that by sending IPI
|
|
* because gup walk happens with IRQ disabled.
|
|
*/
|
|
serialize_against_pte_lookup(vma->vm_mm);
|
|
|
|
radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
/*
|
|
* For us pgtable_t is pte_t *. Inorder to save the deposisted
|
|
* page table, we consider the allocated page table as a list
|
|
* head. On withdraw we need to make sure we zero out the used
|
|
* list_head memory area.
|
|
*/
|
|
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct list_head *lh = (struct list_head *) pgtable;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
if (!pmd_huge_pte(mm, pmdp))
|
|
INIT_LIST_HEAD(lh);
|
|
else
|
|
list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
|
|
pmd_huge_pte(mm, pmdp) = pgtable;
|
|
}
|
|
|
|
pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
|
|
{
|
|
pte_t *ptep;
|
|
pgtable_t pgtable;
|
|
struct list_head *lh;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
pgtable = pmd_huge_pte(mm, pmdp);
|
|
lh = (struct list_head *) pgtable;
|
|
if (list_empty(lh))
|
|
pmd_huge_pte(mm, pmdp) = NULL;
|
|
else {
|
|
pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
|
|
list_del(lh);
|
|
}
|
|
ptep = (pte_t *) pgtable;
|
|
*ptep = __pte(0);
|
|
ptep++;
|
|
*ptep = __pte(0);
|
|
return pgtable;
|
|
}
|
|
|
|
pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd;
|
|
unsigned long old;
|
|
|
|
old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
|
|
old_pmd = __pmd(old);
|
|
return old_pmd;
|
|
}
|
|
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
|
|
pte_t entry, unsigned long address, int psize)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
|
|
_PAGE_RW | _PAGE_EXEC);
|
|
|
|
unsigned long change = pte_val(entry) ^ pte_val(*ptep);
|
|
/*
|
|
* To avoid NMMU hang while relaxing access, we need mark
|
|
* the pte invalid in between.
|
|
*/
|
|
if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
|
|
unsigned long old_pte, new_pte;
|
|
|
|
old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
|
|
/*
|
|
* new value of pte
|
|
*/
|
|
new_pte = old_pte | set;
|
|
radix__flush_tlb_page_psize(mm, address, psize);
|
|
__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
|
|
} else {
|
|
__radix_pte_update(ptep, 0, set);
|
|
/*
|
|
* Book3S does not require a TLB flush when relaxing access
|
|
* restrictions when the address space is not attached to a
|
|
* NMMU, because the core MMU will reload the pte after taking
|
|
* an access fault, which is defined by the architectue.
|
|
*/
|
|
}
|
|
/* See ptesync comment in radix__set_pte_at */
|
|
}
|
|
|
|
void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t old_pte, pte_t pte)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
/*
|
|
* To avoid NMMU hang while relaxing access we need to flush the tlb before
|
|
* we set the new value. We need to do this only for radix, because hash
|
|
* translation does flush when updating the linux pte.
|
|
*/
|
|
if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
|
|
(atomic_read(&mm->context.copros) > 0))
|
|
radix__flush_tlb_page(vma, addr);
|
|
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|
|
|
|
int __init arch_ioremap_pud_supported(void)
|
|
{
|
|
/* HPT does not cope with large pages in the vmalloc area */
|
|
return radix_enabled();
|
|
}
|
|
|
|
int __init arch_ioremap_pmd_supported(void)
|
|
{
|
|
return radix_enabled();
|
|
}
|
|
|
|
int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
pte_t *ptep = (pte_t *)pud;
|
|
pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
|
|
|
|
if (!radix_enabled())
|
|
return 0;
|
|
|
|
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pud_clear_huge(pud_t *pud)
|
|
{
|
|
if (pud_huge(*pud)) {
|
|
pud_clear(pud);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
pmd = (pmd_t *)pud_page_vaddr(*pud);
|
|
pud_clear(pud);
|
|
|
|
flush_tlb_kernel_range(addr, addr + PUD_SIZE);
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
if (!pmd_none(pmd[i])) {
|
|
pte_t *pte;
|
|
pte = (pte_t *)pmd_page_vaddr(pmd[i]);
|
|
|
|
pte_free_kernel(&init_mm, pte);
|
|
}
|
|
}
|
|
|
|
pmd_free(&init_mm, pmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
pte_t *ptep = (pte_t *)pmd;
|
|
pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
|
|
|
|
if (!radix_enabled())
|
|
return 0;
|
|
|
|
set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int pmd_clear_huge(pmd_t *pmd)
|
|
{
|
|
if (pmd_huge(*pmd)) {
|
|
pmd_clear(pmd);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
pmd_clear(pmd);
|
|
|
|
flush_tlb_kernel_range(addr, addr + PMD_SIZE);
|
|
|
|
pte_free_kernel(&init_mm, pte);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int __init arch_ioremap_p4d_supported(void)
|
|
{
|
|
return 0;
|
|
}
|