forked from Minki/linux
456335e207
nommu does not require the page table manipulation code in the bootmem initialisation paths. Move this into separate inline functions. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
698 lines
17 KiB
C
698 lines
17 KiB
C
/*
|
|
* linux/arch/arm/mm/init.c
|
|
*
|
|
* Copyright (C) 1995-2005 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/initrd.h>
|
|
|
|
#include <asm/mach-types.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/mach/map.h>
|
|
|
|
#include "mm.h"
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
|
extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
|
|
extern unsigned long phys_initrd_start;
|
|
extern unsigned long phys_initrd_size;
|
|
|
|
/*
|
|
* The sole use of this is to pass memory configuration
|
|
* data from paging_init to mem_init.
|
|
*/
|
|
static struct meminfo meminfo __initdata = { 0, };
|
|
|
|
/*
|
|
* empty_zero_page is a special page that is used for
|
|
* zero-initialized data and COW.
|
|
*/
|
|
struct page *empty_zero_page;
|
|
|
|
/*
|
|
* The pmd table for the upper-most set of pages.
|
|
*/
|
|
pmd_t *top_pmd;
|
|
|
|
void show_mem(void)
|
|
{
|
|
int free = 0, total = 0, reserved = 0;
|
|
int shared = 0, cached = 0, slab = 0, node;
|
|
|
|
printk("Mem-info:\n");
|
|
show_free_areas();
|
|
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
|
|
for_each_online_node(node) {
|
|
struct page *page, *end;
|
|
|
|
page = NODE_MEM_MAP(node);
|
|
end = page + NODE_DATA(node)->node_spanned_pages;
|
|
|
|
do {
|
|
total++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (PageSlab(page))
|
|
slab++;
|
|
else if (!page_count(page))
|
|
free++;
|
|
else
|
|
shared += page_count(page) - 1;
|
|
page++;
|
|
} while (page < end);
|
|
}
|
|
|
|
printk("%d pages of RAM\n", total);
|
|
printk("%d free pages\n", free);
|
|
printk("%d reserved pages\n", reserved);
|
|
printk("%d slab pages\n", slab);
|
|
printk("%d pages shared\n", shared);
|
|
printk("%d pages swap cached\n", cached);
|
|
}
|
|
|
|
#define for_each_nodebank(iter,mi,no) \
|
|
for (iter = 0; iter < mi->nr_banks; iter++) \
|
|
if (mi->bank[iter].node == no)
|
|
|
|
/*
|
|
* FIXME: We really want to avoid allocating the bootmap bitmap
|
|
* over the top of the initrd. Hopefully, this is located towards
|
|
* the start of a bank, so if we allocate the bootmap bitmap at
|
|
* the end, we won't clash.
|
|
*/
|
|
static unsigned int __init
|
|
find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
|
|
{
|
|
unsigned int start_pfn, bank, bootmap_pfn;
|
|
|
|
start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
|
|
bootmap_pfn = 0;
|
|
|
|
for_each_nodebank(bank, mi, node) {
|
|
unsigned int start, end;
|
|
|
|
start = mi->bank[bank].start >> PAGE_SHIFT;
|
|
end = (mi->bank[bank].size +
|
|
mi->bank[bank].start) >> PAGE_SHIFT;
|
|
|
|
if (end < start_pfn)
|
|
continue;
|
|
|
|
if (start < start_pfn)
|
|
start = start_pfn;
|
|
|
|
if (end <= start)
|
|
continue;
|
|
|
|
if (end - start >= bootmap_pages) {
|
|
bootmap_pfn = start;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (bootmap_pfn == 0)
|
|
BUG();
|
|
|
|
return bootmap_pfn;
|
|
}
|
|
|
|
static int __init check_initrd(struct meminfo *mi)
|
|
{
|
|
int initrd_node = -2;
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
unsigned long end = phys_initrd_start + phys_initrd_size;
|
|
|
|
/*
|
|
* Make sure that the initrd is within a valid area of
|
|
* memory.
|
|
*/
|
|
if (phys_initrd_size) {
|
|
unsigned int i;
|
|
|
|
initrd_node = -1;
|
|
|
|
for (i = 0; i < mi->nr_banks; i++) {
|
|
unsigned long bank_end;
|
|
|
|
bank_end = mi->bank[i].start + mi->bank[i].size;
|
|
|
|
if (mi->bank[i].start <= phys_initrd_start &&
|
|
end <= bank_end)
|
|
initrd_node = mi->bank[i].node;
|
|
}
|
|
}
|
|
|
|
if (initrd_node == -1) {
|
|
printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
|
|
"physical memory - disabling initrd\n",
|
|
phys_initrd_start, end);
|
|
phys_initrd_start = phys_initrd_size = 0;
|
|
}
|
|
#endif
|
|
|
|
return initrd_node;
|
|
}
|
|
|
|
/*
|
|
* Reserve the various regions of node 0
|
|
*/
|
|
static __init void reserve_node_zero(pg_data_t *pgdat)
|
|
{
|
|
unsigned long res_size = 0;
|
|
|
|
/*
|
|
* Register the kernel text and data with bootmem.
|
|
* Note that this can only be in node 0.
|
|
*/
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
|
|
#else
|
|
reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
|
|
#endif
|
|
|
|
/*
|
|
* Reserve the page tables. These are already in use,
|
|
* and can only be in node 0.
|
|
*/
|
|
reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
|
|
PTRS_PER_PGD * sizeof(pgd_t));
|
|
|
|
/*
|
|
* Hmm... This should go elsewhere, but we really really need to
|
|
* stop things allocating the low memory; ideally we need a better
|
|
* implementation of GFP_DMA which does not assume that DMA-able
|
|
* memory starts at zero.
|
|
*/
|
|
if (machine_is_integrator() || machine_is_cintegrator())
|
|
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
|
|
|
|
/*
|
|
* These should likewise go elsewhere. They pre-reserve the
|
|
* screen memory region at the start of main system memory.
|
|
*/
|
|
if (machine_is_edb7211())
|
|
res_size = 0x00020000;
|
|
if (machine_is_p720t())
|
|
res_size = 0x00014000;
|
|
|
|
#ifdef CONFIG_SA1111
|
|
/*
|
|
* Because of the SA1111 DMA bug, we want to preserve our
|
|
* precious DMA-able memory...
|
|
*/
|
|
res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
|
|
#endif
|
|
if (res_size)
|
|
reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
|
|
}
|
|
|
|
static inline void prepare_page_table(struct meminfo *mi)
|
|
{
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* Clear out all the mappings below the kernel image.
|
|
*/
|
|
for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
/* The XIP kernel is mapped in the module area -- skip over it */
|
|
addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
|
|
#endif
|
|
for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Clear out all the kernel space mappings, except for the first
|
|
* memory bank, up to the end of the vmalloc region.
|
|
*/
|
|
for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
|
|
addr < VMALLOC_END; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
}
|
|
|
|
static inline void map_memory_bank(struct membank *bank)
|
|
{
|
|
struct map_desc map;
|
|
|
|
map.pfn = __phys_to_pfn(bank->start);
|
|
map.virtual = __phys_to_virt(bank->start);
|
|
map.length = bank->size;
|
|
map.type = MT_MEMORY;
|
|
|
|
create_mapping(&map);
|
|
}
|
|
|
|
static unsigned long __init
|
|
bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
|
|
{
|
|
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
|
|
unsigned long start_pfn, end_pfn, boot_pfn;
|
|
unsigned int boot_pages;
|
|
pg_data_t *pgdat;
|
|
int i;
|
|
|
|
start_pfn = -1UL;
|
|
end_pfn = 0;
|
|
|
|
/*
|
|
* Calculate the pfn range, and map the memory banks for this node.
|
|
*/
|
|
for_each_nodebank(i, mi, node) {
|
|
struct membank *bank = &mi->bank[i];
|
|
unsigned long start, end;
|
|
|
|
start = bank->start >> PAGE_SHIFT;
|
|
end = (bank->start + bank->size) >> PAGE_SHIFT;
|
|
|
|
if (start_pfn > start)
|
|
start_pfn = start;
|
|
if (end_pfn < end)
|
|
end_pfn = end;
|
|
|
|
map_memory_bank(bank);
|
|
}
|
|
|
|
/*
|
|
* If there is no memory in this node, ignore it.
|
|
*/
|
|
if (end_pfn == 0)
|
|
return end_pfn;
|
|
|
|
/*
|
|
* Allocate the bootmem bitmap page.
|
|
*/
|
|
boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
|
|
boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
|
|
|
|
/*
|
|
* Initialise the bootmem allocator for this node, handing the
|
|
* memory banks over to bootmem.
|
|
*/
|
|
node_set_online(node);
|
|
pgdat = NODE_DATA(node);
|
|
init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
|
|
|
|
for_each_nodebank(i, mi, node)
|
|
free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
|
|
|
|
/*
|
|
* Reserve the bootmem bitmap for this node.
|
|
*/
|
|
reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
|
|
boot_pages << PAGE_SHIFT);
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/*
|
|
* If the initrd is in this node, reserve its memory.
|
|
*/
|
|
if (node == initrd_node) {
|
|
reserve_bootmem_node(pgdat, phys_initrd_start,
|
|
phys_initrd_size);
|
|
initrd_start = __phys_to_virt(phys_initrd_start);
|
|
initrd_end = initrd_start + phys_initrd_size;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Finally, reserve any node zero regions.
|
|
*/
|
|
if (node == 0)
|
|
reserve_node_zero(pgdat);
|
|
|
|
/*
|
|
* initialise the zones within this node.
|
|
*/
|
|
memset(zone_size, 0, sizeof(zone_size));
|
|
memset(zhole_size, 0, sizeof(zhole_size));
|
|
|
|
/*
|
|
* The size of this node has already been determined. If we need
|
|
* to do anything fancy with the allocation of this memory to the
|
|
* zones, now is the time to do it.
|
|
*/
|
|
zone_size[0] = end_pfn - start_pfn;
|
|
|
|
/*
|
|
* For each bank in this node, calculate the size of the holes.
|
|
* holes = node_size - sum(bank_sizes_in_node)
|
|
*/
|
|
zhole_size[0] = zone_size[0];
|
|
for_each_nodebank(i, mi, node)
|
|
zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* Adjust the sizes according to any special requirements for
|
|
* this machine type.
|
|
*/
|
|
arch_adjust_zones(node, zone_size, zhole_size);
|
|
|
|
free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
|
|
|
|
return end_pfn;
|
|
}
|
|
|
|
static void __init bootmem_init(struct meminfo *mi)
|
|
{
|
|
unsigned long memend_pfn = 0;
|
|
int node, initrd_node, i;
|
|
|
|
/*
|
|
* Invalidate the node number for empty or invalid memory banks
|
|
*/
|
|
for (i = 0; i < mi->nr_banks; i++)
|
|
if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
|
|
mi->bank[i].node = -1;
|
|
|
|
memcpy(&meminfo, mi, sizeof(meminfo));
|
|
|
|
prepare_page_table(mi);
|
|
|
|
/*
|
|
* Locate which node contains the ramdisk image, if any.
|
|
*/
|
|
initrd_node = check_initrd(mi);
|
|
|
|
/*
|
|
* Run through each node initialising the bootmem allocator.
|
|
*/
|
|
for_each_node(node) {
|
|
unsigned long end_pfn;
|
|
|
|
end_pfn = bootmem_init_node(node, initrd_node, mi);
|
|
|
|
/*
|
|
* Remember the highest memory PFN.
|
|
*/
|
|
if (end_pfn > memend_pfn)
|
|
memend_pfn = end_pfn;
|
|
}
|
|
|
|
high_memory = __va(memend_pfn << PAGE_SHIFT);
|
|
|
|
/*
|
|
* This doesn't seem to be used by the Linux memory manager any
|
|
* more, but is used by ll_rw_block. If we can get rid of it, we
|
|
* also get rid of some of the stuff above as well.
|
|
*
|
|
* Note: max_low_pfn and max_pfn reflect the number of _pages_ in
|
|
* the system, not the maximum PFN.
|
|
*/
|
|
max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
|
|
}
|
|
|
|
/*
|
|
* Set up device the mappings. Since we clear out the page tables for all
|
|
* mappings above VMALLOC_END, we will remove any debug device mappings.
|
|
* This means you have to be careful how you debug this function, or any
|
|
* called function. This means you can't use any function or debugging
|
|
* method which may touch any device, otherwise the kernel _will_ crash.
|
|
*/
|
|
static void __init devicemaps_init(struct machine_desc *mdesc)
|
|
{
|
|
struct map_desc map;
|
|
unsigned long addr;
|
|
void *vectors;
|
|
|
|
/*
|
|
* Allocate the vector page early.
|
|
*/
|
|
vectors = alloc_bootmem_low_pages(PAGE_SIZE);
|
|
BUG_ON(!vectors);
|
|
|
|
for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
/*
|
|
* Map the kernel if it is XIP.
|
|
* It is always first in the modulearea.
|
|
*/
|
|
#ifdef CONFIG_XIP_KERNEL
|
|
map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
|
|
map.virtual = MODULE_START;
|
|
map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
|
|
map.type = MT_ROM;
|
|
create_mapping(&map);
|
|
#endif
|
|
|
|
/*
|
|
* Map the cache flushing regions.
|
|
*/
|
|
#ifdef FLUSH_BASE
|
|
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
|
|
map.virtual = FLUSH_BASE;
|
|
map.length = SZ_1M;
|
|
map.type = MT_CACHECLEAN;
|
|
create_mapping(&map);
|
|
#endif
|
|
#ifdef FLUSH_BASE_MINICACHE
|
|
map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
|
|
map.virtual = FLUSH_BASE_MINICACHE;
|
|
map.length = SZ_1M;
|
|
map.type = MT_MINICLEAN;
|
|
create_mapping(&map);
|
|
#endif
|
|
|
|
/*
|
|
* Create a mapping for the machine vectors at the high-vectors
|
|
* location (0xffff0000). If we aren't using high-vectors, also
|
|
* create a mapping at the low-vectors virtual address.
|
|
*/
|
|
map.pfn = __phys_to_pfn(virt_to_phys(vectors));
|
|
map.virtual = 0xffff0000;
|
|
map.length = PAGE_SIZE;
|
|
map.type = MT_HIGH_VECTORS;
|
|
create_mapping(&map);
|
|
|
|
if (!vectors_high()) {
|
|
map.virtual = 0;
|
|
map.type = MT_LOW_VECTORS;
|
|
create_mapping(&map);
|
|
}
|
|
|
|
/*
|
|
* Ask the machine support to map in the statically mapped devices.
|
|
*/
|
|
if (mdesc->map_io)
|
|
mdesc->map_io();
|
|
|
|
/*
|
|
* Finally flush the caches and tlb to ensure that we're in a
|
|
* consistent state wrt the writebuffer. This also ensures that
|
|
* any write-allocated cache lines in the vector page are written
|
|
* back. After this point, we can start to touch devices again.
|
|
*/
|
|
local_flush_tlb_all();
|
|
flush_cache_all();
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables, initialises the zone memory
|
|
* maps, and sets up the zero page, bad page and bad page tables.
|
|
*/
|
|
void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
|
|
{
|
|
void *zero_page;
|
|
|
|
build_mem_type_table();
|
|
bootmem_init(mi);
|
|
devicemaps_init(mdesc);
|
|
|
|
top_pmd = pmd_off_k(0xffff0000);
|
|
|
|
/*
|
|
* allocate the zero page. Note that we count on this going ok.
|
|
*/
|
|
zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
|
|
memzero(zero_page, PAGE_SIZE);
|
|
empty_zero_page = virt_to_page(zero_page);
|
|
flush_dcache_page(empty_zero_page);
|
|
}
|
|
|
|
static inline void free_area(unsigned long addr, unsigned long end, char *s)
|
|
{
|
|
unsigned int size = (end - addr) >> 10;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
struct page *page = virt_to_page(addr);
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
free_page(addr);
|
|
totalram_pages++;
|
|
}
|
|
|
|
if (size && s)
|
|
printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
|
|
}
|
|
|
|
static inline void
|
|
free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *start_pg, *end_pg;
|
|
unsigned long pg, pgend;
|
|
|
|
/*
|
|
* Convert start_pfn/end_pfn to a struct page pointer.
|
|
*/
|
|
start_pg = pfn_to_page(start_pfn);
|
|
end_pg = pfn_to_page(end_pfn);
|
|
|
|
/*
|
|
* Convert to physical addresses, and
|
|
* round start upwards and end downwards.
|
|
*/
|
|
pg = PAGE_ALIGN(__pa(start_pg));
|
|
pgend = __pa(end_pg) & PAGE_MASK;
|
|
|
|
/*
|
|
* If there are free pages between these,
|
|
* free the section of the memmap array.
|
|
*/
|
|
if (pg < pgend)
|
|
free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
|
|
}
|
|
|
|
/*
|
|
* The mem_map array can get very big. Free the unused area of the memory map.
|
|
*/
|
|
static void __init free_unused_memmap_node(int node, struct meminfo *mi)
|
|
{
|
|
unsigned long bank_start, prev_bank_end = 0;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* [FIXME] This relies on each bank being in address order. This
|
|
* may not be the case, especially if the user has provided the
|
|
* information on the command line.
|
|
*/
|
|
for_each_nodebank(i, mi, node) {
|
|
bank_start = mi->bank[i].start >> PAGE_SHIFT;
|
|
if (bank_start < prev_bank_end) {
|
|
printk(KERN_ERR "MEM: unordered memory banks. "
|
|
"Not freeing memmap.\n");
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we had a previous bank, and there is a space
|
|
* between the current bank and the previous, free it.
|
|
*/
|
|
if (prev_bank_end && prev_bank_end != bank_start)
|
|
free_memmap(node, prev_bank_end, bank_start);
|
|
|
|
prev_bank_end = (mi->bank[i].start +
|
|
mi->bank[i].size) >> PAGE_SHIFT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mem_init() marks the free areas in the mem_map and tells us how much
|
|
* memory is free. This is done after various parts of the system have
|
|
* claimed their memory after the kernel image.
|
|
*/
|
|
void __init mem_init(void)
|
|
{
|
|
unsigned int codepages, datapages, initpages;
|
|
int i, node;
|
|
|
|
codepages = &_etext - &_text;
|
|
datapages = &_end - &__data_start;
|
|
initpages = &__init_end - &__init_begin;
|
|
|
|
#ifndef CONFIG_DISCONTIGMEM
|
|
max_mapnr = virt_to_page(high_memory) - mem_map;
|
|
#endif
|
|
|
|
/* this will put all unused low memory onto the freelists */
|
|
for_each_online_node(node) {
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
free_unused_memmap_node(node, &meminfo);
|
|
|
|
if (pgdat->node_spanned_pages != 0)
|
|
totalram_pages += free_all_bootmem_node(pgdat);
|
|
}
|
|
|
|
#ifdef CONFIG_SA1111
|
|
/* now that our DMA memory is actually so designated, we can free it */
|
|
free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
|
|
#endif
|
|
|
|
/*
|
|
* Since our memory may not be contiguous, calculate the
|
|
* real number of pages we have in this system
|
|
*/
|
|
printk(KERN_INFO "Memory:");
|
|
|
|
num_physpages = 0;
|
|
for (i = 0; i < meminfo.nr_banks; i++) {
|
|
num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
|
|
printk(" %ldMB", meminfo.bank[i].size >> 20);
|
|
}
|
|
|
|
printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
|
|
printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
|
|
"%dK data, %dK init)\n",
|
|
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
|
|
codepages >> 10, datapages >> 10, initpages >> 10);
|
|
|
|
if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
|
|
extern int sysctl_overcommit_memory;
|
|
/*
|
|
* On a machine this small we won't get
|
|
* anywhere without overcommit, so turn
|
|
* it on by default.
|
|
*/
|
|
sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
|
|
}
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
if (!machine_is_integrator() && !machine_is_cintegrator()) {
|
|
free_area((unsigned long)(&__init_begin),
|
|
(unsigned long)(&__init_end),
|
|
"init");
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
static int keep_initrd;
|
|
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (!keep_initrd)
|
|
free_area(start, end, "initrd");
|
|
}
|
|
|
|
static int __init keepinitrd_setup(char *__unused)
|
|
{
|
|
keep_initrd = 1;
|
|
return 1;
|
|
}
|
|
|
|
__setup("keepinitrd", keepinitrd_setup);
|
|
#endif
|