linux/arch/tile/lib/memcpy_tile64.c
Chris Metcalf d5d14ed6f2 arch/tile: Allow tilegx to build with either 16K or 64K page size
This change introduces new flags for the hv_install_context()
API that passes a page table pointer to the hypervisor.  Clients
can explicitly request 4K, 16K, or 64K small pages when they
install a new context.  In practice, the page size is fixed at
kernel compile time and the same size is always requested every
time a new page table is installed.

The <hv/hypervisor.h> header changes so that it provides more abstract
macros for managing "page" things like PFNs and page tables.  For
example there is now a HV_DEFAULT_PAGE_SIZE_SMALL instead of the old
HV_PAGE_SIZE_SMALL.  The various PFN routines have been eliminated and
only PA- or PTFN-based ones remain (since PTFNs are always expressed
in fixed 2KB "page" size).  The page-table management macros are
renamed with a leading underscore and take page-size arguments with
the presumption that clients will use those macros in some single
place to provide the "real" macros they will use themselves.

I happened to notice the old hv_set_caching() API was totally broken
(it assumed 4KB pages) so I changed it so it would nominally work
correctly with other page sizes.

Tag modules with the page size so you can't load a module built with
a conflicting page size.  (And add a test for SMP while we're at it.)

Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2012-05-25 12:48:24 -04:00

277 lines
8.7 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/string.h>
#include <linux/smp.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <asm/fixmap.h>
#include <asm/kmap_types.h>
#include <asm/tlbflush.h>
#include <hv/hypervisor.h>
#include <arch/chip.h>
#if !CHIP_HAS_COHERENT_LOCAL_CACHE()
/* Defined in memcpy.S */
extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n);
extern unsigned long __copy_to_user_inatomic_asm(
void __user *to, const void *from, unsigned long n);
extern unsigned long __copy_from_user_inatomic_asm(
void *to, const void __user *from, unsigned long n);
extern unsigned long __copy_from_user_zeroing_asm(
void *to, const void __user *from, unsigned long n);
typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long);
/* Size above which to consider TLB games for performance */
#define LARGE_COPY_CUTOFF 2048
/* Communicate to the simulator what we are trying to do. */
#define sim_allow_multiple_caching(b) \
__insn_mtspr(SPR_SIM_CONTROL, \
SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS))
/*
* Copy memory by briefly enabling incoherent cacheline-at-a-time mode.
*
* We set up our own source and destination PTEs that we fully control.
* This is the only way to guarantee that we don't race with another
* thread that is modifying the PTE; we can't afford to try the
* copy_{to,from}_user() technique of catching the interrupt, since
* we must run with interrupts disabled to avoid the risk of some
* other code seeing the incoherent data in our cache. (Recall that
* our cache is indexed by PA, so even if the other code doesn't use
* our kmap_atomic virtual addresses, they'll still hit in cache using
* the normal VAs that aren't supposed to hit in cache.)
*/
static void memcpy_multicache(void *dest, const void *source,
pte_t dst_pte, pte_t src_pte, int len)
{
int idx;
unsigned long flags, newsrc, newdst;
pmd_t *pmdp;
pte_t *ptep;
int type0, type1;
int cpu = get_cpu();
/*
* Disable interrupts so that we don't recurse into memcpy()
* in an interrupt handler, nor accidentally reference
* the PA of the source from an interrupt routine. Also
* notify the simulator that we're playing games so we don't
* generate spurious coherency warnings.
*/
local_irq_save(flags);
sim_allow_multiple_caching(1);
/* Set up the new dest mapping */
type0 = kmap_atomic_idx_push();
idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0;
newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1));
pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst);
ptep = pte_offset_kernel(pmdp, newdst);
if (pte_val(*ptep) != pte_val(dst_pte)) {
set_pte(ptep, dst_pte);
local_flush_tlb_page(NULL, newdst, PAGE_SIZE);
}
/* Set up the new source mapping */
type1 = kmap_atomic_idx_push();
idx += (type0 - type1);
src_pte = hv_pte_set_nc(src_pte);
src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */
newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1));
pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc);
ptep = pte_offset_kernel(pmdp, newsrc);
__set_pte(ptep, src_pte); /* set_pte() would be confused by this */
local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
/* Actually move the data. */
__memcpy_asm((void *)newdst, (const void *)newsrc, len);
/*
* Remap the source as locally-cached and not OLOC'ed so that
* we can inval without also invaling the remote cpu's cache.
* This also avoids known errata with inv'ing cacheable oloc data.
*/
src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3);
src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */
__set_pte(ptep, src_pte); /* set_pte() would be confused by this */
local_flush_tlb_page(NULL, newsrc, PAGE_SIZE);
/*
* Do the actual invalidation, covering the full L2 cache line
* at the end since __memcpy_asm() is somewhat aggressive.
*/
__inv_buffer((void *)newsrc, len);
/*
* We're done: notify the simulator that all is back to normal,
* and re-enable interrupts and pre-emption.
*/
kmap_atomic_idx_pop();
kmap_atomic_idx_pop();
sim_allow_multiple_caching(0);
local_irq_restore(flags);
put_cpu();
}
/*
* Identify large copies from remotely-cached memory, and copy them
* via memcpy_multicache() if they look good, otherwise fall back
* to the particular kind of copying passed as the memcpy_t function.
*/
static unsigned long fast_copy(void *dest, const void *source, int len,
memcpy_t func)
{
/*
* Check if it's big enough to bother with. We may end up doing a
* small copy via TLB manipulation if we're near a page boundary,
* but presumably we'll make it up when we hit the second page.
*/
while (len >= LARGE_COPY_CUTOFF) {
int copy_size, bytes_left_on_page;
pte_t *src_ptep, *dst_ptep;
pte_t src_pte, dst_pte;
struct page *src_page, *dst_page;
/* Is the source page oloc'ed to a remote cpu? */
retry_source:
src_ptep = virt_to_pte(current->mm, (unsigned long)source);
if (src_ptep == NULL)
break;
src_pte = *src_ptep;
if (!hv_pte_get_present(src_pte) ||
!hv_pte_get_readable(src_pte) ||
hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
break;
if (get_remote_cache_cpu(src_pte) == smp_processor_id())
break;
src_page = pfn_to_page(pte_pfn(src_pte));
get_page(src_page);
if (pte_val(src_pte) != pte_val(*src_ptep)) {
put_page(src_page);
goto retry_source;
}
if (pte_huge(src_pte)) {
/* Adjust the PTE to correspond to a small page */
int pfn = pte_pfn(src_pte);
pfn += (((unsigned long)source & (HPAGE_SIZE-1))
>> PAGE_SHIFT);
src_pte = pfn_pte(pfn, src_pte);
src_pte = pte_mksmall(src_pte);
}
/* Is the destination page writable? */
retry_dest:
dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
if (dst_ptep == NULL) {
put_page(src_page);
break;
}
dst_pte = *dst_ptep;
if (!hv_pte_get_present(dst_pte) ||
!hv_pte_get_writable(dst_pte)) {
put_page(src_page);
break;
}
dst_page = pfn_to_page(pte_pfn(dst_pte));
if (dst_page == src_page) {
/*
* Source and dest are on the same page; this
* potentially exposes us to incoherence if any
* part of src and dest overlap on a cache line.
* Just give up rather than trying to be precise.
*/
put_page(src_page);
break;
}
get_page(dst_page);
if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
put_page(dst_page);
goto retry_dest;
}
if (pte_huge(dst_pte)) {
/* Adjust the PTE to correspond to a small page */
int pfn = pte_pfn(dst_pte);
pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
>> PAGE_SHIFT);
dst_pte = pfn_pte(pfn, dst_pte);
dst_pte = pte_mksmall(dst_pte);
}
/* All looks good: create a cachable PTE and copy from it */
copy_size = len;
bytes_left_on_page =
PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
if (copy_size > bytes_left_on_page)
copy_size = bytes_left_on_page;
bytes_left_on_page =
PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
if (copy_size > bytes_left_on_page)
copy_size = bytes_left_on_page;
memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);
/* Release the pages */
put_page(dst_page);
put_page(src_page);
/* Continue on the next page */
dest += copy_size;
source += copy_size;
len -= copy_size;
}
return func(dest, source, len);
}
void *memcpy(void *to, const void *from, __kernel_size_t n)
{
if (n < LARGE_COPY_CUTOFF)
return (void *)__memcpy_asm(to, from, n);
else
return (void *)fast_copy(to, from, n, __memcpy_asm);
}
unsigned long __copy_to_user_inatomic(void __user *to, const void *from,
unsigned long n)
{
if (n < LARGE_COPY_CUTOFF)
return __copy_to_user_inatomic_asm(to, from, n);
else
return fast_copy(to, from, n, __copy_to_user_inatomic_asm);
}
unsigned long __copy_from_user_inatomic(void *to, const void __user *from,
unsigned long n)
{
if (n < LARGE_COPY_CUTOFF)
return __copy_from_user_inatomic_asm(to, from, n);
else
return fast_copy(to, from, n, __copy_from_user_inatomic_asm);
}
unsigned long __copy_from_user_zeroing(void *to, const void __user *from,
unsigned long n)
{
if (n < LARGE_COPY_CUTOFF)
return __copy_from_user_zeroing_asm(to, from, n);
else
return fast_copy(to, from, n, __copy_from_user_zeroing_asm);
}
#endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */