linux/drivers/net/ethernet/intel/ice/ice_flow.c
Tony Nguyen 451f2c4406 ice: Populate TCAM filter software structures
Store the TCAM entry with the profile data and the VSI group in the
respective SW structures. This will be subsequently used to write out
the tables to hardware.

Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Signed-off-by: Henry Tieman <henry.w.tieman@intel.com>
Tested-by: Andrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2020-01-25 21:34:36 -08:00

774 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_common.h"
#include "ice_flow.h"
/* Describe properties of a protocol header field */
struct ice_flow_field_info {
enum ice_flow_seg_hdr hdr;
s16 off; /* Offset from start of a protocol header, in bits */
u16 size; /* Size of fields in bits */
};
#define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
.hdr = _hdr, \
.off = (_offset_bytes) * BITS_PER_BYTE, \
.size = (_size_bytes) * BITS_PER_BYTE, \
}
/* Table containing properties of supported protocol header fields */
static const
struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
/* IPv4 / IPv6 */
/* ICE_FLOW_FIELD_IDX_IPV4_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_IPV4_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, sizeof(struct in_addr)),
/* ICE_FLOW_FIELD_IDX_IPV6_SA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, sizeof(struct in6_addr)),
/* ICE_FLOW_FIELD_IDX_IPV6_DA */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, sizeof(struct in6_addr)),
/* Transport */
/* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, sizeof(__be16)),
/* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, sizeof(__be16)),
};
/* Bitmaps indicating relevant packet types for a particular protocol header
*
* Packet types for packets with an Outer/First/Single IPv4 header
*/
static const u32 ice_ptypes_ipv4_ofos[] = {
0x1DC00000, 0x04000800, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv4 header */
static const u32 ice_ptypes_ipv4_il[] = {
0xE0000000, 0xB807700E, 0x80000003, 0xE01DC03B,
0x0000000E, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Outer/First/Single IPv6 header */
static const u32 ice_ptypes_ipv6_ofos[] = {
0x00000000, 0x00000000, 0x77000000, 0x10002000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last IPv6 header */
static const u32 ice_ptypes_ipv6_il[] = {
0x00000000, 0x03B80770, 0x000001DC, 0x0EE00000,
0x00000770, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* UDP Packet types for non-tunneled packets or tunneled
* packets with inner UDP.
*/
static const u32 ice_ptypes_udp_il[] = {
0x81000000, 0x20204040, 0x04000010, 0x80810102,
0x00000040, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last TCP header */
static const u32 ice_ptypes_tcp_il[] = {
0x04000000, 0x80810102, 0x10000040, 0x02040408,
0x00000102, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Packet types for packets with an Innermost/Last SCTP header */
static const u32 ice_ptypes_sctp_il[] = {
0x08000000, 0x01020204, 0x20000081, 0x04080810,
0x00000204, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
};
/* Manage parameters and info. used during the creation of a flow profile */
struct ice_flow_prof_params {
enum ice_block blk;
u16 entry_length; /* # of bytes formatted entry will require */
u8 es_cnt;
struct ice_flow_prof *prof;
/* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
* This will give us the direction flags.
*/
struct ice_fv_word es[ICE_MAX_FV_WORDS];
DECLARE_BITMAP(ptypes, ICE_FLOW_PTYPE_MAX);
};
#define ICE_FLOW_SEG_HDRS_L3_MASK \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
#define ICE_FLOW_SEG_HDRS_L4_MASK \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
/**
* ice_flow_val_hdrs - validates packet segments for valid protocol headers
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
*/
static enum ice_status
ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
{
u8 i;
for (i = 0; i < segs_cnt; i++) {
/* Multiple L3 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
!is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
return ICE_ERR_PARAM;
/* Multiple L4 headers */
if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
!is_power_of_2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
return ICE_ERR_PARAM;
}
return 0;
}
/**
* ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
* @params: information about the flow to be processed
*
* This function identifies the packet types associated with the protocol
* headers being present in packet segments of the specified flow profile.
*/
static enum ice_status
ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
{
struct ice_flow_prof *prof;
u8 i;
memset(params->ptypes, 0xff, sizeof(params->ptypes));
prof = params->prof;
for (i = 0; i < params->prof->segs_cnt; i++) {
const unsigned long *src;
u32 hdrs;
hdrs = prof->segs[i].hdrs;
if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
src = !i ? (const unsigned long *)ice_ptypes_ipv4_ofos :
(const unsigned long *)ice_ptypes_ipv4_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
src = !i ? (const unsigned long *)ice_ptypes_ipv6_ofos :
(const unsigned long *)ice_ptypes_ipv6_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
src = (const unsigned long *)ice_ptypes_udp_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
bitmap_and(params->ptypes, params->ptypes,
(const unsigned long *)ice_ptypes_tcp_il,
ICE_FLOW_PTYPE_MAX);
} else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
src = (const unsigned long *)ice_ptypes_sctp_il;
bitmap_and(params->ptypes, params->ptypes, src,
ICE_FLOW_PTYPE_MAX);
}
}
return 0;
}
/**
* ice_flow_xtract_fld - Create an extraction sequence entry for the given field
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
* @seg: packet segment index of the field to be extracted
* @fld: ID of field to be extracted
*
* This function determines the protocol ID, offset, and size of the given
* field. It then allocates one or more extraction sequence entries for the
* given field, and fill the entries with protocol ID and offset information.
*/
static enum ice_status
ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
u8 seg, enum ice_flow_field fld)
{
enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
u8 fv_words = hw->blk[params->blk].es.fvw;
struct ice_flow_fld_info *flds;
u16 cnt, ese_bits, i;
u16 off;
flds = params->prof->segs[seg].fields;
switch (fld) {
case ICE_FLOW_FIELD_IDX_IPV4_SA:
case ICE_FLOW_FIELD_IDX_IPV4_DA:
prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
break;
case ICE_FLOW_FIELD_IDX_IPV6_SA:
case ICE_FLOW_FIELD_IDX_IPV6_DA:
prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
break;
case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
prot_id = ICE_PROT_TCP_IL;
break;
case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
prot_id = ICE_PROT_UDP_IL_OR_S;
break;
default:
return ICE_ERR_NOT_IMPL;
}
/* Each extraction sequence entry is a word in size, and extracts a
* word-aligned offset from a protocol header.
*/
ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
flds[fld].xtrct.prot_id = prot_id;
flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
ICE_FLOW_FV_EXTRACT_SZ;
flds[fld].xtrct.disp = (u8)(ice_flds_info[fld].off % ese_bits);
flds[fld].xtrct.idx = params->es_cnt;
/* Adjust the next field-entry index after accommodating the number of
* entries this field consumes
*/
cnt = DIV_ROUND_UP(flds[fld].xtrct.disp + ice_flds_info[fld].size,
ese_bits);
/* Fill in the extraction sequence entries needed for this field */
off = flds[fld].xtrct.off;
for (i = 0; i < cnt; i++) {
u8 idx;
/* Make sure the number of extraction sequence required
* does not exceed the block's capability
*/
if (params->es_cnt >= fv_words)
return ICE_ERR_MAX_LIMIT;
/* some blocks require a reversed field vector layout */
if (hw->blk[params->blk].es.reverse)
idx = fv_words - params->es_cnt - 1;
else
idx = params->es_cnt;
params->es[idx].prot_id = prot_id;
params->es[idx].off = off;
params->es_cnt++;
off += ICE_FLOW_FV_EXTRACT_SZ;
}
return 0;
}
/**
* ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*
* This function iterates through all matched fields in the given segments, and
* creates an extraction sequence for the fields.
*/
static enum ice_status
ice_flow_create_xtrct_seq(struct ice_hw *hw,
struct ice_flow_prof_params *params)
{
struct ice_flow_prof *prof = params->prof;
enum ice_status status = 0;
u8 i;
for (i = 0; i < prof->segs_cnt; i++) {
u8 j;
for_each_set_bit(j, (unsigned long *)&prof->segs[i].match,
ICE_FLOW_FIELD_IDX_MAX) {
status = ice_flow_xtract_fld(hw, params, i,
(enum ice_flow_field)j);
if (status)
return status;
}
}
return status;
}
/**
* ice_flow_proc_segs - process all packet segments associated with a profile
* @hw: pointer to the HW struct
* @params: information about the flow to be processed
*/
static enum ice_status
ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
{
enum ice_status status;
status = ice_flow_proc_seg_hdrs(params);
if (status)
return status;
status = ice_flow_create_xtrct_seq(hw, params);
if (status)
return status;
switch (params->blk) {
case ICE_BLK_RSS:
/* Only header information is provided for RSS configuration.
* No further processing is needed.
*/
status = 0;
break;
default:
return ICE_ERR_NOT_IMPL;
}
return status;
}
/**
* ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @prof: stores the returned flow profile added
*
* Assumption: the caller has acquired the lock to the profile list
*/
static enum ice_status
ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
enum ice_flow_dir dir, u64 prof_id,
struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_prof **prof)
{
struct ice_flow_prof_params params;
enum ice_status status;
u8 i;
if (!prof)
return ICE_ERR_BAD_PTR;
memset(&params, 0, sizeof(params));
params.prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*params.prof),
GFP_KERNEL);
if (!params.prof)
return ICE_ERR_NO_MEMORY;
/* initialize extraction sequence to all invalid (0xff) */
for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
params.es[i].prot_id = ICE_PROT_INVALID;
params.es[i].off = ICE_FV_OFFSET_INVAL;
}
params.blk = blk;
params.prof->id = prof_id;
params.prof->dir = dir;
params.prof->segs_cnt = segs_cnt;
/* Make a copy of the segments that need to be persistent in the flow
* profile instance
*/
for (i = 0; i < segs_cnt; i++)
memcpy(&params.prof->segs[i], &segs[i], sizeof(*segs));
status = ice_flow_proc_segs(hw, &params);
if (status) {
ice_debug(hw, ICE_DBG_FLOW,
"Error processing a flow's packet segments\n");
goto out;
}
/* Add a HW profile for this flow profile */
status = ice_add_prof(hw, blk, prof_id, (u8 *)params.ptypes, params.es);
if (status) {
ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
goto out;
}
INIT_LIST_HEAD(&params.prof->entries);
mutex_init(&params.prof->entries_lock);
*prof = params.prof;
out:
if (status)
devm_kfree(ice_hw_to_dev(hw), params.prof);
return status;
}
/**
* ice_flow_assoc_prof - associate a VSI with a flow profile
* @hw: pointer to the hardware structure
* @blk: classification stage
* @prof: pointer to flow profile
* @vsi_handle: software VSI handle
*
* Assumption: the caller has acquired the lock to the profile list
* and the software VSI handle has been validated
*/
static enum ice_status
ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
struct ice_flow_prof *prof, u16 vsi_handle)
{
enum ice_status status = 0;
if (!test_bit(vsi_handle, prof->vsis)) {
status = ice_add_prof_id_flow(hw, blk,
ice_get_hw_vsi_num(hw,
vsi_handle),
prof->id);
if (!status)
set_bit(vsi_handle, prof->vsis);
else
ice_debug(hw, ICE_DBG_FLOW,
"HW profile add failed, %d\n",
status);
}
return status;
}
/**
* ice_flow_add_prof - Add a flow profile for packet segments and matched fields
* @hw: pointer to the HW struct
* @blk: classification stage
* @dir: flow direction
* @prof_id: unique ID to identify this flow profile
* @segs: array of one or more packet segments that describe the flow
* @segs_cnt: number of packet segments provided
* @prof: stores the returned flow profile added
*/
static enum ice_status
ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
struct ice_flow_prof **prof)
{
enum ice_status status;
if (segs_cnt > ICE_FLOW_SEG_MAX)
return ICE_ERR_MAX_LIMIT;
if (!segs_cnt)
return ICE_ERR_PARAM;
if (!segs)
return ICE_ERR_BAD_PTR;
status = ice_flow_val_hdrs(segs, segs_cnt);
if (status)
return status;
mutex_lock(&hw->fl_profs_locks[blk]);
status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
prof);
if (!status)
list_add(&(*prof)->l_entry, &hw->fl_profs[blk]);
mutex_unlock(&hw->fl_profs_locks[blk]);
return status;
}
/**
* ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @type: type of the field
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
*
* This helper function stores information of a field being matched, including
* the type of the field and the locations of the value to match, the mask, and
* and the upper-bound value in the start of the input buffer for a flow entry.
* This function should only be used for fixed-size data structures.
*
* This function also opportunistically determines the protocol headers to be
* present based on the fields being set. Some fields cannot be used alone to
* determine the protocol headers present. Sometimes, fields for particular
* protocol headers are not matched. In those cases, the protocol headers
* must be explicitly set.
*/
static void
ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
enum ice_flow_fld_match_type type, u16 val_loc,
u16 mask_loc, u16 last_loc)
{
u64 bit = BIT_ULL(fld);
seg->match |= bit;
if (type == ICE_FLOW_FLD_TYPE_RANGE)
seg->range |= bit;
seg->fields[fld].type = type;
seg->fields[fld].src.val = val_loc;
seg->fields[fld].src.mask = mask_loc;
seg->fields[fld].src.last = last_loc;
ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
}
/**
* ice_flow_set_fld - specifies locations of field from entry's input buffer
* @seg: packet segment the field being set belongs to
* @fld: field to be set
* @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
* entry's input buffer
* @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
* input buffer
* @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
* entry's input buffer
* @range: indicate if field being matched is to be in a range
*
* This function specifies the locations, in the form of byte offsets from the
* start of the input buffer for a flow entry, from where the value to match,
* the mask value, and upper value can be extracted. These locations are then
* stored in the flow profile. When adding a flow entry associated with the
* flow profile, these locations will be used to quickly extract the values and
* create the content of a match entry. This function should only be used for
* fixed-size data structures.
*/
static void
ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
{
enum ice_flow_fld_match_type t = range ?
ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
}
#define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
(ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
#define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
(ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_SCTP)
#define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
(ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
/**
* ice_flow_set_rss_seg_info - setup packet segments for RSS
* @segs: pointer to the flow field segment(s)
* @hash_fields: fields to be hashed on for the segment(s)
* @flow_hdr: protocol header fields within a packet segment
*
* Helper function to extract fields from hash bitmap and use flow
* header value to set flow field segment for further use in flow
* profile entry or removal.
*/
static enum ice_status
ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
u32 flow_hdr)
{
u64 val;
u8 i;
for_each_set_bit(i, (unsigned long *)&hash_fields,
ICE_FLOW_FIELD_IDX_MAX)
ice_flow_set_fld(segs, (enum ice_flow_field)i,
ICE_FLOW_FLD_OFF_INVAL, ICE_FLOW_FLD_OFF_INVAL,
ICE_FLOW_FLD_OFF_INVAL, false);
ICE_FLOW_SET_HDRS(segs, flow_hdr);
if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS)
return ICE_ERR_PARAM;
val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
if (val && !is_power_of_2(val))
return ICE_ERR_CFG;
val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
if (val && !is_power_of_2(val))
return ICE_ERR_CFG;
return 0;
}
#define ICE_FLOW_PROF_HASH_S 0
#define ICE_FLOW_PROF_HASH_M (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
#define ICE_FLOW_PROF_HDR_S 32
#define ICE_FLOW_PROF_HDR_M (0x3FFFFFFFULL << ICE_FLOW_PROF_HDR_S)
#define ICE_FLOW_PROF_ENCAP_S 63
#define ICE_FLOW_PROF_ENCAP_M (BIT_ULL(ICE_FLOW_PROF_ENCAP_S))
#define ICE_RSS_OUTER_HEADERS 1
/* Flow profile ID format:
* [0:31] - Packet match fields
* [32:62] - Protocol header
* [63] - Encapsulation flag, 0 if non-tunneled, 1 if tunneled
*/
#define ICE_FLOW_GEN_PROFID(hash, hdr, segs_cnt) \
(u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
(((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M) | \
((u8)((segs_cnt) - 1) ? ICE_FLOW_PROF_ENCAP_M : 0))
/**
* ice_add_rss_cfg_sync - add an RSS configuration
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
* @addl_hdrs: protocol header fields
* @segs_cnt: packet segment count
*
* Assumption: lock has already been acquired for RSS list
*/
static enum ice_status
ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs, u8 segs_cnt)
{
const enum ice_block blk = ICE_BLK_RSS;
struct ice_flow_prof *prof = NULL;
struct ice_flow_seg_info *segs;
enum ice_status status;
if (!segs_cnt || segs_cnt > ICE_FLOW_SEG_MAX)
return ICE_ERR_PARAM;
segs = kcalloc(segs_cnt, sizeof(*segs), GFP_KERNEL);
if (!segs)
return ICE_ERR_NO_MEMORY;
/* Construct the packet segment info from the hashed fields */
status = ice_flow_set_rss_seg_info(&segs[segs_cnt - 1], hashed_flds,
addl_hdrs);
if (status)
goto exit;
/* Create a new flow profile with generated profile and packet
* segment information.
*/
status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
ICE_FLOW_GEN_PROFID(hashed_flds,
segs[segs_cnt - 1].hdrs,
segs_cnt),
segs, segs_cnt, &prof);
if (status)
goto exit;
status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
exit:
kfree(segs);
return status;
}
/**
* ice_add_rss_cfg - add an RSS configuration with specified hashed fields
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
* @addl_hdrs: protocol header fields
*
* This function will generate a flow profile based on fields associated with
* the input fields to hash on, the flow type and use the VSI number to add
* a flow entry to the profile.
*/
enum ice_status
ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
u32 addl_hdrs)
{
enum ice_status status;
if (hashed_flds == ICE_HASH_INVALID ||
!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
mutex_lock(&hw->rss_locks);
status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs,
ICE_RSS_OUTER_HEADERS);
mutex_unlock(&hw->rss_locks);
return status;
}
/**
* ice_replay_rss_cfg - replay RSS configurations associated with VSI
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
*/
enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
{
enum ice_status status = 0;
struct ice_rss_cfg *r;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
mutex_lock(&hw->rss_locks);
list_for_each_entry(r, &hw->rss_list_head, l_entry) {
if (test_bit(vsi_handle, r->vsis)) {
status = ice_add_rss_cfg_sync(hw, vsi_handle,
r->hashed_flds,
r->packet_hdr,
ICE_RSS_OUTER_HEADERS);
if (status)
break;
}
}
mutex_unlock(&hw->rss_locks);
return status;
}