forked from Minki/linux
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
990 lines
26 KiB
C
990 lines
26 KiB
C
/*
|
|
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
|
|
*
|
|
* Author: Mike Lavender, mike@steroidmicros.com
|
|
*
|
|
* Copyright (c) 2005, Intec Automation Inc.
|
|
*
|
|
* Some parts are based on lart.c by Abraham Van Der Merwe
|
|
*
|
|
* Cleaned up and generalized based on mtd_dataflash.c
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mod_devicetable.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/flash.h>
|
|
|
|
/* Flash opcodes. */
|
|
#define OPCODE_WREN 0x06 /* Write enable */
|
|
#define OPCODE_RDSR 0x05 /* Read status register */
|
|
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
|
|
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
|
|
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
|
|
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
|
|
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
|
|
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
|
|
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
|
|
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
|
|
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
|
|
|
|
/* Used for SST flashes only. */
|
|
#define OPCODE_BP 0x02 /* Byte program */
|
|
#define OPCODE_WRDI 0x04 /* Write disable */
|
|
#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
|
|
|
|
/* Status Register bits. */
|
|
#define SR_WIP 1 /* Write in progress */
|
|
#define SR_WEL 2 /* Write enable latch */
|
|
/* meaning of other SR_* bits may differ between vendors */
|
|
#define SR_BP0 4 /* Block protect 0 */
|
|
#define SR_BP1 8 /* Block protect 1 */
|
|
#define SR_BP2 0x10 /* Block protect 2 */
|
|
#define SR_SRWD 0x80 /* SR write protect */
|
|
|
|
/* Define max times to check status register before we give up. */
|
|
#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
|
|
#define MAX_CMD_SIZE 4
|
|
|
|
#ifdef CONFIG_M25PXX_USE_FAST_READ
|
|
#define OPCODE_READ OPCODE_FAST_READ
|
|
#define FAST_READ_DUMMY_BYTE 1
|
|
#else
|
|
#define OPCODE_READ OPCODE_NORM_READ
|
|
#define FAST_READ_DUMMY_BYTE 0
|
|
#endif
|
|
|
|
/****************************************************************************/
|
|
|
|
struct m25p {
|
|
struct spi_device *spi;
|
|
struct mutex lock;
|
|
struct mtd_info mtd;
|
|
unsigned partitioned:1;
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
u8 erase_opcode;
|
|
u8 *command;
|
|
};
|
|
|
|
static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd, struct m25p, mtd);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* Internal helper functions
|
|
*/
|
|
|
|
/*
|
|
* Read the status register, returning its value in the location
|
|
* Return the status register value.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int read_sr(struct m25p *flash)
|
|
{
|
|
ssize_t retval;
|
|
u8 code = OPCODE_RDSR;
|
|
u8 val;
|
|
|
|
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
|
|
|
|
if (retval < 0) {
|
|
dev_err(&flash->spi->dev, "error %d reading SR\n",
|
|
(int) retval);
|
|
return retval;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write status register 1 byte
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static int write_sr(struct m25p *flash, u8 val)
|
|
{
|
|
flash->command[0] = OPCODE_WRSR;
|
|
flash->command[1] = val;
|
|
|
|
return spi_write(flash->spi, flash->command, 2);
|
|
}
|
|
|
|
/*
|
|
* Set write enable latch with Write Enable command.
|
|
* Returns negative if error occurred.
|
|
*/
|
|
static inline int write_enable(struct m25p *flash)
|
|
{
|
|
u8 code = OPCODE_WREN;
|
|
|
|
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Send write disble instruction to the chip.
|
|
*/
|
|
static inline int write_disable(struct m25p *flash)
|
|
{
|
|
u8 code = OPCODE_WRDI;
|
|
|
|
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* Service routine to read status register until ready, or timeout occurs.
|
|
* Returns non-zero if error.
|
|
*/
|
|
static int wait_till_ready(struct m25p *flash)
|
|
{
|
|
unsigned long deadline;
|
|
int sr;
|
|
|
|
deadline = jiffies + MAX_READY_WAIT_JIFFIES;
|
|
|
|
do {
|
|
if ((sr = read_sr(flash)) < 0)
|
|
break;
|
|
else if (!(sr & SR_WIP))
|
|
return 0;
|
|
|
|
cond_resched();
|
|
|
|
} while (!time_after_eq(jiffies, deadline));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Erase the whole flash memory
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_chip(struct m25p *flash)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
|
|
dev_name(&flash->spi->dev), __func__,
|
|
(long long)(flash->mtd.size >> 10));
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = OPCODE_CHIP_ERASE;
|
|
|
|
spi_write(flash->spi, flash->command, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
|
|
{
|
|
/* opcode is in cmd[0] */
|
|
cmd[1] = addr >> (flash->addr_width * 8 - 8);
|
|
cmd[2] = addr >> (flash->addr_width * 8 - 16);
|
|
cmd[3] = addr >> (flash->addr_width * 8 - 24);
|
|
}
|
|
|
|
static int m25p_cmdsz(struct m25p *flash)
|
|
{
|
|
return 1 + flash->addr_width;
|
|
}
|
|
|
|
/*
|
|
* Erase one sector of flash memory at offset ``offset'' which is any
|
|
* address within the sector which should be erased.
|
|
*
|
|
* Returns 0 if successful, non-zero otherwise.
|
|
*/
|
|
static int erase_sector(struct m25p *flash, u32 offset)
|
|
{
|
|
DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
|
|
dev_name(&flash->spi->dev), __func__,
|
|
flash->mtd.erasesize / 1024, offset);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash))
|
|
return 1;
|
|
|
|
/* Send write enable, then erase commands. */
|
|
write_enable(flash);
|
|
|
|
/* Set up command buffer. */
|
|
flash->command[0] = flash->erase_opcode;
|
|
m25p_addr2cmd(flash, offset, flash->command);
|
|
|
|
spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* MTD implementation
|
|
*/
|
|
|
|
/*
|
|
* Erase an address range on the flash chip. The address range may extend
|
|
* one or more erase sectors. Return an error is there is a problem erasing.
|
|
*/
|
|
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 addr,len;
|
|
uint32_t rem;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
|
|
dev_name(&flash->spi->dev), __func__, "at",
|
|
(long long)instr->addr, (long long)instr->len);
|
|
|
|
/* sanity checks */
|
|
if (instr->addr + instr->len > flash->mtd.size)
|
|
return -EINVAL;
|
|
div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* whole-chip erase? */
|
|
if (len == flash->mtd.size) {
|
|
if (erase_chip(flash)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
/* REVISIT in some cases we could speed up erasing large regions
|
|
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
|
|
* to use "small sector erase", but that's not always optimal.
|
|
*/
|
|
|
|
/* "sector"-at-a-time erase */
|
|
} else {
|
|
while (len) {
|
|
if (erase_sector(flash, addr)) {
|
|
instr->state = MTD_ERASE_FAILED;
|
|
mutex_unlock(&flash->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
addr += mtd->erasesize;
|
|
len -= mtd->erasesize;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read an address range from the flash chip. The address range
|
|
* may be any size provided it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
|
|
dev_name(&flash->spi->dev), __func__, "from",
|
|
(u32)from, len);
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (from + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
/* NOTE:
|
|
* OPCODE_FAST_READ (if available) is faster.
|
|
* Should add 1 byte DUMMY_BYTE.
|
|
*/
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].rx_buf = buf;
|
|
t[1].len = len;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
/* Byte count starts at zero. */
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait till previous write/erase is done. */
|
|
if (wait_till_ready(flash)) {
|
|
/* REVISIT status return?? */
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME switch to OPCODE_FAST_READ. It's required for higher
|
|
* clocks; and at this writing, every chip this driver handles
|
|
* supports that opcode.
|
|
*/
|
|
|
|
/* Set up the write data buffer. */
|
|
flash->command[0] = OPCODE_READ;
|
|
m25p_addr2cmd(flash, from, flash->command);
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write an address range to the flash chip. Data must be written in
|
|
* FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
* it is within the physical boundaries.
|
|
*/
|
|
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
u32 page_offset, page_size;
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
|
|
dev_name(&flash->spi->dev), __func__, "to",
|
|
(u32)to, len);
|
|
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return(0);
|
|
|
|
if (to + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait until finished previous write command. */
|
|
if (wait_till_ready(flash)) {
|
|
mutex_unlock(&flash->lock);
|
|
return 1;
|
|
}
|
|
|
|
write_enable(flash);
|
|
|
|
/* Set up the opcode in the write buffer. */
|
|
flash->command[0] = OPCODE_PP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
page_offset = to & (flash->page_size - 1);
|
|
|
|
/* do all the bytes fit onto one page? */
|
|
if (page_offset + len <= flash->page_size) {
|
|
t[1].len = len;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash);
|
|
} else {
|
|
u32 i;
|
|
|
|
/* the size of data remaining on the first page */
|
|
page_size = flash->page_size - page_offset;
|
|
|
|
t[1].len = page_size;
|
|
spi_sync(flash->spi, &m);
|
|
|
|
*retlen = m.actual_length - m25p_cmdsz(flash);
|
|
|
|
/* write everything in flash->page_size chunks */
|
|
for (i = page_size; i < len; i += page_size) {
|
|
page_size = len - i;
|
|
if (page_size > flash->page_size)
|
|
page_size = flash->page_size;
|
|
|
|
/* write the next page to flash */
|
|
m25p_addr2cmd(flash, to + i, flash->command);
|
|
|
|
t[1].tx_buf = buf + i;
|
|
t[1].len = page_size;
|
|
|
|
wait_till_ready(flash);
|
|
|
|
write_enable(flash);
|
|
|
|
spi_sync(flash->spi, &m);
|
|
|
|
if (retlen)
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&flash->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct m25p *flash = mtd_to_m25p(mtd);
|
|
struct spi_transfer t[2];
|
|
struct spi_message m;
|
|
size_t actual;
|
|
int cmd_sz, ret;
|
|
|
|
if (retlen)
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len)
|
|
return 0;
|
|
|
|
if (to + len > flash->mtd.size)
|
|
return -EINVAL;
|
|
|
|
spi_message_init(&m);
|
|
memset(t, 0, (sizeof t));
|
|
|
|
t[0].tx_buf = flash->command;
|
|
t[0].len = m25p_cmdsz(flash);
|
|
spi_message_add_tail(&t[0], &m);
|
|
|
|
t[1].tx_buf = buf;
|
|
spi_message_add_tail(&t[1], &m);
|
|
|
|
mutex_lock(&flash->lock);
|
|
|
|
/* Wait until finished previous write command. */
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
|
|
write_enable(flash);
|
|
|
|
actual = to % 2;
|
|
/* Start write from odd address. */
|
|
if (actual) {
|
|
flash->command[0] = OPCODE_BP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
/* write one byte. */
|
|
t[1].len = 1;
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
}
|
|
to += actual;
|
|
|
|
flash->command[0] = OPCODE_AAI_WP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
|
|
/* Write out most of the data here. */
|
|
cmd_sz = m25p_cmdsz(flash);
|
|
for (; actual < len - 1; actual += 2) {
|
|
t[0].len = cmd_sz;
|
|
/* write two bytes. */
|
|
t[1].len = 2;
|
|
t[1].tx_buf = buf + actual;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - cmd_sz;
|
|
cmd_sz = 1;
|
|
to += 2;
|
|
}
|
|
write_disable(flash);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
|
|
/* Write out trailing byte if it exists. */
|
|
if (actual != len) {
|
|
write_enable(flash);
|
|
flash->command[0] = OPCODE_BP;
|
|
m25p_addr2cmd(flash, to, flash->command);
|
|
t[0].len = m25p_cmdsz(flash);
|
|
t[1].len = 1;
|
|
t[1].tx_buf = buf + actual;
|
|
|
|
spi_sync(flash->spi, &m);
|
|
ret = wait_till_ready(flash);
|
|
if (ret)
|
|
goto time_out;
|
|
*retlen += m.actual_length - m25p_cmdsz(flash);
|
|
write_disable(flash);
|
|
}
|
|
|
|
time_out:
|
|
mutex_unlock(&flash->lock);
|
|
return ret;
|
|
}
|
|
|
|
/****************************************************************************/
|
|
|
|
/*
|
|
* SPI device driver setup and teardown
|
|
*/
|
|
|
|
struct flash_info {
|
|
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
* a high byte of zero plus three data bytes: the manufacturer id,
|
|
* then a two byte device id.
|
|
*/
|
|
u32 jedec_id;
|
|
u16 ext_id;
|
|
|
|
/* The size listed here is what works with OPCODE_SE, which isn't
|
|
* necessarily called a "sector" by the vendor.
|
|
*/
|
|
unsigned sector_size;
|
|
u16 n_sectors;
|
|
|
|
u16 page_size;
|
|
u16 addr_width;
|
|
|
|
u16 flags;
|
|
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
|
|
#define M25P_NO_ERASE 0x02 /* No erase command needed */
|
|
};
|
|
|
|
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
((kernel_ulong_t)&(struct flash_info) { \
|
|
.jedec_id = (_jedec_id), \
|
|
.ext_id = (_ext_id), \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = 256, \
|
|
.addr_width = 3, \
|
|
.flags = (_flags), \
|
|
})
|
|
|
|
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
|
|
((kernel_ulong_t)&(struct flash_info) { \
|
|
.sector_size = (_sector_size), \
|
|
.n_sectors = (_n_sectors), \
|
|
.page_size = (_page_size), \
|
|
.addr_width = (_addr_width), \
|
|
.flags = M25P_NO_ERASE, \
|
|
})
|
|
|
|
/* NOTE: double check command sets and memory organization when you add
|
|
* more flash chips. This current list focusses on newer chips, which
|
|
* have been converging on command sets which including JEDEC ID.
|
|
*/
|
|
static const struct spi_device_id m25p_ids[] = {
|
|
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
|
|
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "at26df321", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
|
|
|
|
/* Macronix */
|
|
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
|
|
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
|
|
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
|
|
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
|
|
|
|
/* Spansion -- single (large) sector size only, at least
|
|
* for the chips listed here (without boot sectors).
|
|
*/
|
|
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
|
|
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
|
|
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
|
|
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
|
|
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
|
|
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
|
|
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
|
|
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
|
|
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
|
|
|
|
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
|
|
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
|
|
|
|
/* ST Microelectronics -- newer production may have feature updates */
|
|
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
|
|
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
|
|
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
|
|
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
|
|
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
|
|
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
|
|
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
|
|
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
|
|
|
|
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
|
|
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
|
|
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
|
|
|
|
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
|
|
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
|
|
|
|
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
|
|
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
|
|
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
|
|
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
|
|
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
|
|
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
|
|
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
|
|
/* Catalyst / On Semiconductor -- non-JEDEC */
|
|
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
|
|
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
|
|
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
|
|
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
|
|
{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(spi, m25p_ids);
|
|
|
|
static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
|
|
{
|
|
int tmp;
|
|
u8 code = OPCODE_RDID;
|
|
u8 id[5];
|
|
u32 jedec;
|
|
u16 ext_jedec;
|
|
struct flash_info *info;
|
|
|
|
/* JEDEC also defines an optional "extended device information"
|
|
* string for after vendor-specific data, after the three bytes
|
|
* we use here. Supporting some chips might require using it.
|
|
*/
|
|
tmp = spi_write_then_read(spi, &code, 1, id, 5);
|
|
if (tmp < 0) {
|
|
DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
|
|
dev_name(&spi->dev), tmp);
|
|
return NULL;
|
|
}
|
|
jedec = id[0];
|
|
jedec = jedec << 8;
|
|
jedec |= id[1];
|
|
jedec = jedec << 8;
|
|
jedec |= id[2];
|
|
|
|
/*
|
|
* Some chips (like Numonyx M25P80) have JEDEC and non-JEDEC variants,
|
|
* which depend on technology process. Officially RDID command doesn't
|
|
* exist for non-JEDEC chips, but for compatibility they return ID 0.
|
|
*/
|
|
if (jedec == 0)
|
|
return NULL;
|
|
|
|
ext_jedec = id[3] << 8 | id[4];
|
|
|
|
for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
|
|
info = (void *)m25p_ids[tmp].driver_data;
|
|
if (info->jedec_id == jedec) {
|
|
if (info->ext_id != 0 && info->ext_id != ext_jedec)
|
|
continue;
|
|
return &m25p_ids[tmp];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* board specific setup should have ensured the SPI clock used here
|
|
* matches what the READ command supports, at least until this driver
|
|
* understands FAST_READ (for clocks over 25 MHz).
|
|
*/
|
|
static int __devinit m25p_probe(struct spi_device *spi)
|
|
{
|
|
const struct spi_device_id *id = spi_get_device_id(spi);
|
|
struct flash_platform_data *data;
|
|
struct m25p *flash;
|
|
struct flash_info *info;
|
|
unsigned i;
|
|
|
|
/* Platform data helps sort out which chip type we have, as
|
|
* well as how this board partitions it. If we don't have
|
|
* a chip ID, try the JEDEC id commands; they'll work for most
|
|
* newer chips, even if we don't recognize the particular chip.
|
|
*/
|
|
data = spi->dev.platform_data;
|
|
if (data && data->type) {
|
|
const struct spi_device_id *plat_id;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
|
|
plat_id = &m25p_ids[i];
|
|
if (strcmp(data->type, plat_id->name))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (plat_id)
|
|
id = plat_id;
|
|
else
|
|
dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
|
|
}
|
|
|
|
info = (void *)id->driver_data;
|
|
|
|
if (info->jedec_id) {
|
|
const struct spi_device_id *jid;
|
|
|
|
jid = jedec_probe(spi);
|
|
if (!jid) {
|
|
dev_info(&spi->dev, "non-JEDEC variant of %s\n",
|
|
id->name);
|
|
} else if (jid != id) {
|
|
/*
|
|
* JEDEC knows better, so overwrite platform ID. We
|
|
* can't trust partitions any longer, but we'll let
|
|
* mtd apply them anyway, since some partitions may be
|
|
* marked read-only, and we don't want to lose that
|
|
* information, even if it's not 100% accurate.
|
|
*/
|
|
dev_warn(&spi->dev, "found %s, expected %s\n",
|
|
jid->name, id->name);
|
|
id = jid;
|
|
info = (void *)jid->driver_data;
|
|
}
|
|
}
|
|
|
|
flash = kzalloc(sizeof *flash, GFP_KERNEL);
|
|
if (!flash)
|
|
return -ENOMEM;
|
|
flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
|
|
if (!flash->command) {
|
|
kfree(flash);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
flash->spi = spi;
|
|
mutex_init(&flash->lock);
|
|
dev_set_drvdata(&spi->dev, flash);
|
|
|
|
/*
|
|
* Atmel and SST serial flash tend to power
|
|
* up with the software protection bits set
|
|
*/
|
|
|
|
if (info->jedec_id >> 16 == 0x1f ||
|
|
info->jedec_id >> 16 == 0xbf) {
|
|
write_enable(flash);
|
|
write_sr(flash, 0);
|
|
}
|
|
|
|
if (data && data->name)
|
|
flash->mtd.name = data->name;
|
|
else
|
|
flash->mtd.name = dev_name(&spi->dev);
|
|
|
|
flash->mtd.type = MTD_NORFLASH;
|
|
flash->mtd.writesize = 1;
|
|
flash->mtd.flags = MTD_CAP_NORFLASH;
|
|
flash->mtd.size = info->sector_size * info->n_sectors;
|
|
flash->mtd.erase = m25p80_erase;
|
|
flash->mtd.read = m25p80_read;
|
|
|
|
/* sst flash chips use AAI word program */
|
|
if (info->jedec_id >> 16 == 0xbf)
|
|
flash->mtd.write = sst_write;
|
|
else
|
|
flash->mtd.write = m25p80_write;
|
|
|
|
/* prefer "small sector" erase if possible */
|
|
if (info->flags & SECT_4K) {
|
|
flash->erase_opcode = OPCODE_BE_4K;
|
|
flash->mtd.erasesize = 4096;
|
|
} else {
|
|
flash->erase_opcode = OPCODE_SE;
|
|
flash->mtd.erasesize = info->sector_size;
|
|
}
|
|
|
|
if (info->flags & M25P_NO_ERASE)
|
|
flash->mtd.flags |= MTD_NO_ERASE;
|
|
|
|
flash->mtd.dev.parent = &spi->dev;
|
|
flash->page_size = info->page_size;
|
|
flash->addr_width = info->addr_width;
|
|
|
|
dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
|
|
(long long)flash->mtd.size >> 10);
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"mtd .name = %s, .size = 0x%llx (%lldMiB) "
|
|
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
flash->mtd.name,
|
|
(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
|
|
flash->mtd.erasesize, flash->mtd.erasesize / 1024,
|
|
flash->mtd.numeraseregions);
|
|
|
|
if (flash->mtd.numeraseregions)
|
|
for (i = 0; i < flash->mtd.numeraseregions; i++)
|
|
DEBUG(MTD_DEBUG_LEVEL2,
|
|
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
".erasesize = 0x%.8x (%uKiB), "
|
|
".numblocks = %d }\n",
|
|
i, (long long)flash->mtd.eraseregions[i].offset,
|
|
flash->mtd.eraseregions[i].erasesize,
|
|
flash->mtd.eraseregions[i].erasesize / 1024,
|
|
flash->mtd.eraseregions[i].numblocks);
|
|
|
|
|
|
/* partitions should match sector boundaries; and it may be good to
|
|
* use readonly partitions for writeprotected sectors (BP2..BP0).
|
|
*/
|
|
if (mtd_has_partitions()) {
|
|
struct mtd_partition *parts = NULL;
|
|
int nr_parts = 0;
|
|
|
|
if (mtd_has_cmdlinepart()) {
|
|
static const char *part_probes[]
|
|
= { "cmdlinepart", NULL, };
|
|
|
|
nr_parts = parse_mtd_partitions(&flash->mtd,
|
|
part_probes, &parts, 0);
|
|
}
|
|
|
|
if (nr_parts <= 0 && data && data->parts) {
|
|
parts = data->parts;
|
|
nr_parts = data->nr_parts;
|
|
}
|
|
|
|
if (nr_parts > 0) {
|
|
for (i = 0; i < nr_parts; i++) {
|
|
DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
|
|
"{.name = %s, .offset = 0x%llx, "
|
|
".size = 0x%llx (%lldKiB) }\n",
|
|
i, parts[i].name,
|
|
(long long)parts[i].offset,
|
|
(long long)parts[i].size,
|
|
(long long)(parts[i].size >> 10));
|
|
}
|
|
flash->partitioned = 1;
|
|
return add_mtd_partitions(&flash->mtd, parts, nr_parts);
|
|
}
|
|
} else if (data && data->nr_parts)
|
|
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
|
|
data->nr_parts, data->name);
|
|
|
|
return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
|
|
}
|
|
|
|
|
|
static int __devexit m25p_remove(struct spi_device *spi)
|
|
{
|
|
struct m25p *flash = dev_get_drvdata(&spi->dev);
|
|
int status;
|
|
|
|
/* Clean up MTD stuff. */
|
|
if (mtd_has_partitions() && flash->partitioned)
|
|
status = del_mtd_partitions(&flash->mtd);
|
|
else
|
|
status = del_mtd_device(&flash->mtd);
|
|
if (status == 0) {
|
|
kfree(flash->command);
|
|
kfree(flash);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static struct spi_driver m25p80_driver = {
|
|
.driver = {
|
|
.name = "m25p80",
|
|
.bus = &spi_bus_type,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.id_table = m25p_ids,
|
|
.probe = m25p_probe,
|
|
.remove = __devexit_p(m25p_remove),
|
|
|
|
/* REVISIT: many of these chips have deep power-down modes, which
|
|
* should clearly be entered on suspend() to minimize power use.
|
|
* And also when they're otherwise idle...
|
|
*/
|
|
};
|
|
|
|
|
|
static int __init m25p80_init(void)
|
|
{
|
|
return spi_register_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
static void __exit m25p80_exit(void)
|
|
{
|
|
spi_unregister_driver(&m25p80_driver);
|
|
}
|
|
|
|
|
|
module_init(m25p80_init);
|
|
module_exit(m25p80_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mike Lavender");
|
|
MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
|