linux/fs/xfs/xfs_inode_item.c
Dave Chinner 3536b61e74 xfs: unwind log item error flagging
When an buffer IO error occurs, we want to mark all
the log items attached to the buffer as failed. Open code
the error handling loop so that we can modify the flagging for the
different types of objects directly and independently of each other.

This also allows us to remove the ->iop_error method from the log
item operations.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-07-07 07:15:07 -07:00

779 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_trace.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_error.h"
#include <linux/iversion.h>
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_inode_log_item, ili_item);
}
STATIC void
xfs_inode_item_data_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_df.if_nextents > 0 &&
ip->i_df.if_bytes > 0) {
/* worst case, doesn't subtract delalloc extents */
*nbytes += XFS_IFORK_DSIZE(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
*nbytes += ip->i_df.if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
*nbytes += roundup(ip->i_df.if_bytes, 4);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_DEV:
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_attr_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_afp->if_format) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_afp->if_nextents > 0 &&
ip->i_afp->if_bytes > 0) {
/* worst case, doesn't subtract unused space */
*nbytes += XFS_IFORK_ASIZE(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_afp->if_broot_bytes > 0) {
*nbytes += ip->i_afp->if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_afp->if_bytes > 0) {
*nbytes += roundup(ip->i_afp->if_bytes, 4);
*nvecs += 1;
}
break;
default:
ASSERT(0);
break;
}
}
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
*nvecs += 2;
*nbytes += sizeof(struct xfs_inode_log_format) +
xfs_log_dinode_size(ip->i_mount);
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
if (XFS_IFORK_Q(ip))
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
}
STATIC void
xfs_inode_item_format_data_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_df.if_nextents > 0 &&
ip->i_df.if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(&ip->i_df) > 0);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ASSERT(data_bytes <= ip->i_df.if_bytes);
ilf->ilf_dsize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
ASSERT(ip->i_df.if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
ip->i_df.if_broot,
ip->i_df.if_broot_bytes);
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
ilf->ilf_size++;
} else {
ASSERT(!(iip->ili_fields &
XFS_ILOG_DBROOT));
iip->ili_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_df.if_bytes, 4);
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
ip->i_df.if_u1.if_data, data_bytes);
ilf->ilf_dsize = (unsigned)data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
if (iip->ili_fields & XFS_ILOG_DEV)
ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_format_attr_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_afp->if_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_afp->if_nextents > 0 &&
ip->i_afp->if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(ip->i_afp) ==
ip->i_afp->if_nextents);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ilf->ilf_asize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_afp->if_broot_bytes > 0) {
ASSERT(ip->i_afp->if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
ip->i_afp->if_broot,
ip->i_afp->if_broot_bytes);
ilf->ilf_asize = ip->i_afp->if_broot_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_afp->if_bytes > 0) {
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_afp->if_bytes, 4);
ASSERT(ip->i_afp->if_u1.if_data != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
ip->i_afp->if_u1.if_data,
data_bytes);
ilf->ilf_asize = (unsigned)data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
}
static void
xfs_inode_to_log_dinode(
struct xfs_inode *ip,
struct xfs_log_dinode *to,
xfs_lsn_t lsn)
{
struct xfs_icdinode *from = &ip->i_d;
struct inode *inode = VFS_I(ip);
to->di_magic = XFS_DINODE_MAGIC;
to->di_format = xfs_ifork_format(&ip->i_df);
to->di_uid = i_uid_read(inode);
to->di_gid = i_gid_read(inode);
to->di_projid_lo = from->di_projid & 0xffff;
to->di_projid_hi = from->di_projid >> 16;
memset(to->di_pad, 0, sizeof(to->di_pad));
memset(to->di_pad3, 0, sizeof(to->di_pad3));
to->di_atime.t_sec = inode->i_atime.tv_sec;
to->di_atime.t_nsec = inode->i_atime.tv_nsec;
to->di_mtime.t_sec = inode->i_mtime.tv_sec;
to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
to->di_ctime.t_sec = inode->i_ctime.tv_sec;
to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
to->di_nlink = inode->i_nlink;
to->di_gen = inode->i_generation;
to->di_mode = inode->i_mode;
to->di_size = from->di_size;
to->di_nblocks = from->di_nblocks;
to->di_extsize = from->di_extsize;
to->di_nextents = xfs_ifork_nextents(&ip->i_df);
to->di_anextents = xfs_ifork_nextents(ip->i_afp);
to->di_forkoff = from->di_forkoff;
to->di_aformat = xfs_ifork_format(ip->i_afp);
to->di_dmevmask = from->di_dmevmask;
to->di_dmstate = from->di_dmstate;
to->di_flags = from->di_flags;
/* log a dummy value to ensure log structure is fully initialised */
to->di_next_unlinked = NULLAGINO;
if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
to->di_version = 3;
to->di_changecount = inode_peek_iversion(inode);
to->di_crtime.t_sec = from->di_crtime.tv_sec;
to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
to->di_flags2 = from->di_flags2;
to->di_cowextsize = from->di_cowextsize;
to->di_ino = ip->i_ino;
to->di_lsn = lsn;
memset(to->di_pad2, 0, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
to->di_flushiter = 0;
} else {
to->di_version = 2;
to->di_flushiter = from->di_flushiter;
}
}
/*
* Format the inode core. Current timestamp data is only in the VFS inode
* fields, so we need to grab them from there. Hence rather than just copying
* the XFS inode core structure, format the fields directly into the iovec.
*/
static void
xfs_inode_item_format_core(
struct xfs_inode *ip,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_log_dinode *dic;
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
}
/*
* This is called to fill in the vector of log iovecs for the given inode
* log item. It fills the first item with an inode log format structure,
* the second with the on-disk inode structure, and a possible third and/or
* fourth with the inode data/extents/b-tree root and inode attributes
* data/extents/b-tree root.
*
* Note: Always use the 64 bit inode log format structure so we don't
* leave an uninitialised hole in the format item on 64 bit systems. Log
* recovery on 32 bit systems handles this just fine, so there's no reason
* for not using an initialising the properly padded structure all the time.
*/
STATIC void
xfs_inode_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_log_iovec *vecp = NULL;
struct xfs_inode_log_format *ilf;
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
ilf->ilf_type = XFS_LI_INODE;
ilf->ilf_ino = ip->i_ino;
ilf->ilf_blkno = ip->i_imap.im_blkno;
ilf->ilf_len = ip->i_imap.im_len;
ilf->ilf_boffset = ip->i_imap.im_boffset;
ilf->ilf_fields = XFS_ILOG_CORE;
ilf->ilf_size = 2; /* format + core */
/*
* make sure we don't leak uninitialised data into the log in the case
* when we don't log every field in the inode.
*/
ilf->ilf_dsize = 0;
ilf->ilf_asize = 0;
ilf->ilf_pad = 0;
memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
xlog_finish_iovec(lv, vecp, sizeof(*ilf));
xfs_inode_item_format_core(ip, lv, &vecp);
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
if (XFS_IFORK_Q(ip)) {
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
} else {
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
}
/* update the format with the exact fields we actually logged */
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out.
*/
STATIC void
xfs_inode_item_pin(
struct xfs_log_item *lip)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
trace_xfs_inode_pin(ip, _RET_IP_);
atomic_inc(&ip->i_pincount);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
*
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
*/
STATIC void
xfs_inode_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
trace_xfs_inode_unpin(ip, _RET_IP_);
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount))
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
}
STATIC uint
xfs_inode_item_push(
struct xfs_log_item *lip,
struct list_head *buffer_list)
__releases(&lip->li_ailp->ail_lock)
__acquires(&lip->li_ailp->ail_lock)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_buf *bp = lip->li_buf;
uint rval = XFS_ITEM_SUCCESS;
int error;
if (xfs_ipincount(ip) > 0)
return XFS_ITEM_PINNED;
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
return XFS_ITEM_LOCKED;
/*
* Re-check the pincount now that we stabilized the value by
* taking the ilock.
*/
if (xfs_ipincount(ip) > 0) {
rval = XFS_ITEM_PINNED;
goto out_unlock;
}
/*
* Stale inode items should force out the iclog.
*/
if (ip->i_flags & XFS_ISTALE) {
rval = XFS_ITEM_PINNED;
goto out_unlock;
}
/*
* Someone else is already flushing the inode. Nothing we can do
* here but wait for the flush to finish and remove the item from
* the AIL.
*/
if (!xfs_iflock_nowait(ip)) {
rval = XFS_ITEM_FLUSHING;
goto out_unlock;
}
ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
spin_unlock(&lip->li_ailp->ail_lock);
error = xfs_iflush(ip, &bp);
if (!error) {
if (!xfs_buf_delwri_queue(bp, buffer_list))
rval = XFS_ITEM_FLUSHING;
xfs_buf_relse(bp);
} else if (error == -EAGAIN)
rval = XFS_ITEM_LOCKED;
spin_lock(&lip->li_ailp->ail_lock);
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return rval;
}
/*
* Unlock the inode associated with the inode log item.
*/
STATIC void
xfs_inode_item_release(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
unsigned short lock_flags;
ASSERT(ip->i_itemp != NULL);
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
lock_flags = iip->ili_lock_flags;
iip->ili_lock_flags = 0;
if (lock_flags)
xfs_iunlock(ip, lock_flags);
}
/*
* This is called to find out where the oldest active copy of the inode log
* item in the on disk log resides now that the last log write of it completed
* at the given lsn. Since we always re-log all dirty data in an inode, the
* latest copy in the on disk log is the only one that matters. Therefore,
* simply return the given lsn.
*
* If the inode has been marked stale because the cluster is being freed, we
* don't want to (re-)insert this inode into the AIL. There is a race condition
* where the cluster buffer may be unpinned before the inode is inserted into
* the AIL during transaction committed processing. If the buffer is unpinned
* before the inode item has been committed and inserted, then it is possible
* for the buffer to be written and IO completes before the inode is inserted
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
* AIL which will never get removed. It will, however, get reclaimed which
* triggers an assert in xfs_inode_free() complaining about freein an inode
* still in the AIL.
*
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
* transaction committed code knows that it does not need to do any further
* processing on the item.
*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_iflags_test(ip, XFS_ISTALE)) {
xfs_inode_item_unpin(lip, 0);
return -1;
}
return lsn;
}
STATIC void
xfs_inode_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t commit_lsn)
{
INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
return xfs_inode_item_release(lip);
}
static const struct xfs_item_ops xfs_inode_item_ops = {
.iop_size = xfs_inode_item_size,
.iop_format = xfs_inode_item_format,
.iop_pin = xfs_inode_item_pin,
.iop_unpin = xfs_inode_item_unpin,
.iop_release = xfs_inode_item_release,
.iop_committed = xfs_inode_item_committed,
.iop_push = xfs_inode_item_push,
.iop_committing = xfs_inode_item_committing,
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
struct xfs_inode *ip,
struct xfs_mount *mp)
{
struct xfs_inode_log_item *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
iip->ili_inode = ip;
spin_lock_init(&iip->ili_lock);
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
&xfs_inode_item_ops);
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
xfs_inode_t *ip)
{
kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
kmem_cache_free(xfs_ili_zone, ip->i_itemp);
}
/*
* This is the inode flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the inode is
* flushed to disk. It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*
* To reduce AIL lock traffic as much as possible, we scan the buffer log item
* list for other inodes that will run this function. We remove them from the
* buffer list so we can process all the inode IO completions in one AIL lock
* traversal.
*/
void
xfs_iflush_done(
struct xfs_buf *bp)
{
struct xfs_inode_log_item *iip;
struct xfs_log_item *lip, *n;
struct xfs_ail *ailp = bp->b_mount->m_ail;
int need_ail = 0;
LIST_HEAD(tmp);
/*
* Pull the attached inodes from the buffer one at a time and take the
* appropriate action on them.
*/
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
iip = INODE_ITEM(lip);
if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
list_del_init(&lip->li_bio_list);
xfs_iflush_abort(iip->ili_inode);
continue;
}
list_move_tail(&lip->li_bio_list, &tmp);
/* Do an unlocked check for needing the AIL lock. */
if (lip->li_lsn == iip->ili_flush_lsn ||
test_bit(XFS_LI_FAILED, &lip->li_flags))
need_ail++;
}
ASSERT(list_empty(&bp->b_li_list));
/*
* We only want to pull the item from the AIL if it is actually there
* and its location in the log has not changed since we started the
* flush. Thus, we only bother if the inode's lsn has not changed.
*/
if (need_ail) {
xfs_lsn_t tail_lsn = 0;
/* this is an opencoded batch version of xfs_trans_ail_delete */
spin_lock(&ailp->ail_lock);
list_for_each_entry(lip, &tmp, li_bio_list) {
if (lip->li_lsn == INODE_ITEM(lip)->ili_flush_lsn) {
xfs_lsn_t lsn = xfs_ail_delete_one(ailp, lip);
if (!tail_lsn && lsn)
tail_lsn = lsn;
} else {
xfs_clear_li_failed(lip);
}
}
xfs_ail_update_finish(ailp, tail_lsn);
}
/*
* Clean up and unlock the flush lock now we are done. We can clear the
* ili_last_fields bits now that we know that the data corresponding to
* them is safely on disk.
*/
list_for_each_entry_safe(lip, n, &tmp, li_bio_list) {
list_del_init(&lip->li_bio_list);
iip = INODE_ITEM(lip);
spin_lock(&iip->ili_lock);
iip->ili_last_fields = 0;
spin_unlock(&iip->ili_lock);
xfs_ifunlock(iip->ili_inode);
}
}
/*
* This is the inode flushing abort routine. It is called from xfs_iflush when
* the filesystem is shutting down to clean up the inode state. It is
* responsible for removing the inode item from the AIL if it has not been
* re-logged, and unlocking the inode's flush lock.
*/
void
xfs_iflush_abort(
struct xfs_inode *ip)
{
struct xfs_inode_log_item *iip = ip->i_itemp;
if (iip) {
xfs_trans_ail_delete(&iip->ili_item, 0);
/*
* Clear the inode logging fields so no more flushes are
* attempted.
*/
spin_lock(&iip->ili_lock);
iip->ili_last_fields = 0;
iip->ili_fields = 0;
iip->ili_fsync_fields = 0;
spin_unlock(&iip->ili_lock);
}
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
}
/*
* convert an xfs_inode_log_format struct from the old 32 bit version
* (which can have different field alignments) to the native 64 bit version
*/
int
xfs_inode_item_format_convert(
struct xfs_log_iovec *buf,
struct xfs_inode_log_format *in_f)
{
struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
if (buf->i_len != sizeof(*in_f32)) {
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
return -EFSCORRUPTED;
}
in_f->ilf_type = in_f32->ilf_type;
in_f->ilf_size = in_f32->ilf_size;
in_f->ilf_fields = in_f32->ilf_fields;
in_f->ilf_asize = in_f32->ilf_asize;
in_f->ilf_dsize = in_f32->ilf_dsize;
in_f->ilf_ino = in_f32->ilf_ino;
memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
in_f->ilf_blkno = in_f32->ilf_blkno;
in_f->ilf_len = in_f32->ilf_len;
in_f->ilf_boffset = in_f32->ilf_boffset;
return 0;
}