forked from Minki/linux
30e2b41f20
We shouldn't defer oom killing if a thread has already detached its ->mm and still has TIF_MEMDIE set. Memory needs to be freed, so find kill other threads that pin the same ->mm or find another task to kill. Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@kernel.org> [2.6.38.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
764 lines
21 KiB
C
764 lines
21 KiB
C
/*
|
|
* linux/mm/oom_kill.c
|
|
*
|
|
* Copyright (C) 1998,2000 Rik van Riel
|
|
* Thanks go out to Claus Fischer for some serious inspiration and
|
|
* for goading me into coding this file...
|
|
* Copyright (C) 2010 Google, Inc.
|
|
* Rewritten by David Rientjes
|
|
*
|
|
* The routines in this file are used to kill a process when
|
|
* we're seriously out of memory. This gets called from __alloc_pages()
|
|
* in mm/page_alloc.c when we really run out of memory.
|
|
*
|
|
* Since we won't call these routines often (on a well-configured
|
|
* machine) this file will double as a 'coding guide' and a signpost
|
|
* for newbie kernel hackers. It features several pointers to major
|
|
* kernel subsystems and hints as to where to find out what things do.
|
|
*/
|
|
|
|
#include <linux/oom.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/module.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/security.h>
|
|
|
|
int sysctl_panic_on_oom;
|
|
int sysctl_oom_kill_allocating_task;
|
|
int sysctl_oom_dump_tasks = 1;
|
|
static DEFINE_SPINLOCK(zone_scan_lock);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/**
|
|
* has_intersects_mems_allowed() - check task eligiblity for kill
|
|
* @tsk: task struct of which task to consider
|
|
* @mask: nodemask passed to page allocator for mempolicy ooms
|
|
*
|
|
* Task eligibility is determined by whether or not a candidate task, @tsk,
|
|
* shares the same mempolicy nodes as current if it is bound by such a policy
|
|
* and whether or not it has the same set of allowed cpuset nodes.
|
|
*/
|
|
static bool has_intersects_mems_allowed(struct task_struct *tsk,
|
|
const nodemask_t *mask)
|
|
{
|
|
struct task_struct *start = tsk;
|
|
|
|
do {
|
|
if (mask) {
|
|
/*
|
|
* If this is a mempolicy constrained oom, tsk's
|
|
* cpuset is irrelevant. Only return true if its
|
|
* mempolicy intersects current, otherwise it may be
|
|
* needlessly killed.
|
|
*/
|
|
if (mempolicy_nodemask_intersects(tsk, mask))
|
|
return true;
|
|
} else {
|
|
/*
|
|
* This is not a mempolicy constrained oom, so only
|
|
* check the mems of tsk's cpuset.
|
|
*/
|
|
if (cpuset_mems_allowed_intersects(current, tsk))
|
|
return true;
|
|
}
|
|
} while_each_thread(start, tsk);
|
|
|
|
return false;
|
|
}
|
|
#else
|
|
static bool has_intersects_mems_allowed(struct task_struct *tsk,
|
|
const nodemask_t *mask)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* If this is a system OOM (not a memcg OOM) and the task selected to be
|
|
* killed is not already running at high (RT) priorities, speed up the
|
|
* recovery by boosting the dying task to the lowest FIFO priority.
|
|
* That helps with the recovery and avoids interfering with RT tasks.
|
|
*/
|
|
static void boost_dying_task_prio(struct task_struct *p,
|
|
struct mem_cgroup *mem)
|
|
{
|
|
struct sched_param param = { .sched_priority = 1 };
|
|
|
|
if (mem)
|
|
return;
|
|
|
|
if (!rt_task(p))
|
|
sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m);
|
|
}
|
|
|
|
/*
|
|
* The process p may have detached its own ->mm while exiting or through
|
|
* use_mm(), but one or more of its subthreads may still have a valid
|
|
* pointer. Return p, or any of its subthreads with a valid ->mm, with
|
|
* task_lock() held.
|
|
*/
|
|
struct task_struct *find_lock_task_mm(struct task_struct *p)
|
|
{
|
|
struct task_struct *t = p;
|
|
|
|
do {
|
|
task_lock(t);
|
|
if (likely(t->mm))
|
|
return t;
|
|
task_unlock(t);
|
|
} while_each_thread(p, t);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* return true if the task is not adequate as candidate victim task. */
|
|
static bool oom_unkillable_task(struct task_struct *p,
|
|
const struct mem_cgroup *mem, const nodemask_t *nodemask)
|
|
{
|
|
if (is_global_init(p))
|
|
return true;
|
|
if (p->flags & PF_KTHREAD)
|
|
return true;
|
|
|
|
/* When mem_cgroup_out_of_memory() and p is not member of the group */
|
|
if (mem && !task_in_mem_cgroup(p, mem))
|
|
return true;
|
|
|
|
/* p may not have freeable memory in nodemask */
|
|
if (!has_intersects_mems_allowed(p, nodemask))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* oom_badness - heuristic function to determine which candidate task to kill
|
|
* @p: task struct of which task we should calculate
|
|
* @totalpages: total present RAM allowed for page allocation
|
|
*
|
|
* The heuristic for determining which task to kill is made to be as simple and
|
|
* predictable as possible. The goal is to return the highest value for the
|
|
* task consuming the most memory to avoid subsequent oom failures.
|
|
*/
|
|
unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
|
|
const nodemask_t *nodemask, unsigned long totalpages)
|
|
{
|
|
int points;
|
|
|
|
if (oom_unkillable_task(p, mem, nodemask))
|
|
return 0;
|
|
|
|
p = find_lock_task_mm(p);
|
|
if (!p)
|
|
return 0;
|
|
|
|
/*
|
|
* Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN
|
|
* so the entire heuristic doesn't need to be executed for something
|
|
* that cannot be killed.
|
|
*/
|
|
if (atomic_read(&p->mm->oom_disable_count)) {
|
|
task_unlock(p);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When the PF_OOM_ORIGIN bit is set, it indicates the task should have
|
|
* priority for oom killing.
|
|
*/
|
|
if (p->flags & PF_OOM_ORIGIN) {
|
|
task_unlock(p);
|
|
return 1000;
|
|
}
|
|
|
|
/*
|
|
* The memory controller may have a limit of 0 bytes, so avoid a divide
|
|
* by zero, if necessary.
|
|
*/
|
|
if (!totalpages)
|
|
totalpages = 1;
|
|
|
|
/*
|
|
* The baseline for the badness score is the proportion of RAM that each
|
|
* task's rss and swap space use.
|
|
*/
|
|
points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
|
|
totalpages;
|
|
task_unlock(p);
|
|
|
|
/*
|
|
* Root processes get 3% bonus, just like the __vm_enough_memory()
|
|
* implementation used by LSMs.
|
|
*/
|
|
if (has_capability_noaudit(p, CAP_SYS_ADMIN))
|
|
points -= 30;
|
|
|
|
/*
|
|
* /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
|
|
* either completely disable oom killing or always prefer a certain
|
|
* task.
|
|
*/
|
|
points += p->signal->oom_score_adj;
|
|
|
|
/*
|
|
* Never return 0 for an eligible task that may be killed since it's
|
|
* possible that no single user task uses more than 0.1% of memory and
|
|
* no single admin tasks uses more than 3.0%.
|
|
*/
|
|
if (points <= 0)
|
|
return 1;
|
|
return (points < 1000) ? points : 1000;
|
|
}
|
|
|
|
/*
|
|
* Determine the type of allocation constraint.
|
|
*/
|
|
#ifdef CONFIG_NUMA
|
|
static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
|
|
gfp_t gfp_mask, nodemask_t *nodemask,
|
|
unsigned long *totalpages)
|
|
{
|
|
struct zone *zone;
|
|
struct zoneref *z;
|
|
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
|
|
bool cpuset_limited = false;
|
|
int nid;
|
|
|
|
/* Default to all available memory */
|
|
*totalpages = totalram_pages + total_swap_pages;
|
|
|
|
if (!zonelist)
|
|
return CONSTRAINT_NONE;
|
|
/*
|
|
* Reach here only when __GFP_NOFAIL is used. So, we should avoid
|
|
* to kill current.We have to random task kill in this case.
|
|
* Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
|
|
*/
|
|
if (gfp_mask & __GFP_THISNODE)
|
|
return CONSTRAINT_NONE;
|
|
|
|
/*
|
|
* This is not a __GFP_THISNODE allocation, so a truncated nodemask in
|
|
* the page allocator means a mempolicy is in effect. Cpuset policy
|
|
* is enforced in get_page_from_freelist().
|
|
*/
|
|
if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
|
|
*totalpages = total_swap_pages;
|
|
for_each_node_mask(nid, *nodemask)
|
|
*totalpages += node_spanned_pages(nid);
|
|
return CONSTRAINT_MEMORY_POLICY;
|
|
}
|
|
|
|
/* Check this allocation failure is caused by cpuset's wall function */
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist,
|
|
high_zoneidx, nodemask)
|
|
if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
|
|
cpuset_limited = true;
|
|
|
|
if (cpuset_limited) {
|
|
*totalpages = total_swap_pages;
|
|
for_each_node_mask(nid, cpuset_current_mems_allowed)
|
|
*totalpages += node_spanned_pages(nid);
|
|
return CONSTRAINT_CPUSET;
|
|
}
|
|
return CONSTRAINT_NONE;
|
|
}
|
|
#else
|
|
static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
|
|
gfp_t gfp_mask, nodemask_t *nodemask,
|
|
unsigned long *totalpages)
|
|
{
|
|
*totalpages = totalram_pages + total_swap_pages;
|
|
return CONSTRAINT_NONE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Simple selection loop. We chose the process with the highest
|
|
* number of 'points'. We expect the caller will lock the tasklist.
|
|
*
|
|
* (not docbooked, we don't want this one cluttering up the manual)
|
|
*/
|
|
static struct task_struct *select_bad_process(unsigned int *ppoints,
|
|
unsigned long totalpages, struct mem_cgroup *mem,
|
|
const nodemask_t *nodemask)
|
|
{
|
|
struct task_struct *g, *p;
|
|
struct task_struct *chosen = NULL;
|
|
*ppoints = 0;
|
|
|
|
do_each_thread(g, p) {
|
|
unsigned int points;
|
|
|
|
if (!p->mm)
|
|
continue;
|
|
if (oom_unkillable_task(p, mem, nodemask))
|
|
continue;
|
|
|
|
/*
|
|
* This task already has access to memory reserves and is
|
|
* being killed. Don't allow any other task access to the
|
|
* memory reserve.
|
|
*
|
|
* Note: this may have a chance of deadlock if it gets
|
|
* blocked waiting for another task which itself is waiting
|
|
* for memory. Is there a better alternative?
|
|
*/
|
|
if (test_tsk_thread_flag(p, TIF_MEMDIE))
|
|
return ERR_PTR(-1UL);
|
|
|
|
/*
|
|
* This is in the process of releasing memory so wait for it
|
|
* to finish before killing some other task by mistake.
|
|
*
|
|
* However, if p is the current task, we allow the 'kill' to
|
|
* go ahead if it is exiting: this will simply set TIF_MEMDIE,
|
|
* which will allow it to gain access to memory reserves in
|
|
* the process of exiting and releasing its resources.
|
|
* Otherwise we could get an easy OOM deadlock.
|
|
*/
|
|
if (p->flags & PF_EXITING) {
|
|
if (p != current)
|
|
return ERR_PTR(-1UL);
|
|
|
|
chosen = p;
|
|
*ppoints = 1000;
|
|
}
|
|
|
|
points = oom_badness(p, mem, nodemask, totalpages);
|
|
if (points > *ppoints) {
|
|
chosen = p;
|
|
*ppoints = points;
|
|
}
|
|
} while_each_thread(g, p);
|
|
|
|
return chosen;
|
|
}
|
|
|
|
/**
|
|
* dump_tasks - dump current memory state of all system tasks
|
|
* @mem: current's memory controller, if constrained
|
|
* @nodemask: nodemask passed to page allocator for mempolicy ooms
|
|
*
|
|
* Dumps the current memory state of all eligible tasks. Tasks not in the same
|
|
* memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
|
|
* are not shown.
|
|
* State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
|
|
* value, oom_score_adj value, and name.
|
|
*
|
|
* Call with tasklist_lock read-locked.
|
|
*/
|
|
static void dump_tasks(const struct mem_cgroup *mem, const nodemask_t *nodemask)
|
|
{
|
|
struct task_struct *p;
|
|
struct task_struct *task;
|
|
|
|
pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
|
|
for_each_process(p) {
|
|
if (oom_unkillable_task(p, mem, nodemask))
|
|
continue;
|
|
|
|
task = find_lock_task_mm(p);
|
|
if (!task) {
|
|
/*
|
|
* This is a kthread or all of p's threads have already
|
|
* detached their mm's. There's no need to report
|
|
* them; they can't be oom killed anyway.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
|
|
task->pid, task_uid(task), task->tgid,
|
|
task->mm->total_vm, get_mm_rss(task->mm),
|
|
task_cpu(task), task->signal->oom_adj,
|
|
task->signal->oom_score_adj, task->comm);
|
|
task_unlock(task);
|
|
}
|
|
}
|
|
|
|
static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
|
|
struct mem_cgroup *mem, const nodemask_t *nodemask)
|
|
{
|
|
task_lock(current);
|
|
pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
|
|
"oom_adj=%d, oom_score_adj=%d\n",
|
|
current->comm, gfp_mask, order, current->signal->oom_adj,
|
|
current->signal->oom_score_adj);
|
|
cpuset_print_task_mems_allowed(current);
|
|
task_unlock(current);
|
|
dump_stack();
|
|
mem_cgroup_print_oom_info(mem, p);
|
|
show_mem();
|
|
if (sysctl_oom_dump_tasks)
|
|
dump_tasks(mem, nodemask);
|
|
}
|
|
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
|
|
{
|
|
struct task_struct *q;
|
|
struct mm_struct *mm;
|
|
|
|
p = find_lock_task_mm(p);
|
|
if (!p)
|
|
return 1;
|
|
|
|
/* mm cannot be safely dereferenced after task_unlock(p) */
|
|
mm = p->mm;
|
|
|
|
pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
|
|
task_pid_nr(p), p->comm, K(p->mm->total_vm),
|
|
K(get_mm_counter(p->mm, MM_ANONPAGES)),
|
|
K(get_mm_counter(p->mm, MM_FILEPAGES)));
|
|
task_unlock(p);
|
|
|
|
/*
|
|
* Kill all processes sharing p->mm in other thread groups, if any.
|
|
* They don't get access to memory reserves or a higher scheduler
|
|
* priority, though, to avoid depletion of all memory or task
|
|
* starvation. This prevents mm->mmap_sem livelock when an oom killed
|
|
* task cannot exit because it requires the semaphore and its contended
|
|
* by another thread trying to allocate memory itself. That thread will
|
|
* now get access to memory reserves since it has a pending fatal
|
|
* signal.
|
|
*/
|
|
for_each_process(q)
|
|
if (q->mm == mm && !same_thread_group(q, p)) {
|
|
task_lock(q); /* Protect ->comm from prctl() */
|
|
pr_err("Kill process %d (%s) sharing same memory\n",
|
|
task_pid_nr(q), q->comm);
|
|
task_unlock(q);
|
|
force_sig(SIGKILL, q);
|
|
}
|
|
|
|
set_tsk_thread_flag(p, TIF_MEMDIE);
|
|
force_sig(SIGKILL, p);
|
|
|
|
/*
|
|
* We give our sacrificial lamb high priority and access to
|
|
* all the memory it needs. That way it should be able to
|
|
* exit() and clear out its resources quickly...
|
|
*/
|
|
boost_dying_task_prio(p, mem);
|
|
|
|
return 0;
|
|
}
|
|
#undef K
|
|
|
|
static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
|
|
unsigned int points, unsigned long totalpages,
|
|
struct mem_cgroup *mem, nodemask_t *nodemask,
|
|
const char *message)
|
|
{
|
|
struct task_struct *victim = p;
|
|
struct task_struct *child;
|
|
struct task_struct *t = p;
|
|
unsigned int victim_points = 0;
|
|
|
|
if (printk_ratelimit())
|
|
dump_header(p, gfp_mask, order, mem, nodemask);
|
|
|
|
/*
|
|
* If the task is already exiting, don't alarm the sysadmin or kill
|
|
* its children or threads, just set TIF_MEMDIE so it can die quickly
|
|
*/
|
|
if (p->flags & PF_EXITING) {
|
|
set_tsk_thread_flag(p, TIF_MEMDIE);
|
|
boost_dying_task_prio(p, mem);
|
|
return 0;
|
|
}
|
|
|
|
task_lock(p);
|
|
pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
|
|
message, task_pid_nr(p), p->comm, points);
|
|
task_unlock(p);
|
|
|
|
/*
|
|
* If any of p's children has a different mm and is eligible for kill,
|
|
* the one with the highest badness() score is sacrificed for its
|
|
* parent. This attempts to lose the minimal amount of work done while
|
|
* still freeing memory.
|
|
*/
|
|
do {
|
|
list_for_each_entry(child, &t->children, sibling) {
|
|
unsigned int child_points;
|
|
|
|
/*
|
|
* oom_badness() returns 0 if the thread is unkillable
|
|
*/
|
|
child_points = oom_badness(child, mem, nodemask,
|
|
totalpages);
|
|
if (child_points > victim_points) {
|
|
victim = child;
|
|
victim_points = child_points;
|
|
}
|
|
}
|
|
} while_each_thread(p, t);
|
|
|
|
return oom_kill_task(victim, mem);
|
|
}
|
|
|
|
/*
|
|
* Determines whether the kernel must panic because of the panic_on_oom sysctl.
|
|
*/
|
|
static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
|
|
int order, const nodemask_t *nodemask)
|
|
{
|
|
if (likely(!sysctl_panic_on_oom))
|
|
return;
|
|
if (sysctl_panic_on_oom != 2) {
|
|
/*
|
|
* panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
|
|
* does not panic for cpuset, mempolicy, or memcg allocation
|
|
* failures.
|
|
*/
|
|
if (constraint != CONSTRAINT_NONE)
|
|
return;
|
|
}
|
|
read_lock(&tasklist_lock);
|
|
dump_header(NULL, gfp_mask, order, NULL, nodemask);
|
|
read_unlock(&tasklist_lock);
|
|
panic("Out of memory: %s panic_on_oom is enabled\n",
|
|
sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
|
|
}
|
|
|
|
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
|
|
void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
|
|
{
|
|
unsigned long limit;
|
|
unsigned int points = 0;
|
|
struct task_struct *p;
|
|
|
|
check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0, NULL);
|
|
limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
|
|
read_lock(&tasklist_lock);
|
|
retry:
|
|
p = select_bad_process(&points, limit, mem, NULL);
|
|
if (!p || PTR_ERR(p) == -1UL)
|
|
goto out;
|
|
|
|
if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
|
|
"Memory cgroup out of memory"))
|
|
goto retry;
|
|
out:
|
|
read_unlock(&tasklist_lock);
|
|
}
|
|
#endif
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
|
|
|
|
int register_oom_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&oom_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_oom_notifier);
|
|
|
|
int unregister_oom_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&oom_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_oom_notifier);
|
|
|
|
/*
|
|
* Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
|
|
* if a parallel OOM killing is already taking place that includes a zone in
|
|
* the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
|
|
*/
|
|
int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
|
|
{
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
int ret = 1;
|
|
|
|
spin_lock(&zone_scan_lock);
|
|
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
|
|
if (zone_is_oom_locked(zone)) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
|
|
/*
|
|
* Lock each zone in the zonelist under zone_scan_lock so a
|
|
* parallel invocation of try_set_zonelist_oom() doesn't succeed
|
|
* when it shouldn't.
|
|
*/
|
|
zone_set_flag(zone, ZONE_OOM_LOCKED);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&zone_scan_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
|
|
* allocation attempts with zonelists containing them may now recall the OOM
|
|
* killer, if necessary.
|
|
*/
|
|
void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
|
|
{
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
|
|
spin_lock(&zone_scan_lock);
|
|
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
|
|
zone_clear_flag(zone, ZONE_OOM_LOCKED);
|
|
}
|
|
spin_unlock(&zone_scan_lock);
|
|
}
|
|
|
|
/*
|
|
* Try to acquire the oom killer lock for all system zones. Returns zero if a
|
|
* parallel oom killing is taking place, otherwise locks all zones and returns
|
|
* non-zero.
|
|
*/
|
|
static int try_set_system_oom(void)
|
|
{
|
|
struct zone *zone;
|
|
int ret = 1;
|
|
|
|
spin_lock(&zone_scan_lock);
|
|
for_each_populated_zone(zone)
|
|
if (zone_is_oom_locked(zone)) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
for_each_populated_zone(zone)
|
|
zone_set_flag(zone, ZONE_OOM_LOCKED);
|
|
out:
|
|
spin_unlock(&zone_scan_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
|
|
* attempts or page faults may now recall the oom killer, if necessary.
|
|
*/
|
|
static void clear_system_oom(void)
|
|
{
|
|
struct zone *zone;
|
|
|
|
spin_lock(&zone_scan_lock);
|
|
for_each_populated_zone(zone)
|
|
zone_clear_flag(zone, ZONE_OOM_LOCKED);
|
|
spin_unlock(&zone_scan_lock);
|
|
}
|
|
|
|
/**
|
|
* out_of_memory - kill the "best" process when we run out of memory
|
|
* @zonelist: zonelist pointer
|
|
* @gfp_mask: memory allocation flags
|
|
* @order: amount of memory being requested as a power of 2
|
|
* @nodemask: nodemask passed to page allocator
|
|
*
|
|
* If we run out of memory, we have the choice between either
|
|
* killing a random task (bad), letting the system crash (worse)
|
|
* OR try to be smart about which process to kill. Note that we
|
|
* don't have to be perfect here, we just have to be good.
|
|
*/
|
|
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
|
|
int order, nodemask_t *nodemask)
|
|
{
|
|
const nodemask_t *mpol_mask;
|
|
struct task_struct *p;
|
|
unsigned long totalpages;
|
|
unsigned long freed = 0;
|
|
unsigned int points;
|
|
enum oom_constraint constraint = CONSTRAINT_NONE;
|
|
int killed = 0;
|
|
|
|
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
|
|
if (freed > 0)
|
|
/* Got some memory back in the last second. */
|
|
return;
|
|
|
|
/*
|
|
* If current has a pending SIGKILL, then automatically select it. The
|
|
* goal is to allow it to allocate so that it may quickly exit and free
|
|
* its memory.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
set_thread_flag(TIF_MEMDIE);
|
|
boost_dying_task_prio(current, NULL);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check if there were limitations on the allocation (only relevant for
|
|
* NUMA) that may require different handling.
|
|
*/
|
|
constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
|
|
&totalpages);
|
|
mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
|
|
check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
|
|
|
|
read_lock(&tasklist_lock);
|
|
if (sysctl_oom_kill_allocating_task &&
|
|
!oom_unkillable_task(current, NULL, nodemask) &&
|
|
current->mm && !atomic_read(¤t->mm->oom_disable_count)) {
|
|
/*
|
|
* oom_kill_process() needs tasklist_lock held. If it returns
|
|
* non-zero, current could not be killed so we must fallback to
|
|
* the tasklist scan.
|
|
*/
|
|
if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
|
|
NULL, nodemask,
|
|
"Out of memory (oom_kill_allocating_task)"))
|
|
goto out;
|
|
}
|
|
|
|
retry:
|
|
p = select_bad_process(&points, totalpages, NULL, mpol_mask);
|
|
if (PTR_ERR(p) == -1UL)
|
|
goto out;
|
|
|
|
/* Found nothing?!?! Either we hang forever, or we panic. */
|
|
if (!p) {
|
|
dump_header(NULL, gfp_mask, order, NULL, mpol_mask);
|
|
read_unlock(&tasklist_lock);
|
|
panic("Out of memory and no killable processes...\n");
|
|
}
|
|
|
|
if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
|
|
nodemask, "Out of memory"))
|
|
goto retry;
|
|
killed = 1;
|
|
out:
|
|
read_unlock(&tasklist_lock);
|
|
|
|
/*
|
|
* Give "p" a good chance of killing itself before we
|
|
* retry to allocate memory unless "p" is current
|
|
*/
|
|
if (killed && !test_thread_flag(TIF_MEMDIE))
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
|
|
/*
|
|
* The pagefault handler calls here because it is out of memory, so kill a
|
|
* memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
|
|
* oom killing is already in progress so do nothing. If a task is found with
|
|
* TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
|
|
*/
|
|
void pagefault_out_of_memory(void)
|
|
{
|
|
if (try_set_system_oom()) {
|
|
out_of_memory(NULL, 0, 0, NULL);
|
|
clear_system_oom();
|
|
}
|
|
if (!test_thread_flag(TIF_MEMDIE))
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|