linux/drivers/cpufreq/cpufreq_conservative.c
Rafael J. Wysocki 2bb8d94fb0 cpufreq: governor: Use common mutex for dbs_data protection
Every governor relying on the common code in cpufreq_governor.c
has to provide its own mutex in struct common_dbs_data.  However,
there actually is no need to have a separate mutex per governor
for this purpose, they may be using the same global mutex just
fine.  Accordingly, introduce a single common mutex for that and
drop the mutex field from struct common_dbs_data.

That at least will ensure that the mutex is always present and
initialized regardless of what the particular governors do.

Another benefit is that the common code does not need a pointer to
a governor-related structure to get to the mutex which sometimes
helps.

Finally, it makes the code generally easier to follow.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Saravana Kannan <skannan@codeaurora.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09 14:40:53 +01:00

406 lines
11 KiB
C

/*
* drivers/cpufreq/cpufreq_conservative.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/slab.h>
#include "cpufreq_governor.h"
/* Conservative governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
#define DEF_FREQUENCY_STEP (5)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (10)
static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
static struct cpufreq_governor cpufreq_gov_conservative = {
.name = "conservative",
.governor = cs_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
struct cpufreq_policy *policy)
{
unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
/* max freq cannot be less than 100. But who knows... */
if (unlikely(freq_target == 0))
freq_target = DEF_FREQUENCY_STEP;
return freq_target;
}
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Every sampling_rate *
* sampling_down_factor, we check, if current idle time is more than 80%
* (default), then we try to decrease frequency
*
* Any frequency increase takes it to the maximum frequency. Frequency reduction
* happens at minimum steps of 5% (default) of maximum frequency
*/
static void cs_check_cpu(int cpu, unsigned int load)
{
struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
struct dbs_data *dbs_data = policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
/*
* break out if we 'cannot' reduce the speed as the user might
* want freq_step to be zero
*/
if (cs_tuners->freq_step == 0)
return;
/* Check for frequency increase */
if (load > cs_tuners->up_threshold) {
dbs_info->down_skip = 0;
/* if we are already at full speed then break out early */
if (dbs_info->requested_freq == policy->max)
return;
dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
if (dbs_info->requested_freq > policy->max)
dbs_info->requested_freq = policy->max;
__cpufreq_driver_target(policy, dbs_info->requested_freq,
CPUFREQ_RELATION_H);
return;
}
/* if sampling_down_factor is active break out early */
if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
return;
dbs_info->down_skip = 0;
/* Check for frequency decrease */
if (load < cs_tuners->down_threshold) {
unsigned int freq_target;
/*
* if we cannot reduce the frequency anymore, break out early
*/
if (policy->cur == policy->min)
return;
freq_target = get_freq_target(cs_tuners, policy);
if (dbs_info->requested_freq > freq_target)
dbs_info->requested_freq -= freq_target;
else
dbs_info->requested_freq = policy->min;
__cpufreq_driver_target(policy, dbs_info->requested_freq,
CPUFREQ_RELATION_L);
return;
}
}
static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
{
struct dbs_data *dbs_data = policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
dbs_check_cpu(dbs_data, policy->cpu);
return delay_for_sampling_rate(cs_tuners->sampling_rate);
}
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
struct cs_cpu_dbs_info_s *dbs_info =
&per_cpu(cs_cpu_dbs_info, freq->cpu);
struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
if (!policy)
return 0;
/* policy isn't governed by conservative governor */
if (policy->governor != &cpufreq_gov_conservative)
return 0;
/*
* we only care if our internally tracked freq moves outside the 'valid'
* ranges of frequency available to us otherwise we do not change it
*/
if (dbs_info->requested_freq > policy->max
|| dbs_info->requested_freq < policy->min)
dbs_info->requested_freq = freq->new;
return 0;
}
static struct notifier_block cs_cpufreq_notifier_block = {
.notifier_call = dbs_cpufreq_notifier,
};
/************************** sysfs interface ************************/
static struct common_dbs_data cs_dbs_cdata;
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
cs_tuners->sampling_down_factor = input;
return count;
}
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
return -EINVAL;
cs_tuners->up_threshold = input;
return count;
}
static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
/* cannot be lower than 11 otherwise freq will not fall */
if (ret != 1 || input < 11 || input > 100 ||
input >= cs_tuners->up_threshold)
return -EINVAL;
cs_tuners->down_threshold = input;
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
const char *buf, size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == cs_tuners->ignore_nice_load) /* nothing to do */
return count;
cs_tuners->ignore_nice_load = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cs_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall, 0);
if (cs_tuners->ignore_nice_load)
dbs_info->cdbs.prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 100)
input = 100;
/*
* no need to test here if freq_step is zero as the user might actually
* want this, they would be crazy though :)
*/
cs_tuners->freq_step = input;
return count;
}
show_store_one(cs, sampling_rate);
show_store_one(cs, sampling_down_factor);
show_store_one(cs, up_threshold);
show_store_one(cs, down_threshold);
show_store_one(cs, ignore_nice_load);
show_store_one(cs, freq_step);
declare_show_sampling_rate_min(cs);
gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(down_threshold);
gov_sys_pol_attr_rw(ignore_nice_load);
gov_sys_pol_attr_rw(freq_step);
gov_sys_pol_attr_ro(sampling_rate_min);
static struct attribute *dbs_attributes_gov_sys[] = {
&sampling_rate_min_gov_sys.attr,
&sampling_rate_gov_sys.attr,
&sampling_down_factor_gov_sys.attr,
&up_threshold_gov_sys.attr,
&down_threshold_gov_sys.attr,
&ignore_nice_load_gov_sys.attr,
&freq_step_gov_sys.attr,
NULL
};
static struct attribute_group cs_attr_group_gov_sys = {
.attrs = dbs_attributes_gov_sys,
.name = "conservative",
};
static struct attribute *dbs_attributes_gov_pol[] = {
&sampling_rate_min_gov_pol.attr,
&sampling_rate_gov_pol.attr,
&sampling_down_factor_gov_pol.attr,
&up_threshold_gov_pol.attr,
&down_threshold_gov_pol.attr,
&ignore_nice_load_gov_pol.attr,
&freq_step_gov_pol.attr,
NULL
};
static struct attribute_group cs_attr_group_gov_pol = {
.attrs = dbs_attributes_gov_pol,
.name = "conservative",
};
/************************** sysfs end ************************/
static int cs_init(struct dbs_data *dbs_data, bool notify)
{
struct cs_dbs_tuners *tuners;
tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
if (!tuners) {
pr_err("%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
tuners->ignore_nice_load = 0;
tuners->freq_step = DEF_FREQUENCY_STEP;
dbs_data->tuners = tuners;
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
jiffies_to_usecs(10);
if (notify)
cpufreq_register_notifier(&cs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
return 0;
}
static void cs_exit(struct dbs_data *dbs_data, bool notify)
{
if (notify)
cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
kfree(dbs_data->tuners);
}
define_get_cpu_dbs_routines(cs_cpu_dbs_info);
static struct common_dbs_data cs_dbs_cdata = {
.governor = GOV_CONSERVATIVE,
.attr_group_gov_sys = &cs_attr_group_gov_sys,
.attr_group_gov_pol = &cs_attr_group_gov_pol,
.get_cpu_cdbs = get_cpu_cdbs,
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
.gov_dbs_timer = cs_dbs_timer,
.gov_check_cpu = cs_check_cpu,
.init = cs_init,
.exit = cs_exit,
};
static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
}
static int __init cpufreq_gov_dbs_init(void)
{
return cpufreq_register_governor(&cpufreq_gov_conservative);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_conservative);
}
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors "
"optimised for use in a battery environment");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &cpufreq_gov_conservative;
}
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);