linux/block/blk-mq.c
Jens Axboe 2aa0f21d54 blk-mq: have blk_mq_dispatch_rq_list() return if we queued IO or not
Currently we're almost there, but if we dispatch nothing, then we
still return success.

Signed-off-by: Jens Axboe <axboe@fb.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
2017-02-17 12:35:47 -07:00

2832 lines
67 KiB
C

/*
* Block multiqueue core code
*
* Copyright (C) 2013-2014 Jens Axboe
* Copyright (C) 2013-2014 Christoph Hellwig
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/kmemleak.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
#include <linux/crash_dump.h>
#include <linux/prefetch.h>
#include <trace/events/block.h>
#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
#include "blk-stat.h"
#include "blk-wbt.h"
#include "blk-mq-sched.h"
static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);
/*
* Check if any of the ctx's have pending work in this hardware queue
*/
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
return sbitmap_any_bit_set(&hctx->ctx_map) ||
!list_empty_careful(&hctx->dispatch) ||
blk_mq_sched_has_work(hctx);
}
/*
* Mark this ctx as having pending work in this hardware queue
*/
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
}
static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
}
void blk_mq_freeze_queue_start(struct request_queue *q)
{
int freeze_depth;
freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
if (freeze_depth == 1) {
percpu_ref_kill(&q->q_usage_counter);
blk_mq_run_hw_queues(q, false);
}
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
}
/*
* Guarantee no request is in use, so we can change any data structure of
* the queue afterward.
*/
void blk_freeze_queue(struct request_queue *q)
{
/*
* In the !blk_mq case we are only calling this to kill the
* q_usage_counter, otherwise this increases the freeze depth
* and waits for it to return to zero. For this reason there is
* no blk_unfreeze_queue(), and blk_freeze_queue() is not
* exported to drivers as the only user for unfreeze is blk_mq.
*/
blk_mq_freeze_queue_start(q);
blk_mq_freeze_queue_wait(q);
}
void blk_mq_freeze_queue(struct request_queue *q)
{
/*
* ...just an alias to keep freeze and unfreeze actions balanced
* in the blk_mq_* namespace
*/
blk_freeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
void blk_mq_unfreeze_queue(struct request_queue *q)
{
int freeze_depth;
freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
WARN_ON_ONCE(freeze_depth < 0);
if (!freeze_depth) {
percpu_ref_reinit(&q->q_usage_counter);
wake_up_all(&q->mq_freeze_wq);
}
}
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
/**
* blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
* @q: request queue.
*
* Note: this function does not prevent that the struct request end_io()
* callback function is invoked. Additionally, it is not prevented that
* new queue_rq() calls occur unless the queue has been stopped first.
*/
void blk_mq_quiesce_queue(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
bool rcu = false;
blk_mq_stop_hw_queues(q);
queue_for_each_hw_ctx(q, hctx, i) {
if (hctx->flags & BLK_MQ_F_BLOCKING)
synchronize_srcu(&hctx->queue_rq_srcu);
else
rcu = true;
}
if (rcu)
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
void blk_mq_wake_waiters(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
queue_for_each_hw_ctx(q, hctx, i)
if (blk_mq_hw_queue_mapped(hctx))
blk_mq_tag_wakeup_all(hctx->tags, true);
/*
* If we are called because the queue has now been marked as
* dying, we need to ensure that processes currently waiting on
* the queue are notified as well.
*/
wake_up_all(&q->mq_freeze_wq);
}
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
struct request *rq, unsigned int op)
{
INIT_LIST_HEAD(&rq->queuelist);
/* csd/requeue_work/fifo_time is initialized before use */
rq->q = q;
rq->mq_ctx = ctx;
rq->cmd_flags = op;
if (blk_queue_io_stat(q))
rq->rq_flags |= RQF_IO_STAT;
/* do not touch atomic flags, it needs atomic ops against the timer */
rq->cpu = -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->rq_disk = NULL;
rq->part = NULL;
rq->start_time = jiffies;
#ifdef CONFIG_BLK_CGROUP
rq->rl = NULL;
set_start_time_ns(rq);
rq->io_start_time_ns = 0;
#endif
rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
rq->nr_integrity_segments = 0;
#endif
rq->special = NULL;
/* tag was already set */
rq->errors = 0;
rq->extra_len = 0;
INIT_LIST_HEAD(&rq->timeout_list);
rq->timeout = 0;
rq->end_io = NULL;
rq->end_io_data = NULL;
rq->next_rq = NULL;
ctx->rq_dispatched[op_is_sync(op)]++;
}
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
unsigned int op)
{
struct request *rq;
unsigned int tag;
tag = blk_mq_get_tag(data);
if (tag != BLK_MQ_TAG_FAIL) {
struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
rq = tags->static_rqs[tag];
if (data->flags & BLK_MQ_REQ_INTERNAL) {
rq->tag = -1;
rq->internal_tag = tag;
} else {
if (blk_mq_tag_busy(data->hctx)) {
rq->rq_flags = RQF_MQ_INFLIGHT;
atomic_inc(&data->hctx->nr_active);
}
rq->tag = tag;
rq->internal_tag = -1;
}
blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
return rq;
}
return NULL;
}
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
unsigned int flags)
{
struct blk_mq_alloc_data alloc_data = { .flags = flags };
struct request *rq;
int ret;
ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
if (ret)
return ERR_PTR(ret);
rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
blk_mq_put_ctx(alloc_data.ctx);
blk_queue_exit(q);
if (!rq)
return ERR_PTR(-EWOULDBLOCK);
rq->__data_len = 0;
rq->__sector = (sector_t) -1;
rq->bio = rq->biotail = NULL;
return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_request);
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
unsigned int flags, unsigned int hctx_idx)
{
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
struct request *rq;
struct blk_mq_alloc_data alloc_data;
int ret;
/*
* If the tag allocator sleeps we could get an allocation for a
* different hardware context. No need to complicate the low level
* allocator for this for the rare use case of a command tied to
* a specific queue.
*/
if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
return ERR_PTR(-EINVAL);
if (hctx_idx >= q->nr_hw_queues)
return ERR_PTR(-EIO);
ret = blk_queue_enter(q, true);
if (ret)
return ERR_PTR(ret);
/*
* Check if the hardware context is actually mapped to anything.
* If not tell the caller that it should skip this queue.
*/
hctx = q->queue_hw_ctx[hctx_idx];
if (!blk_mq_hw_queue_mapped(hctx)) {
ret = -EXDEV;
goto out_queue_exit;
}
ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
rq = __blk_mq_alloc_request(&alloc_data, rw);
if (!rq) {
ret = -EWOULDBLOCK;
goto out_queue_exit;
}
return rq;
out_queue_exit:
blk_queue_exit(q);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
struct request *rq)
{
const int sched_tag = rq->internal_tag;
struct request_queue *q = rq->q;
if (rq->rq_flags & RQF_MQ_INFLIGHT)
atomic_dec(&hctx->nr_active);
wbt_done(q->rq_wb, &rq->issue_stat);
rq->rq_flags = 0;
clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
if (rq->tag != -1)
blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
if (sched_tag != -1)
blk_mq_sched_completed_request(hctx, rq);
blk_mq_sched_restart_queues(hctx);
blk_queue_exit(q);
}
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
struct blk_mq_ctx *ctx = rq->mq_ctx;
ctx->rq_completed[rq_is_sync(rq)]++;
__blk_mq_finish_request(hctx, ctx, rq);
}
void blk_mq_finish_request(struct request *rq)
{
blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
}
void blk_mq_free_request(struct request *rq)
{
blk_mq_sched_put_request(rq);
}
EXPORT_SYMBOL_GPL(blk_mq_free_request);
inline void __blk_mq_end_request(struct request *rq, int error)
{
blk_account_io_done(rq);
if (rq->end_io) {
wbt_done(rq->q->rq_wb, &rq->issue_stat);
rq->end_io(rq, error);
} else {
if (unlikely(blk_bidi_rq(rq)))
blk_mq_free_request(rq->next_rq);
blk_mq_free_request(rq);
}
}
EXPORT_SYMBOL(__blk_mq_end_request);
void blk_mq_end_request(struct request *rq, int error)
{
if (blk_update_request(rq, error, blk_rq_bytes(rq)))
BUG();
__blk_mq_end_request(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_request);
static void __blk_mq_complete_request_remote(void *data)
{
struct request *rq = data;
rq->q->softirq_done_fn(rq);
}
static void blk_mq_ipi_complete_request(struct request *rq)
{
struct blk_mq_ctx *ctx = rq->mq_ctx;
bool shared = false;
int cpu;
if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
rq->q->softirq_done_fn(rq);
return;
}
cpu = get_cpu();
if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
shared = cpus_share_cache(cpu, ctx->cpu);
if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
rq->csd.func = __blk_mq_complete_request_remote;
rq->csd.info = rq;
rq->csd.flags = 0;
smp_call_function_single_async(ctx->cpu, &rq->csd);
} else {
rq->q->softirq_done_fn(rq);
}
put_cpu();
}
static void blk_mq_stat_add(struct request *rq)
{
if (rq->rq_flags & RQF_STATS) {
/*
* We could rq->mq_ctx here, but there's less of a risk
* of races if we have the completion event add the stats
* to the local software queue.
*/
struct blk_mq_ctx *ctx;
ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
}
}
static void __blk_mq_complete_request(struct request *rq)
{
struct request_queue *q = rq->q;
blk_mq_stat_add(rq);
if (!q->softirq_done_fn)
blk_mq_end_request(rq, rq->errors);
else
blk_mq_ipi_complete_request(rq);
}
/**
* blk_mq_complete_request - end I/O on a request
* @rq: the request being processed
*
* Description:
* Ends all I/O on a request. It does not handle partial completions.
* The actual completion happens out-of-order, through a IPI handler.
**/
void blk_mq_complete_request(struct request *rq, int error)
{
struct request_queue *q = rq->q;
if (unlikely(blk_should_fake_timeout(q)))
return;
if (!blk_mark_rq_complete(rq)) {
rq->errors = error;
__blk_mq_complete_request(rq);
}
}
EXPORT_SYMBOL(blk_mq_complete_request);
int blk_mq_request_started(struct request *rq)
{
return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);
void blk_mq_start_request(struct request *rq)
{
struct request_queue *q = rq->q;
blk_mq_sched_started_request(rq);
trace_block_rq_issue(q, rq);
if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
blk_stat_set_issue_time(&rq->issue_stat);
rq->rq_flags |= RQF_STATS;
wbt_issue(q->rq_wb, &rq->issue_stat);
}
blk_add_timer(rq);
/*
* Ensure that ->deadline is visible before set the started
* flag and clear the completed flag.
*/
smp_mb__before_atomic();
/*
* Mark us as started and clear complete. Complete might have been
* set if requeue raced with timeout, which then marked it as
* complete. So be sure to clear complete again when we start
* the request, otherwise we'll ignore the completion event.
*/
if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
if (q->dma_drain_size && blk_rq_bytes(rq)) {
/*
* Make sure space for the drain appears. We know we can do
* this because max_hw_segments has been adjusted to be one
* fewer than the device can handle.
*/
rq->nr_phys_segments++;
}
}
EXPORT_SYMBOL(blk_mq_start_request);
static void __blk_mq_requeue_request(struct request *rq)
{
struct request_queue *q = rq->q;
trace_block_rq_requeue(q, rq);
wbt_requeue(q->rq_wb, &rq->issue_stat);
blk_mq_sched_requeue_request(rq);
if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
if (q->dma_drain_size && blk_rq_bytes(rq))
rq->nr_phys_segments--;
}
}
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
{
__blk_mq_requeue_request(rq);
BUG_ON(blk_queued_rq(rq));
blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
}
EXPORT_SYMBOL(blk_mq_requeue_request);
static void blk_mq_requeue_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, requeue_work.work);
LIST_HEAD(rq_list);
struct request *rq, *next;
unsigned long flags;
spin_lock_irqsave(&q->requeue_lock, flags);
list_splice_init(&q->requeue_list, &rq_list);
spin_unlock_irqrestore(&q->requeue_lock, flags);
list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
if (!(rq->rq_flags & RQF_SOFTBARRIER))
continue;
rq->rq_flags &= ~RQF_SOFTBARRIER;
list_del_init(&rq->queuelist);
blk_mq_sched_insert_request(rq, true, false, false, true);
}
while (!list_empty(&rq_list)) {
rq = list_entry(rq_list.next, struct request, queuelist);
list_del_init(&rq->queuelist);
blk_mq_sched_insert_request(rq, false, false, false, true);
}
blk_mq_run_hw_queues(q, false);
}
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
bool kick_requeue_list)
{
struct request_queue *q = rq->q;
unsigned long flags;
/*
* We abuse this flag that is otherwise used by the I/O scheduler to
* request head insertation from the workqueue.
*/
BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
spin_lock_irqsave(&q->requeue_lock, flags);
if (at_head) {
rq->rq_flags |= RQF_SOFTBARRIER;
list_add(&rq->queuelist, &q->requeue_list);
} else {
list_add_tail(&rq->queuelist, &q->requeue_list);
}
spin_unlock_irqrestore(&q->requeue_lock, flags);
if (kick_requeue_list)
blk_mq_kick_requeue_list(q);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
void blk_mq_kick_requeue_list(struct request_queue *q)
{
kblockd_schedule_delayed_work(&q->requeue_work, 0);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
unsigned long msecs)
{
kblockd_schedule_delayed_work(&q->requeue_work,
msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
void blk_mq_abort_requeue_list(struct request_queue *q)
{
unsigned long flags;
LIST_HEAD(rq_list);
spin_lock_irqsave(&q->requeue_lock, flags);
list_splice_init(&q->requeue_list, &rq_list);
spin_unlock_irqrestore(&q->requeue_lock, flags);
while (!list_empty(&rq_list)) {
struct request *rq;
rq = list_first_entry(&rq_list, struct request, queuelist);
list_del_init(&rq->queuelist);
rq->errors = -EIO;
blk_mq_end_request(rq, rq->errors);
}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
if (tag < tags->nr_tags) {
prefetch(tags->rqs[tag]);
return tags->rqs[tag];
}
return NULL;
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);
struct blk_mq_timeout_data {
unsigned long next;
unsigned int next_set;
};
void blk_mq_rq_timed_out(struct request *req, bool reserved)
{
const struct blk_mq_ops *ops = req->q->mq_ops;
enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
/*
* We know that complete is set at this point. If STARTED isn't set
* anymore, then the request isn't active and the "timeout" should
* just be ignored. This can happen due to the bitflag ordering.
* Timeout first checks if STARTED is set, and if it is, assumes
* the request is active. But if we race with completion, then
* we both flags will get cleared. So check here again, and ignore
* a timeout event with a request that isn't active.
*/
if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
return;
if (ops->timeout)
ret = ops->timeout(req, reserved);
switch (ret) {
case BLK_EH_HANDLED:
__blk_mq_complete_request(req);
break;
case BLK_EH_RESET_TIMER:
blk_add_timer(req);
blk_clear_rq_complete(req);
break;
case BLK_EH_NOT_HANDLED:
break;
default:
printk(KERN_ERR "block: bad eh return: %d\n", ret);
break;
}
}
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
struct request *rq, void *priv, bool reserved)
{
struct blk_mq_timeout_data *data = priv;
if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
/*
* If a request wasn't started before the queue was
* marked dying, kill it here or it'll go unnoticed.
*/
if (unlikely(blk_queue_dying(rq->q))) {
rq->errors = -EIO;
blk_mq_end_request(rq, rq->errors);
}
return;
}
if (time_after_eq(jiffies, rq->deadline)) {
if (!blk_mark_rq_complete(rq))
blk_mq_rq_timed_out(rq, reserved);
} else if (!data->next_set || time_after(data->next, rq->deadline)) {
data->next = rq->deadline;
data->next_set = 1;
}
}
static void blk_mq_timeout_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, timeout_work);
struct blk_mq_timeout_data data = {
.next = 0,
.next_set = 0,
};
int i;
/* A deadlock might occur if a request is stuck requiring a
* timeout at the same time a queue freeze is waiting
* completion, since the timeout code would not be able to
* acquire the queue reference here.
*
* That's why we don't use blk_queue_enter here; instead, we use
* percpu_ref_tryget directly, because we need to be able to
* obtain a reference even in the short window between the queue
* starting to freeze, by dropping the first reference in
* blk_mq_freeze_queue_start, and the moment the last request is
* consumed, marked by the instant q_usage_counter reaches
* zero.
*/
if (!percpu_ref_tryget(&q->q_usage_counter))
return;
blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
if (data.next_set) {
data.next = blk_rq_timeout(round_jiffies_up(data.next));
mod_timer(&q->timeout, data.next);
} else {
struct blk_mq_hw_ctx *hctx;
queue_for_each_hw_ctx(q, hctx, i) {
/* the hctx may be unmapped, so check it here */
if (blk_mq_hw_queue_mapped(hctx))
blk_mq_tag_idle(hctx);
}
}
blk_queue_exit(q);
}
/*
* Reverse check our software queue for entries that we could potentially
* merge with. Currently includes a hand-wavy stop count of 8, to not spend
* too much time checking for merges.
*/
static bool blk_mq_attempt_merge(struct request_queue *q,
struct blk_mq_ctx *ctx, struct bio *bio)
{
struct request *rq;
int checked = 8;
list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
bool merged = false;
if (!checked--)
break;
if (!blk_rq_merge_ok(rq, bio))
continue;
switch (blk_try_merge(rq, bio)) {
case ELEVATOR_BACK_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_back_merge(q, rq, bio);
break;
case ELEVATOR_FRONT_MERGE:
if (blk_mq_sched_allow_merge(q, rq, bio))
merged = bio_attempt_front_merge(q, rq, bio);
break;
case ELEVATOR_DISCARD_MERGE:
merged = bio_attempt_discard_merge(q, rq, bio);
break;
default:
continue;
}
if (merged)
ctx->rq_merged++;
return merged;
}
return false;
}
struct flush_busy_ctx_data {
struct blk_mq_hw_ctx *hctx;
struct list_head *list;
};
static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
struct flush_busy_ctx_data *flush_data = data;
struct blk_mq_hw_ctx *hctx = flush_data->hctx;
struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
sbitmap_clear_bit(sb, bitnr);
spin_lock(&ctx->lock);
list_splice_tail_init(&ctx->rq_list, flush_data->list);
spin_unlock(&ctx->lock);
return true;
}
/*
* Process software queues that have been marked busy, splicing them
* to the for-dispatch
*/
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
struct flush_busy_ctx_data data = {
.hctx = hctx,
.list = list,
};
sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
}
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
static inline unsigned int queued_to_index(unsigned int queued)
{
if (!queued)
return 0;
return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
}
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
bool wait)
{
struct blk_mq_alloc_data data = {
.q = rq->q,
.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
};
if (blk_mq_hctx_stopped(data.hctx))
return false;
if (rq->tag != -1) {
done:
if (hctx)
*hctx = data.hctx;
return true;
}
rq->tag = blk_mq_get_tag(&data);
if (rq->tag >= 0) {
if (blk_mq_tag_busy(data.hctx)) {
rq->rq_flags |= RQF_MQ_INFLIGHT;
atomic_inc(&data.hctx->nr_active);
}
data.hctx->tags->rqs[rq->tag] = rq;
goto done;
}
return false;
}
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
if (rq->tag == -1 || rq->internal_tag == -1)
return;
blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
rq->tag = -1;
if (rq->rq_flags & RQF_MQ_INFLIGHT) {
rq->rq_flags &= ~RQF_MQ_INFLIGHT;
atomic_dec(&hctx->nr_active);
}
}
/*
* If we fail getting a driver tag because all the driver tags are already
* assigned and on the dispatch list, BUT the first entry does not have a
* tag, then we could deadlock. For that case, move entries with assigned
* driver tags to the front, leaving the set of tagged requests in the
* same order, and the untagged set in the same order.
*/
static bool reorder_tags_to_front(struct list_head *list)
{
struct request *rq, *tmp, *first = NULL;
list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
if (rq == first)
break;
if (rq->tag != -1) {
list_move(&rq->queuelist, list);
if (!first)
first = rq;
}
}
return first != NULL;
}
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
struct request_queue *q = hctx->queue;
struct request *rq;
LIST_HEAD(driver_list);
struct list_head *dptr;
int queued, ret = BLK_MQ_RQ_QUEUE_OK;
/*
* Start off with dptr being NULL, so we start the first request
* immediately, even if we have more pending.
*/
dptr = NULL;
/*
* Now process all the entries, sending them to the driver.
*/
queued = 0;
while (!list_empty(list)) {
struct blk_mq_queue_data bd;
rq = list_first_entry(list, struct request, queuelist);
if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
if (!queued && reorder_tags_to_front(list))
continue;
/*
* We failed getting a driver tag. Mark the queue(s)
* as needing a restart. Retry getting a tag again,
* in case the needed IO completed right before we
* marked the queue as needing a restart.
*/
blk_mq_sched_mark_restart(hctx);
if (!blk_mq_get_driver_tag(rq, &hctx, false))
break;
}
list_del_init(&rq->queuelist);
bd.rq = rq;
bd.list = dptr;
bd.last = list_empty(list);
ret = q->mq_ops->queue_rq(hctx, &bd);
switch (ret) {
case BLK_MQ_RQ_QUEUE_OK:
queued++;
break;
case BLK_MQ_RQ_QUEUE_BUSY:
blk_mq_put_driver_tag(hctx, rq);
list_add(&rq->queuelist, list);
__blk_mq_requeue_request(rq);
break;
default:
pr_err("blk-mq: bad return on queue: %d\n", ret);
case BLK_MQ_RQ_QUEUE_ERROR:
rq->errors = -EIO;
blk_mq_end_request(rq, rq->errors);
break;
}
if (ret == BLK_MQ_RQ_QUEUE_BUSY)
break;
/*
* We've done the first request. If we have more than 1
* left in the list, set dptr to defer issue.
*/
if (!dptr && list->next != list->prev)
dptr = &driver_list;
}
hctx->dispatched[queued_to_index(queued)]++;
/*
* Any items that need requeuing? Stuff them into hctx->dispatch,
* that is where we will continue on next queue run.
*/
if (!list_empty(list)) {
spin_lock(&hctx->lock);
list_splice_init(list, &hctx->dispatch);
spin_unlock(&hctx->lock);
/*
* the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
* it's possible the queue is stopped and restarted again
* before this. Queue restart will dispatch requests. And since
* requests in rq_list aren't added into hctx->dispatch yet,
* the requests in rq_list might get lost.
*
* blk_mq_run_hw_queue() already checks the STOPPED bit
*
* If RESTART is set, then let completion restart the queue
* instead of potentially looping here.
*/
if (!blk_mq_sched_needs_restart(hctx))
blk_mq_run_hw_queue(hctx, true);
}
return queued != 0;
}
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
int srcu_idx;
WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
cpu_online(hctx->next_cpu));
if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
rcu_read_lock();
blk_mq_sched_dispatch_requests(hctx);
rcu_read_unlock();
} else {
srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
blk_mq_sched_dispatch_requests(hctx);
srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
}
}
/*
* It'd be great if the workqueue API had a way to pass
* in a mask and had some smarts for more clever placement.
* For now we just round-robin here, switching for every
* BLK_MQ_CPU_WORK_BATCH queued items.
*/
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
if (hctx->queue->nr_hw_queues == 1)
return WORK_CPU_UNBOUND;
if (--hctx->next_cpu_batch <= 0) {
int next_cpu;
next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
if (next_cpu >= nr_cpu_ids)
next_cpu = cpumask_first(hctx->cpumask);
hctx->next_cpu = next_cpu;
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
}
return hctx->next_cpu;
}
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
if (unlikely(blk_mq_hctx_stopped(hctx) ||
!blk_mq_hw_queue_mapped(hctx)))
return;
if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
int cpu = get_cpu();
if (cpumask_test_cpu(cpu, hctx->cpumask)) {
__blk_mq_run_hw_queue(hctx);
put_cpu();
return;
}
put_cpu();
}
kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
}
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (!blk_mq_hctx_has_pending(hctx) ||
blk_mq_hctx_stopped(hctx))
continue;
blk_mq_run_hw_queue(hctx, async);
}
}
EXPORT_SYMBOL(blk_mq_run_hw_queues);
/**
* blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
* @q: request queue.
*
* The caller is responsible for serializing this function against
* blk_mq_{start,stop}_hw_queue().
*/
bool blk_mq_queue_stopped(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
if (blk_mq_hctx_stopped(hctx))
return true;
return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
cancel_work(&hctx->run_work);
cancel_delayed_work(&hctx->delay_work);
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
void blk_mq_stop_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, false);
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);
void blk_mq_start_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
if (!blk_mq_hctx_stopped(hctx))
return;
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_stopped_hw_queue(hctx, async);
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
static void blk_mq_run_work_fn(struct work_struct *work)
{
struct blk_mq_hw_ctx *hctx;
hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
__blk_mq_run_hw_queue(hctx);
}
static void blk_mq_delay_work_fn(struct work_struct *work)
{
struct blk_mq_hw_ctx *hctx;
hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
__blk_mq_run_hw_queue(hctx);
}
void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
return;
blk_mq_stop_hw_queue(hctx);
kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
&hctx->delay_work, msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_queue);
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
struct request *rq,
bool at_head)
{
struct blk_mq_ctx *ctx = rq->mq_ctx;
trace_block_rq_insert(hctx->queue, rq);
if (at_head)
list_add(&rq->queuelist, &ctx->rq_list);
else
list_add_tail(&rq->queuelist, &ctx->rq_list);
}
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head)
{
struct blk_mq_ctx *ctx = rq->mq_ctx;
__blk_mq_insert_req_list(hctx, rq, at_head);
blk_mq_hctx_mark_pending(hctx, ctx);
}
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
struct list_head *list)
{
/*
* preemption doesn't flush plug list, so it's possible ctx->cpu is
* offline now
*/
spin_lock(&ctx->lock);
while (!list_empty(list)) {
struct request *rq;
rq = list_first_entry(list, struct request, queuelist);
BUG_ON(rq->mq_ctx != ctx);
list_del_init(&rq->queuelist);
__blk_mq_insert_req_list(hctx, rq, false);
}
blk_mq_hctx_mark_pending(hctx, ctx);
spin_unlock(&ctx->lock);
}
static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct request *rqa = container_of(a, struct request, queuelist);
struct request *rqb = container_of(b, struct request, queuelist);
return !(rqa->mq_ctx < rqb->mq_ctx ||
(rqa->mq_ctx == rqb->mq_ctx &&
blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
struct blk_mq_ctx *this_ctx;
struct request_queue *this_q;
struct request *rq;
LIST_HEAD(list);
LIST_HEAD(ctx_list);
unsigned int depth;
list_splice_init(&plug->mq_list, &list);
list_sort(NULL, &list, plug_ctx_cmp);
this_q = NULL;
this_ctx = NULL;
depth = 0;
while (!list_empty(&list)) {
rq = list_entry_rq(list.next);
list_del_init(&rq->queuelist);
BUG_ON(!rq->q);
if (rq->mq_ctx != this_ctx) {
if (this_ctx) {
trace_block_unplug(this_q, depth, from_schedule);
blk_mq_sched_insert_requests(this_q, this_ctx,
&ctx_list,
from_schedule);
}
this_ctx = rq->mq_ctx;
this_q = rq->q;
depth = 0;
}
depth++;
list_add_tail(&rq->queuelist, &ctx_list);
}
/*
* If 'this_ctx' is set, we know we have entries to complete
* on 'ctx_list'. Do those.
*/
if (this_ctx) {
trace_block_unplug(this_q, depth, from_schedule);
blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
from_schedule);
}
}
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
init_request_from_bio(rq, bio);
blk_account_io_start(rq, true);
}
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
!blk_queue_nomerges(hctx->queue);
}
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx,
struct request *rq, struct bio *bio)
{
if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
blk_mq_bio_to_request(rq, bio);
spin_lock(&ctx->lock);
insert_rq:
__blk_mq_insert_request(hctx, rq, false);
spin_unlock(&ctx->lock);
return false;
} else {
struct request_queue *q = hctx->queue;
spin_lock(&ctx->lock);
if (!blk_mq_attempt_merge(q, ctx, bio)) {
blk_mq_bio_to_request(rq, bio);
goto insert_rq;
}
spin_unlock(&ctx->lock);
__blk_mq_finish_request(hctx, ctx, rq);
return true;
}
}
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
if (rq->tag != -1)
return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
}
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
{
struct request_queue *q = rq->q;
struct blk_mq_queue_data bd = {
.rq = rq,
.list = NULL,
.last = 1
};
struct blk_mq_hw_ctx *hctx;
blk_qc_t new_cookie;
int ret;
if (q->elevator)
goto insert;
if (!blk_mq_get_driver_tag(rq, &hctx, false))
goto insert;
new_cookie = request_to_qc_t(hctx, rq);
/*
* For OK queue, we are done. For error, kill it. Any other
* error (busy), just add it to our list as we previously
* would have done
*/
ret = q->mq_ops->queue_rq(hctx, &bd);
if (ret == BLK_MQ_RQ_QUEUE_OK) {
*cookie = new_cookie;
return;
}
__blk_mq_requeue_request(rq);
if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
*cookie = BLK_QC_T_NONE;
rq->errors = -EIO;
blk_mq_end_request(rq, rq->errors);
return;
}
insert:
blk_mq_sched_insert_request(rq, false, true, true, false);
}
/*
* Multiple hardware queue variant. This will not use per-process plugs,
* but will attempt to bypass the hctx queueing if we can go straight to
* hardware for SYNC IO.
*/
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
const int is_sync = op_is_sync(bio->bi_opf);
const int is_flush_fua = op_is_flush(bio->bi_opf);
struct blk_mq_alloc_data data = { .flags = 0 };
struct request *rq;
unsigned int request_count = 0, srcu_idx;
struct blk_plug *plug;
struct request *same_queue_rq = NULL;
blk_qc_t cookie;
unsigned int wb_acct;
blk_queue_bounce(q, &bio);
if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
bio_io_error(bio);
return BLK_QC_T_NONE;
}
blk_queue_split(q, &bio, q->bio_split);
if (!is_flush_fua && !blk_queue_nomerges(q) &&
blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
return BLK_QC_T_NONE;
if (blk_mq_sched_bio_merge(q, bio))
return BLK_QC_T_NONE;
wb_acct = wbt_wait(q->rq_wb, bio, NULL);
trace_block_getrq(q, bio, bio->bi_opf);
rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
if (unlikely(!rq)) {
__wbt_done(q->rq_wb, wb_acct);
return BLK_QC_T_NONE;
}
wbt_track(&rq->issue_stat, wb_acct);
cookie = request_to_qc_t(data.hctx, rq);
if (unlikely(is_flush_fua)) {
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
blk_mq_get_driver_tag(rq, NULL, true);
blk_insert_flush(rq);
blk_mq_run_hw_queue(data.hctx, true);
goto done;
}
plug = current->plug;
/*
* If the driver supports defer issued based on 'last', then
* queue it up like normal since we can potentially save some
* CPU this way.
*/
if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
!(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
struct request *old_rq = NULL;
blk_mq_bio_to_request(rq, bio);
/*
* We do limited plugging. If the bio can be merged, do that.
* Otherwise the existing request in the plug list will be
* issued. So the plug list will have one request at most
*/
if (plug) {
/*
* The plug list might get flushed before this. If that
* happens, same_queue_rq is invalid and plug list is
* empty
*/
if (same_queue_rq && !list_empty(&plug->mq_list)) {
old_rq = same_queue_rq;
list_del_init(&old_rq->queuelist);
}
list_add_tail(&rq->queuelist, &plug->mq_list);
} else /* is_sync */
old_rq = rq;
blk_mq_put_ctx(data.ctx);
if (!old_rq)
goto done;
if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
rcu_read_lock();
blk_mq_try_issue_directly(old_rq, &cookie);
rcu_read_unlock();
} else {
srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
blk_mq_try_issue_directly(old_rq, &cookie);
srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
}
goto done;
}
if (q->elevator) {
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
blk_mq_sched_insert_request(rq, false, true,
!is_sync || is_flush_fua, true);
goto done;
}
if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
/*
* For a SYNC request, send it to the hardware immediately. For
* an ASYNC request, just ensure that we run it later on. The
* latter allows for merging opportunities and more efficient
* dispatching.
*/
blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
}
blk_mq_put_ctx(data.ctx);
done:
return cookie;
}
/*
* Single hardware queue variant. This will attempt to use any per-process
* plug for merging and IO deferral.
*/
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
const int is_sync = op_is_sync(bio->bi_opf);
const int is_flush_fua = op_is_flush(bio->bi_opf);
struct blk_plug *plug;
unsigned int request_count = 0;
struct blk_mq_alloc_data data = { .flags = 0 };
struct request *rq;
blk_qc_t cookie;
unsigned int wb_acct;
blk_queue_bounce(q, &bio);
if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
bio_io_error(bio);
return BLK_QC_T_NONE;
}
blk_queue_split(q, &bio, q->bio_split);
if (!is_flush_fua && !blk_queue_nomerges(q)) {
if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
return BLK_QC_T_NONE;
} else
request_count = blk_plug_queued_count(q);
if (blk_mq_sched_bio_merge(q, bio))
return BLK_QC_T_NONE;
wb_acct = wbt_wait(q->rq_wb, bio, NULL);
trace_block_getrq(q, bio, bio->bi_opf);
rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
if (unlikely(!rq)) {
__wbt_done(q->rq_wb, wb_acct);
return BLK_QC_T_NONE;
}
wbt_track(&rq->issue_stat, wb_acct);
cookie = request_to_qc_t(data.hctx, rq);
if (unlikely(is_flush_fua)) {
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
blk_mq_get_driver_tag(rq, NULL, true);
blk_insert_flush(rq);
blk_mq_run_hw_queue(data.hctx, true);
goto done;
}
/*
* A task plug currently exists. Since this is completely lockless,
* utilize that to temporarily store requests until the task is
* either done or scheduled away.
*/
plug = current->plug;
if (plug) {
struct request *last = NULL;
blk_mq_bio_to_request(rq, bio);
/*
* @request_count may become stale because of schedule
* out, so check the list again.
*/
if (list_empty(&plug->mq_list))
request_count = 0;
if (!request_count)
trace_block_plug(q);
else
last = list_entry_rq(plug->mq_list.prev);
blk_mq_put_ctx(data.ctx);
if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
blk_flush_plug_list(plug, false);
trace_block_plug(q);
}
list_add_tail(&rq->queuelist, &plug->mq_list);
return cookie;
}
if (q->elevator) {
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
blk_mq_sched_insert_request(rq, false, true,
!is_sync || is_flush_fua, true);
goto done;
}
if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
/*
* For a SYNC request, send it to the hardware immediately. For
* an ASYNC request, just ensure that we run it later on. The
* latter allows for merging opportunities and more efficient
* dispatching.
*/
blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
}
blk_mq_put_ctx(data.ctx);
done:
return cookie;
}
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx)
{
struct page *page;
if (tags->rqs && set->ops->exit_request) {
int i;
for (i = 0; i < tags->nr_tags; i++) {
struct request *rq = tags->static_rqs[i];
if (!rq)
continue;
set->ops->exit_request(set->driver_data, rq,
hctx_idx, i);
tags->static_rqs[i] = NULL;
}
}
while (!list_empty(&tags->page_list)) {
page = list_first_entry(&tags->page_list, struct page, lru);
list_del_init(&page->lru);
/*
* Remove kmemleak object previously allocated in
* blk_mq_init_rq_map().
*/
kmemleak_free(page_address(page));
__free_pages(page, page->private);
}
}
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
kfree(tags->rqs);
tags->rqs = NULL;
kfree(tags->static_rqs);
tags->static_rqs = NULL;
blk_mq_free_tags(tags);
}
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
unsigned int hctx_idx,
unsigned int nr_tags,
unsigned int reserved_tags)
{
struct blk_mq_tags *tags;
tags = blk_mq_init_tags(nr_tags, reserved_tags,
set->numa_node,
BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
if (!tags)
return NULL;
tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
set->numa_node);
if (!tags->rqs) {
blk_mq_free_tags(tags);
return NULL;
}
tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
set->numa_node);
if (!tags->static_rqs) {
kfree(tags->rqs);
blk_mq_free_tags(tags);
return NULL;
}
return tags;
}
static size_t order_to_size(unsigned int order)
{
return (size_t)PAGE_SIZE << order;
}
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
unsigned int hctx_idx, unsigned int depth)
{
unsigned int i, j, entries_per_page, max_order = 4;
size_t rq_size, left;
INIT_LIST_HEAD(&tags->page_list);
/*
* rq_size is the size of the request plus driver payload, rounded
* to the cacheline size
*/
rq_size = round_up(sizeof(struct request) + set->cmd_size,
cache_line_size());
left = rq_size * depth;
for (i = 0; i < depth; ) {
int this_order = max_order;
struct page *page;
int to_do;
void *p;
while (this_order && left < order_to_size(this_order - 1))
this_order--;
do {
page = alloc_pages_node(set->numa_node,
GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
this_order);
if (page)
break;
if (!this_order--)
break;
if (order_to_size(this_order) < rq_size)
break;
} while (1);
if (!page)
goto fail;
page->private = this_order;
list_add_tail(&page->lru, &tags->page_list);
p = page_address(page);
/*
* Allow kmemleak to scan these pages as they contain pointers
* to additional allocations like via ops->init_request().
*/
kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
entries_per_page = order_to_size(this_order) / rq_size;
to_do = min(entries_per_page, depth - i);
left -= to_do * rq_size;
for (j = 0; j < to_do; j++) {
struct request *rq = p;
tags->static_rqs[i] = rq;
if (set->ops->init_request) {
if (set->ops->init_request(set->driver_data,
rq, hctx_idx, i,
set->numa_node)) {
tags->static_rqs[i] = NULL;
goto fail;
}
}
p += rq_size;
i++;
}
}
return 0;
fail:
blk_mq_free_rqs(set, tags, hctx_idx);
return -ENOMEM;
}
/*
* 'cpu' is going away. splice any existing rq_list entries from this
* software queue to the hw queue dispatch list, and ensure that it
* gets run.
*/
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
{
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
LIST_HEAD(tmp);
hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
ctx = __blk_mq_get_ctx(hctx->queue, cpu);
spin_lock(&ctx->lock);
if (!list_empty(&ctx->rq_list)) {
list_splice_init(&ctx->rq_list, &tmp);
blk_mq_hctx_clear_pending(hctx, ctx);
}
spin_unlock(&ctx->lock);
if (list_empty(&tmp))
return 0;
spin_lock(&hctx->lock);
list_splice_tail_init(&tmp, &hctx->dispatch);
spin_unlock(&hctx->lock);
blk_mq_run_hw_queue(hctx, true);
return 0;
}
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
{
cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
&hctx->cpuhp_dead);
}
/* hctx->ctxs will be freed in queue's release handler */
static void blk_mq_exit_hctx(struct request_queue *q,
struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
unsigned flush_start_tag = set->queue_depth;
blk_mq_tag_idle(hctx);
if (set->ops->exit_request)
set->ops->exit_request(set->driver_data,
hctx->fq->flush_rq, hctx_idx,
flush_start_tag + hctx_idx);
if (set->ops->exit_hctx)
set->ops->exit_hctx(hctx, hctx_idx);
if (hctx->flags & BLK_MQ_F_BLOCKING)
cleanup_srcu_struct(&hctx->queue_rq_srcu);
blk_mq_remove_cpuhp(hctx);
blk_free_flush_queue(hctx->fq);
sbitmap_free(&hctx->ctx_map);
}
static void blk_mq_exit_hw_queues(struct request_queue *q,
struct blk_mq_tag_set *set, int nr_queue)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (i == nr_queue)
break;
blk_mq_exit_hctx(q, set, hctx, i);
}
}
static void blk_mq_free_hw_queues(struct request_queue *q,
struct blk_mq_tag_set *set)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
queue_for_each_hw_ctx(q, hctx, i)
free_cpumask_var(hctx->cpumask);
}
static int blk_mq_init_hctx(struct request_queue *q,
struct blk_mq_tag_set *set,
struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
{
int node;
unsigned flush_start_tag = set->queue_depth;
node = hctx->numa_node;
if (node == NUMA_NO_NODE)
node = hctx->numa_node = set->numa_node;
INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
spin_lock_init(&hctx->lock);
INIT_LIST_HEAD(&hctx->dispatch);
hctx->queue = q;
hctx->queue_num = hctx_idx;
hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
hctx->tags = set->tags[hctx_idx];
/*
* Allocate space for all possible cpus to avoid allocation at
* runtime
*/
hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
GFP_KERNEL, node);
if (!hctx->ctxs)
goto unregister_cpu_notifier;
if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
node))
goto free_ctxs;
hctx->nr_ctx = 0;
if (set->ops->init_hctx &&
set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
goto free_bitmap;
hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
if (!hctx->fq)
goto exit_hctx;
if (set->ops->init_request &&
set->ops->init_request(set->driver_data,
hctx->fq->flush_rq, hctx_idx,
flush_start_tag + hctx_idx, node))
goto free_fq;
if (hctx->flags & BLK_MQ_F_BLOCKING)
init_srcu_struct(&hctx->queue_rq_srcu);
return 0;
free_fq:
kfree(hctx->fq);
exit_hctx:
if (set->ops->exit_hctx)
set->ops->exit_hctx(hctx, hctx_idx);
free_bitmap:
sbitmap_free(&hctx->ctx_map);
free_ctxs:
kfree(hctx->ctxs);
unregister_cpu_notifier:
blk_mq_remove_cpuhp(hctx);
return -1;
}
static void blk_mq_init_cpu_queues(struct request_queue *q,
unsigned int nr_hw_queues)
{
unsigned int i;
for_each_possible_cpu(i) {
struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
struct blk_mq_hw_ctx *hctx;
memset(__ctx, 0, sizeof(*__ctx));
__ctx->cpu = i;
spin_lock_init(&__ctx->lock);
INIT_LIST_HEAD(&__ctx->rq_list);
__ctx->queue = q;
blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
/* If the cpu isn't online, the cpu is mapped to first hctx */
if (!cpu_online(i))
continue;
hctx = blk_mq_map_queue(q, i);
/*
* Set local node, IFF we have more than one hw queue. If
* not, we remain on the home node of the device
*/
if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
hctx->numa_node = local_memory_node(cpu_to_node(i));
}
}
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
int ret = 0;
set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
set->queue_depth, set->reserved_tags);
if (!set->tags[hctx_idx])
return false;
ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
set->queue_depth);
if (!ret)
return true;
blk_mq_free_rq_map(set->tags[hctx_idx]);
set->tags[hctx_idx] = NULL;
return false;
}
static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
unsigned int hctx_idx)
{
if (set->tags[hctx_idx]) {
blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
blk_mq_free_rq_map(set->tags[hctx_idx]);
set->tags[hctx_idx] = NULL;
}
}
static void blk_mq_map_swqueue(struct request_queue *q,
const struct cpumask *online_mask)
{
unsigned int i, hctx_idx;
struct blk_mq_hw_ctx *hctx;
struct blk_mq_ctx *ctx;
struct blk_mq_tag_set *set = q->tag_set;
/*
* Avoid others reading imcomplete hctx->cpumask through sysfs
*/
mutex_lock(&q->sysfs_lock);
queue_for_each_hw_ctx(q, hctx, i) {
cpumask_clear(hctx->cpumask);
hctx->nr_ctx = 0;
}
/*
* Map software to hardware queues
*/
for_each_possible_cpu(i) {
/* If the cpu isn't online, the cpu is mapped to first hctx */
if (!cpumask_test_cpu(i, online_mask))
continue;
hctx_idx = q->mq_map[i];
/* unmapped hw queue can be remapped after CPU topo changed */
if (!set->tags[hctx_idx] &&
!__blk_mq_alloc_rq_map(set, hctx_idx)) {
/*
* If tags initialization fail for some hctx,
* that hctx won't be brought online. In this
* case, remap the current ctx to hctx[0] which
* is guaranteed to always have tags allocated
*/
q->mq_map[i] = 0;
}
ctx = per_cpu_ptr(q->queue_ctx, i);
hctx = blk_mq_map_queue(q, i);
cpumask_set_cpu(i, hctx->cpumask);
ctx->index_hw = hctx->nr_ctx;
hctx->ctxs[hctx->nr_ctx++] = ctx;
}
mutex_unlock(&q->sysfs_lock);
queue_for_each_hw_ctx(q, hctx, i) {
/*
* If no software queues are mapped to this hardware queue,
* disable it and free the request entries.
*/
if (!hctx->nr_ctx) {
/* Never unmap queue 0. We need it as a
* fallback in case of a new remap fails
* allocation
*/
if (i && set->tags[i])
blk_mq_free_map_and_requests(set, i);
hctx->tags = NULL;
continue;
}
hctx->tags = set->tags[i];
WARN_ON(!hctx->tags);
/*
* Set the map size to the number of mapped software queues.
* This is more accurate and more efficient than looping
* over all possibly mapped software queues.
*/
sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
/*
* Initialize batch roundrobin counts
*/
hctx->next_cpu = cpumask_first(hctx->cpumask);
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
}
}
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (shared)
hctx->flags |= BLK_MQ_F_TAG_SHARED;
else
hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
}
}
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
struct request_queue *q;
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_freeze_queue(q);
queue_set_hctx_shared(q, shared);
blk_mq_unfreeze_queue(q);
}
}
static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
mutex_lock(&set->tag_list_lock);
list_del_init(&q->tag_set_list);
if (list_is_singular(&set->tag_list)) {
/* just transitioned to unshared */
set->flags &= ~BLK_MQ_F_TAG_SHARED;
/* update existing queue */
blk_mq_update_tag_set_depth(set, false);
}
mutex_unlock(&set->tag_list_lock);
}
static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
struct request_queue *q)
{
q->tag_set = set;
mutex_lock(&set->tag_list_lock);
/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
set->flags |= BLK_MQ_F_TAG_SHARED;
/* update existing queue */
blk_mq_update_tag_set_depth(set, true);
}
if (set->flags & BLK_MQ_F_TAG_SHARED)
queue_set_hctx_shared(q, true);
list_add_tail(&q->tag_set_list, &set->tag_list);
mutex_unlock(&set->tag_list_lock);
}
/*
* It is the actual release handler for mq, but we do it from
* request queue's release handler for avoiding use-after-free
* and headache because q->mq_kobj shouldn't have been introduced,
* but we can't group ctx/kctx kobj without it.
*/
void blk_mq_release(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned int i;
blk_mq_sched_teardown(q);
/* hctx kobj stays in hctx */
queue_for_each_hw_ctx(q, hctx, i) {
if (!hctx)
continue;
kfree(hctx->ctxs);
kfree(hctx);
}
q->mq_map = NULL;
kfree(q->queue_hw_ctx);
/* ctx kobj stays in queue_ctx */
free_percpu(q->queue_ctx);
}
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
struct request_queue *uninit_q, *q;
uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
if (!uninit_q)
return ERR_PTR(-ENOMEM);
q = blk_mq_init_allocated_queue(set, uninit_q);
if (IS_ERR(q))
blk_cleanup_queue(uninit_q);
return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
struct request_queue *q)
{
int i, j;
struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
blk_mq_sysfs_unregister(q);
for (i = 0; i < set->nr_hw_queues; i++) {
int node;
if (hctxs[i])
continue;
node = blk_mq_hw_queue_to_node(q->mq_map, i);
hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
GFP_KERNEL, node);
if (!hctxs[i])
break;
if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
node)) {
kfree(hctxs[i]);
hctxs[i] = NULL;
break;
}
atomic_set(&hctxs[i]->nr_active, 0);
hctxs[i]->numa_node = node;
hctxs[i]->queue_num = i;
if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
free_cpumask_var(hctxs[i]->cpumask);
kfree(hctxs[i]);
hctxs[i] = NULL;
break;
}
blk_mq_hctx_kobj_init(hctxs[i]);
}
for (j = i; j < q->nr_hw_queues; j++) {
struct blk_mq_hw_ctx *hctx = hctxs[j];
if (hctx) {
if (hctx->tags)
blk_mq_free_map_and_requests(set, j);
blk_mq_exit_hctx(q, set, hctx, j);
free_cpumask_var(hctx->cpumask);
kobject_put(&hctx->kobj);
kfree(hctx->ctxs);
kfree(hctx);
hctxs[j] = NULL;
}
}
q->nr_hw_queues = i;
blk_mq_sysfs_register(q);
}
struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
struct request_queue *q)
{
/* mark the queue as mq asap */
q->mq_ops = set->ops;
q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
if (!q->queue_ctx)
goto err_exit;
q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
GFP_KERNEL, set->numa_node);
if (!q->queue_hw_ctx)
goto err_percpu;
q->mq_map = set->mq_map;
blk_mq_realloc_hw_ctxs(set, q);
if (!q->nr_hw_queues)
goto err_hctxs;
INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
q->nr_queues = nr_cpu_ids;
q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
if (!(set->flags & BLK_MQ_F_SG_MERGE))
q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
q->sg_reserved_size = INT_MAX;
INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
INIT_LIST_HEAD(&q->requeue_list);
spin_lock_init(&q->requeue_lock);
if (q->nr_hw_queues > 1)
blk_queue_make_request(q, blk_mq_make_request);
else
blk_queue_make_request(q, blk_sq_make_request);
/*
* Do this after blk_queue_make_request() overrides it...
*/
q->nr_requests = set->queue_depth;
/*
* Default to classic polling
*/
q->poll_nsec = -1;
if (set->ops->complete)
blk_queue_softirq_done(q, set->ops->complete);
blk_mq_init_cpu_queues(q, set->nr_hw_queues);
get_online_cpus();
mutex_lock(&all_q_mutex);
list_add_tail(&q->all_q_node, &all_q_list);
blk_mq_add_queue_tag_set(set, q);
blk_mq_map_swqueue(q, cpu_online_mask);
mutex_unlock(&all_q_mutex);
put_online_cpus();
if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
int ret;
ret = blk_mq_sched_init(q);
if (ret)
return ERR_PTR(ret);
}
return q;
err_hctxs:
kfree(q->queue_hw_ctx);
err_percpu:
free_percpu(q->queue_ctx);
err_exit:
q->mq_ops = NULL;
return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
void blk_mq_free_queue(struct request_queue *q)
{
struct blk_mq_tag_set *set = q->tag_set;
mutex_lock(&all_q_mutex);
list_del_init(&q->all_q_node);
mutex_unlock(&all_q_mutex);
wbt_exit(q);
blk_mq_del_queue_tag_set(q);
blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
blk_mq_free_hw_queues(q, set);
}
/* Basically redo blk_mq_init_queue with queue frozen */
static void blk_mq_queue_reinit(struct request_queue *q,
const struct cpumask *online_mask)
{
WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
blk_mq_sysfs_unregister(q);
/*
* redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
* we should change hctx numa_node according to new topology (this
* involves free and re-allocate memory, worthy doing?)
*/
blk_mq_map_swqueue(q, online_mask);
blk_mq_sysfs_register(q);
}
/*
* New online cpumask which is going to be set in this hotplug event.
* Declare this cpumasks as global as cpu-hotplug operation is invoked
* one-by-one and dynamically allocating this could result in a failure.
*/
static struct cpumask cpuhp_online_new;
static void blk_mq_queue_reinit_work(void)
{
struct request_queue *q;
mutex_lock(&all_q_mutex);
/*
* We need to freeze and reinit all existing queues. Freezing
* involves synchronous wait for an RCU grace period and doing it
* one by one may take a long time. Start freezing all queues in
* one swoop and then wait for the completions so that freezing can
* take place in parallel.
*/
list_for_each_entry(q, &all_q_list, all_q_node)
blk_mq_freeze_queue_start(q);
list_for_each_entry(q, &all_q_list, all_q_node)
blk_mq_freeze_queue_wait(q);
list_for_each_entry(q, &all_q_list, all_q_node)
blk_mq_queue_reinit(q, &cpuhp_online_new);
list_for_each_entry(q, &all_q_list, all_q_node)
blk_mq_unfreeze_queue(q);
mutex_unlock(&all_q_mutex);
}
static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
cpumask_copy(&cpuhp_online_new, cpu_online_mask);
blk_mq_queue_reinit_work();
return 0;
}
/*
* Before hotadded cpu starts handling requests, new mappings must be
* established. Otherwise, these requests in hw queue might never be
* dispatched.
*
* For example, there is a single hw queue (hctx) and two CPU queues (ctx0
* for CPU0, and ctx1 for CPU1).
*
* Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
* and set bit0 in pending bitmap as ctx1->index_hw is still zero.
*
* And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
* in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
* But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
* ignored.
*/
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
cpumask_copy(&cpuhp_online_new, cpu_online_mask);
cpumask_set_cpu(cpu, &cpuhp_online_new);
blk_mq_queue_reinit_work();
return 0;
}
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
int i;
for (i = 0; i < set->nr_hw_queues; i++)
if (!__blk_mq_alloc_rq_map(set, i))
goto out_unwind;
return 0;
out_unwind:
while (--i >= 0)
blk_mq_free_rq_map(set->tags[i]);
return -ENOMEM;
}
/*
* Allocate the request maps associated with this tag_set. Note that this
* may reduce the depth asked for, if memory is tight. set->queue_depth
* will be updated to reflect the allocated depth.
*/
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
unsigned int depth;
int err;
depth = set->queue_depth;
do {
err = __blk_mq_alloc_rq_maps(set);
if (!err)
break;
set->queue_depth >>= 1;
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
err = -ENOMEM;
break;
}
} while (set->queue_depth);
if (!set->queue_depth || err) {
pr_err("blk-mq: failed to allocate request map\n");
return -ENOMEM;
}
if (depth != set->queue_depth)
pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
depth, set->queue_depth);
return 0;
}
/*
* Alloc a tag set to be associated with one or more request queues.
* May fail with EINVAL for various error conditions. May adjust the
* requested depth down, if if it too large. In that case, the set
* value will be stored in set->queue_depth.
*/
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
int ret;
BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
if (!set->nr_hw_queues)
return -EINVAL;
if (!set->queue_depth)
return -EINVAL;
if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
return -EINVAL;
if (!set->ops->queue_rq)
return -EINVAL;
if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
pr_info("blk-mq: reduced tag depth to %u\n",
BLK_MQ_MAX_DEPTH);
set->queue_depth = BLK_MQ_MAX_DEPTH;
}
/*
* If a crashdump is active, then we are potentially in a very
* memory constrained environment. Limit us to 1 queue and
* 64 tags to prevent using too much memory.
*/
if (is_kdump_kernel()) {
set->nr_hw_queues = 1;
set->queue_depth = min(64U, set->queue_depth);
}
/*
* There is no use for more h/w queues than cpus.
*/
if (set->nr_hw_queues > nr_cpu_ids)
set->nr_hw_queues = nr_cpu_ids;
set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
GFP_KERNEL, set->numa_node);
if (!set->tags)
return -ENOMEM;
ret = -ENOMEM;
set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
GFP_KERNEL, set->numa_node);
if (!set->mq_map)
goto out_free_tags;
if (set->ops->map_queues)
ret = set->ops->map_queues(set);
else
ret = blk_mq_map_queues(set);
if (ret)
goto out_free_mq_map;
ret = blk_mq_alloc_rq_maps(set);
if (ret)
goto out_free_mq_map;
mutex_init(&set->tag_list_lock);
INIT_LIST_HEAD(&set->tag_list);
return 0;
out_free_mq_map:
kfree(set->mq_map);
set->mq_map = NULL;
out_free_tags:
kfree(set->tags);
set->tags = NULL;
return ret;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);
void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
int i;
for (i = 0; i < nr_cpu_ids; i++)
blk_mq_free_map_and_requests(set, i);
kfree(set->mq_map);
set->mq_map = NULL;
kfree(set->tags);
set->tags = NULL;
}
EXPORT_SYMBOL(blk_mq_free_tag_set);
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
struct blk_mq_tag_set *set = q->tag_set;
struct blk_mq_hw_ctx *hctx;
int i, ret;
if (!set)
return -EINVAL;
blk_mq_freeze_queue(q);
blk_mq_quiesce_queue(q);
ret = 0;
queue_for_each_hw_ctx(q, hctx, i) {
if (!hctx->tags)
continue;
/*
* If we're using an MQ scheduler, just update the scheduler
* queue depth. This is similar to what the old code would do.
*/
if (!hctx->sched_tags) {
ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
min(nr, set->queue_depth),
false);
} else {
ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
nr, true);
}
if (ret)
break;
}
if (!ret)
q->nr_requests = nr;
blk_mq_unfreeze_queue(q);
blk_mq_start_stopped_hw_queues(q, true);
return ret;
}
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
struct request_queue *q;
if (nr_hw_queues > nr_cpu_ids)
nr_hw_queues = nr_cpu_ids;
if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
return;
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_freeze_queue(q);
set->nr_hw_queues = nr_hw_queues;
list_for_each_entry(q, &set->tag_list, tag_set_list) {
blk_mq_realloc_hw_ctxs(set, q);
/*
* Manually set the make_request_fn as blk_queue_make_request
* resets a lot of the queue settings.
*/
if (q->nr_hw_queues > 1)
q->make_request_fn = blk_mq_make_request;
else
q->make_request_fn = blk_sq_make_request;
blk_mq_queue_reinit(q, cpu_online_mask);
}
list_for_each_entry(q, &set->tag_list, tag_set_list)
blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
struct blk_rq_stat stat[2];
unsigned long ret = 0;
/*
* If stats collection isn't on, don't sleep but turn it on for
* future users
*/
if (!blk_stat_enable(q))
return 0;
/*
* We don't have to do this once per IO, should optimize this
* to just use the current window of stats until it changes
*/
memset(&stat, 0, sizeof(stat));
blk_hctx_stat_get(hctx, stat);
/*
* As an optimistic guess, use half of the mean service time
* for this type of request. We can (and should) make this smarter.
* For instance, if the completion latencies are tight, we can
* get closer than just half the mean. This is especially
* important on devices where the completion latencies are longer
* than ~10 usec.
*/
if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
ret = (stat[BLK_STAT_READ].mean + 1) / 2;
else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
return ret;
}
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
struct request *rq)
{
struct hrtimer_sleeper hs;
enum hrtimer_mode mode;
unsigned int nsecs;
ktime_t kt;
if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
return false;
/*
* poll_nsec can be:
*
* -1: don't ever hybrid sleep
* 0: use half of prev avg
* >0: use this specific value
*/
if (q->poll_nsec == -1)
return false;
else if (q->poll_nsec > 0)
nsecs = q->poll_nsec;
else
nsecs = blk_mq_poll_nsecs(q, hctx, rq);
if (!nsecs)
return false;
set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
/*
* This will be replaced with the stats tracking code, using
* 'avg_completion_time / 2' as the pre-sleep target.
*/
kt = nsecs;
mode = HRTIMER_MODE_REL;
hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
hrtimer_set_expires(&hs.timer, kt);
hrtimer_init_sleeper(&hs, current);
do {
if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
break;
set_current_state(TASK_UNINTERRUPTIBLE);
hrtimer_start_expires(&hs.timer, mode);
if (hs.task)
io_schedule();
hrtimer_cancel(&hs.timer);
mode = HRTIMER_MODE_ABS;
} while (hs.task && !signal_pending(current));
__set_current_state(TASK_RUNNING);
destroy_hrtimer_on_stack(&hs.timer);
return true;
}
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
struct request_queue *q = hctx->queue;
long state;
/*
* If we sleep, have the caller restart the poll loop to reset
* the state. Like for the other success return cases, the
* caller is responsible for checking if the IO completed. If
* the IO isn't complete, we'll get called again and will go
* straight to the busy poll loop.
*/
if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
return true;
hctx->poll_considered++;
state = current->state;
while (!need_resched()) {
int ret;
hctx->poll_invoked++;
ret = q->mq_ops->poll(hctx, rq->tag);
if (ret > 0) {
hctx->poll_success++;
set_current_state(TASK_RUNNING);
return true;
}
if (signal_pending_state(state, current))
set_current_state(TASK_RUNNING);
if (current->state == TASK_RUNNING)
return true;
if (ret < 0)
break;
cpu_relax();
}
return false;
}
bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
struct blk_mq_hw_ctx *hctx;
struct blk_plug *plug;
struct request *rq;
if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
return false;
plug = current->plug;
if (plug)
blk_flush_plug_list(plug, false);
hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
if (!blk_qc_t_is_internal(cookie))
rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
else
rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);
void blk_mq_disable_hotplug(void)
{
mutex_lock(&all_q_mutex);
}
void blk_mq_enable_hotplug(void)
{
mutex_unlock(&all_q_mutex);
}
static int __init blk_mq_init(void)
{
cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
blk_mq_hctx_notify_dead);
cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
blk_mq_queue_reinit_prepare,
blk_mq_queue_reinit_dead);
return 0;
}
subsys_initcall(blk_mq_init);