linux/drivers/block/brd.c
Tejun Heo 3f289dcb4b block: make bdev_ops->rw_page() take a REQ_OP instead of bool
c11f0c0b5b ("block/mm: make bdev_ops->rw_page() take a bool for
read/write") replaced @op with boolean @is_write, which limited the
amount of information going into ->rw_page() and more importantly
page_endio(), which removed the need to expose block internals to mm.

Unfortunately, we want to track discards separately and @is_write
isn't enough information.  This patch updates bdev_ops->rw_page() to
take REQ_OP instead but leaves page_endio() to take bool @is_write.
This allows the block part of operations to have enough information
while not leaking it to mm.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Mike Christie <mchristi@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-18 08:44:14 -06:00

542 lines
13 KiB
C

/*
* Ram backed block device driver.
*
* Copyright (C) 2007 Nick Piggin
* Copyright (C) 2007 Novell Inc.
*
* Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
* of their respective owners.
*/
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/major.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <linux/radix-tree.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/uaccess.h>
#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
/*
* Each block ramdisk device has a radix_tree brd_pages of pages that stores
* the pages containing the block device's contents. A brd page's ->index is
* its offset in PAGE_SIZE units. This is similar to, but in no way connected
* with, the kernel's pagecache or buffer cache (which sit above our block
* device).
*/
struct brd_device {
int brd_number;
struct request_queue *brd_queue;
struct gendisk *brd_disk;
struct list_head brd_list;
/*
* Backing store of pages and lock to protect it. This is the contents
* of the block device.
*/
spinlock_t brd_lock;
struct radix_tree_root brd_pages;
};
/*
* Look up and return a brd's page for a given sector.
*/
static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
/*
* The page lifetime is protected by the fact that we have opened the
* device node -- brd pages will never be deleted under us, so we
* don't need any further locking or refcounting.
*
* This is strictly true for the radix-tree nodes as well (ie. we
* don't actually need the rcu_read_lock()), however that is not a
* documented feature of the radix-tree API so it is better to be
* safe here (we don't have total exclusion from radix tree updates
* here, only deletes).
*/
rcu_read_lock();
idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
page = radix_tree_lookup(&brd->brd_pages, idx);
rcu_read_unlock();
BUG_ON(page && page->index != idx);
return page;
}
/*
* Look up and return a brd's page for a given sector.
* If one does not exist, allocate an empty page, and insert that. Then
* return it.
*/
static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
{
pgoff_t idx;
struct page *page;
gfp_t gfp_flags;
page = brd_lookup_page(brd, sector);
if (page)
return page;
/*
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*
* Cannot support DAX and highmem, because our ->direct_access
* routine for DAX must return memory that is always addressable.
* If DAX was reworked to use pfns and kmap throughout, this
* restriction might be able to be lifted.
*/
gfp_flags = GFP_NOIO | __GFP_ZERO;
page = alloc_page(gfp_flags);
if (!page)
return NULL;
if (radix_tree_preload(GFP_NOIO)) {
__free_page(page);
return NULL;
}
spin_lock(&brd->brd_lock);
idx = sector >> PAGE_SECTORS_SHIFT;
page->index = idx;
if (radix_tree_insert(&brd->brd_pages, idx, page)) {
__free_page(page);
page = radix_tree_lookup(&brd->brd_pages, idx);
BUG_ON(!page);
BUG_ON(page->index != idx);
}
spin_unlock(&brd->brd_lock);
radix_tree_preload_end();
return page;
}
/*
* Free all backing store pages and radix tree. This must only be called when
* there are no other users of the device.
*/
#define FREE_BATCH 16
static void brd_free_pages(struct brd_device *brd)
{
unsigned long pos = 0;
struct page *pages[FREE_BATCH];
int nr_pages;
do {
int i;
nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
(void **)pages, pos, FREE_BATCH);
for (i = 0; i < nr_pages; i++) {
void *ret;
BUG_ON(pages[i]->index < pos);
pos = pages[i]->index;
ret = radix_tree_delete(&brd->brd_pages, pos);
BUG_ON(!ret || ret != pages[i]);
__free_page(pages[i]);
}
pos++;
/*
* This assumes radix_tree_gang_lookup always returns as
* many pages as possible. If the radix-tree code changes,
* so will this have to.
*/
} while (nr_pages == FREE_BATCH);
}
/*
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
*/
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
{
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
if (!brd_insert_page(brd, sector))
return -ENOSPC;
if (copy < n) {
sector += copy >> SECTOR_SHIFT;
if (!brd_insert_page(brd, sector))
return -ENOSPC;
}
return 0;
}
/*
* Copy n bytes from src to the brd starting at sector. Does not sleep.
*/
static void copy_to_brd(struct brd_device *brd, const void *src,
sector_t sector, size_t n)
{
struct page *page;
void *dst;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst + offset, src, copy);
kunmap_atomic(dst);
if (copy < n) {
src += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(dst);
}
}
/*
* Copy n bytes to dst from the brd starting at sector. Does not sleep.
*/
static void copy_from_brd(void *dst, struct brd_device *brd,
sector_t sector, size_t n)
{
struct page *page;
void *src;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src + offset, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
if (copy < n) {
dst += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
}
}
/*
* Process a single bvec of a bio.
*/
static int brd_do_bvec(struct brd_device *brd, struct page *page,
unsigned int len, unsigned int off, unsigned int op,
sector_t sector)
{
void *mem;
int err = 0;
if (op_is_write(op)) {
err = copy_to_brd_setup(brd, sector, len);
if (err)
goto out;
}
mem = kmap_atomic(page);
if (!op_is_write(op)) {
copy_from_brd(mem + off, brd, sector, len);
flush_dcache_page(page);
} else {
flush_dcache_page(page);
copy_to_brd(brd, mem + off, sector, len);
}
kunmap_atomic(mem);
out:
return err;
}
static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
{
struct brd_device *brd = bio->bi_disk->private_data;
struct bio_vec bvec;
sector_t sector;
struct bvec_iter iter;
sector = bio->bi_iter.bi_sector;
if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
goto io_error;
bio_for_each_segment(bvec, bio, iter) {
unsigned int len = bvec.bv_len;
int err;
err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
bio_op(bio), sector);
if (err)
goto io_error;
sector += len >> SECTOR_SHIFT;
}
bio_endio(bio);
return BLK_QC_T_NONE;
io_error:
bio_io_error(bio);
return BLK_QC_T_NONE;
}
static int brd_rw_page(struct block_device *bdev, sector_t sector,
struct page *page, unsigned int op)
{
struct brd_device *brd = bdev->bd_disk->private_data;
int err;
if (PageTransHuge(page))
return -ENOTSUPP;
err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
page_endio(page, op_is_write(op), err);
return err;
}
static const struct block_device_operations brd_fops = {
.owner = THIS_MODULE,
.rw_page = brd_rw_page,
};
/*
* And now the modules code and kernel interface.
*/
static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
module_param(rd_nr, int, 0444);
MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
module_param(rd_size, ulong, 0444);
MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
static int max_part = 1;
module_param(max_part, int, 0444);
MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
MODULE_ALIAS("rd");
#ifndef MODULE
/* Legacy boot options - nonmodular */
static int __init ramdisk_size(char *str)
{
rd_size = simple_strtol(str, NULL, 0);
return 1;
}
__setup("ramdisk_size=", ramdisk_size);
#endif
/*
* The device scheme is derived from loop.c. Keep them in synch where possible
* (should share code eventually).
*/
static LIST_HEAD(brd_devices);
static DEFINE_MUTEX(brd_devices_mutex);
static struct brd_device *brd_alloc(int i)
{
struct brd_device *brd;
struct gendisk *disk;
brd = kzalloc(sizeof(*brd), GFP_KERNEL);
if (!brd)
goto out;
brd->brd_number = i;
spin_lock_init(&brd->brd_lock);
INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
if (!brd->brd_queue)
goto out_free_dev;
blk_queue_make_request(brd->brd_queue, brd_make_request);
blk_queue_max_hw_sectors(brd->brd_queue, 1024);
/* This is so fdisk will align partitions on 4k, because of
* direct_access API needing 4k alignment, returning a PFN
* (This is only a problem on very small devices <= 4M,
* otherwise fdisk will align on 1M. Regardless this call
* is harmless)
*/
blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
disk = brd->brd_disk = alloc_disk(max_part);
if (!disk)
goto out_free_queue;
disk->major = RAMDISK_MAJOR;
disk->first_minor = i * max_part;
disk->fops = &brd_fops;
disk->private_data = brd;
disk->queue = brd->brd_queue;
disk->flags = GENHD_FL_EXT_DEVT;
sprintf(disk->disk_name, "ram%d", i);
set_capacity(disk, rd_size * 2);
disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
/* Tell the block layer that this is not a rotational device */
blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
return brd;
out_free_queue:
blk_cleanup_queue(brd->brd_queue);
out_free_dev:
kfree(brd);
out:
return NULL;
}
static void brd_free(struct brd_device *brd)
{
put_disk(brd->brd_disk);
blk_cleanup_queue(brd->brd_queue);
brd_free_pages(brd);
kfree(brd);
}
static struct brd_device *brd_init_one(int i, bool *new)
{
struct brd_device *brd;
*new = false;
list_for_each_entry(brd, &brd_devices, brd_list) {
if (brd->brd_number == i)
goto out;
}
brd = brd_alloc(i);
if (brd) {
add_disk(brd->brd_disk);
list_add_tail(&brd->brd_list, &brd_devices);
}
*new = true;
out:
return brd;
}
static void brd_del_one(struct brd_device *brd)
{
list_del(&brd->brd_list);
del_gendisk(brd->brd_disk);
brd_free(brd);
}
static struct kobject *brd_probe(dev_t dev, int *part, void *data)
{
struct brd_device *brd;
struct kobject *kobj;
bool new;
mutex_lock(&brd_devices_mutex);
brd = brd_init_one(MINOR(dev) / max_part, &new);
kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
mutex_unlock(&brd_devices_mutex);
if (new)
*part = 0;
return kobj;
}
static int __init brd_init(void)
{
struct brd_device *brd, *next;
int i;
/*
* brd module now has a feature to instantiate underlying device
* structure on-demand, provided that there is an access dev node.
*
* (1) if rd_nr is specified, create that many upfront. else
* it defaults to CONFIG_BLK_DEV_RAM_COUNT
* (2) User can further extend brd devices by create dev node themselves
* and have kernel automatically instantiate actual device
* on-demand. Example:
* mknod /path/devnod_name b 1 X # 1 is the rd major
* fdisk -l /path/devnod_name
* If (X / max_part) was not already created it will be created
* dynamically.
*/
if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
return -EIO;
if (unlikely(!max_part))
max_part = 1;
for (i = 0; i < rd_nr; i++) {
brd = brd_alloc(i);
if (!brd)
goto out_free;
list_add_tail(&brd->brd_list, &brd_devices);
}
/* point of no return */
list_for_each_entry(brd, &brd_devices, brd_list)
add_disk(brd->brd_disk);
blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
THIS_MODULE, brd_probe, NULL, NULL);
pr_info("brd: module loaded\n");
return 0;
out_free:
list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
list_del(&brd->brd_list);
brd_free(brd);
}
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
pr_info("brd: module NOT loaded !!!\n");
return -ENOMEM;
}
static void __exit brd_exit(void)
{
struct brd_device *brd, *next;
list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
brd_del_one(brd);
blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
pr_info("brd: module unloaded\n");
}
module_init(brd_init);
module_exit(brd_exit);