forked from Minki/linux
306 lines
9.0 KiB
C
306 lines
9.0 KiB
C
/*
|
|
* PowerPC64 SLB support.
|
|
*
|
|
* Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
|
|
* Based on earlier code writteh by:
|
|
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
|
|
* Copyright (c) 2001 Dave Engebretsen
|
|
* Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/firmware.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/udbg.h>
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) udbg_printf(fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
extern void slb_allocate_realmode(unsigned long ea);
|
|
extern void slb_allocate_user(unsigned long ea);
|
|
|
|
static void slb_allocate(unsigned long ea)
|
|
{
|
|
/* Currently, we do real mode for all SLBs including user, but
|
|
* that will change if we bring back dynamic VSIDs
|
|
*/
|
|
slb_allocate_realmode(ea);
|
|
}
|
|
|
|
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
|
|
unsigned long slot)
|
|
{
|
|
unsigned long mask;
|
|
|
|
mask = (ssize == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T;
|
|
return (ea & mask) | SLB_ESID_V | slot;
|
|
}
|
|
|
|
#define slb_vsid_shift(ssize) \
|
|
((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
|
|
|
|
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
|
|
unsigned long flags)
|
|
{
|
|
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
|
|
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
|
|
}
|
|
|
|
static inline void slb_shadow_update(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
unsigned long entry)
|
|
{
|
|
/*
|
|
* Clear the ESID first so the entry is not valid while we are
|
|
* updating it. No write barriers are needed here, provided
|
|
* we only update the current CPU's SLB shadow buffer.
|
|
*/
|
|
get_slb_shadow()->save_area[entry].esid = 0;
|
|
get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
|
|
get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
|
|
}
|
|
|
|
static inline void slb_shadow_clear(unsigned long entry)
|
|
{
|
|
get_slb_shadow()->save_area[entry].esid = 0;
|
|
}
|
|
|
|
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
|
|
unsigned long flags,
|
|
unsigned long entry)
|
|
{
|
|
/*
|
|
* Updating the shadow buffer before writing the SLB ensures
|
|
* we don't get a stale entry here if we get preempted by PHYP
|
|
* between these two statements.
|
|
*/
|
|
slb_shadow_update(ea, ssize, flags, entry);
|
|
|
|
asm volatile("slbmte %0,%1" :
|
|
: "r" (mk_vsid_data(ea, ssize, flags)),
|
|
"r" (mk_esid_data(ea, ssize, entry))
|
|
: "memory" );
|
|
}
|
|
|
|
void slb_flush_and_rebolt(void)
|
|
{
|
|
/* If you change this make sure you change SLB_NUM_BOLTED
|
|
* appropriately too. */
|
|
unsigned long linear_llp, vmalloc_llp, lflags, vflags;
|
|
unsigned long ksp_esid_data, ksp_vsid_data;
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
|
|
|
ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
|
|
if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
|
|
ksp_esid_data &= ~SLB_ESID_V;
|
|
ksp_vsid_data = 0;
|
|
slb_shadow_clear(2);
|
|
} else {
|
|
/* Update stack entry; others don't change */
|
|
slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
|
|
ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
|
|
}
|
|
|
|
/* We need to do this all in asm, so we're sure we don't touch
|
|
* the stack between the slbia and rebolting it. */
|
|
asm volatile("isync\n"
|
|
"slbia\n"
|
|
/* Slot 1 - first VMALLOC segment */
|
|
"slbmte %0,%1\n"
|
|
/* Slot 2 - kernel stack */
|
|
"slbmte %2,%3\n"
|
|
"isync"
|
|
:: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
|
|
"r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
|
|
"r"(ksp_vsid_data),
|
|
"r"(ksp_esid_data)
|
|
: "memory");
|
|
}
|
|
|
|
void slb_vmalloc_update(void)
|
|
{
|
|
unsigned long vflags;
|
|
|
|
vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
|
|
slb_flush_and_rebolt();
|
|
}
|
|
|
|
/* Helper function to compare esids. There are four cases to handle.
|
|
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
|
|
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
|
|
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
|
|
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
|
|
*/
|
|
static inline int esids_match(unsigned long addr1, unsigned long addr2)
|
|
{
|
|
int esid_1t_count;
|
|
|
|
/* System is not 1T segment size capable. */
|
|
if (!cpu_has_feature(CPU_FTR_1T_SEGMENT))
|
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
|
|
|
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
|
|
((addr2 >> SID_SHIFT_1T) != 0));
|
|
|
|
/* both addresses are < 1T */
|
|
if (esid_1t_count == 0)
|
|
return (GET_ESID(addr1) == GET_ESID(addr2));
|
|
|
|
/* One address < 1T, the other > 1T. Not a match */
|
|
if (esid_1t_count == 1)
|
|
return 0;
|
|
|
|
/* Both addresses are > 1T. */
|
|
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
|
|
}
|
|
|
|
/* Flush all user entries from the segment table of the current processor. */
|
|
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
unsigned long offset = get_paca()->slb_cache_ptr;
|
|
unsigned long slbie_data = 0;
|
|
unsigned long pc = KSTK_EIP(tsk);
|
|
unsigned long stack = KSTK_ESP(tsk);
|
|
unsigned long unmapped_base;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_NO_SLBIE_B) &&
|
|
offset <= SLB_CACHE_ENTRIES) {
|
|
int i;
|
|
asm volatile("isync" : : : "memory");
|
|
for (i = 0; i < offset; i++) {
|
|
slbie_data = (unsigned long)get_paca()->slb_cache[i]
|
|
<< SID_SHIFT; /* EA */
|
|
slbie_data |= user_segment_size(slbie_data)
|
|
<< SLBIE_SSIZE_SHIFT;
|
|
slbie_data |= SLBIE_C; /* C set for user addresses */
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
}
|
|
asm volatile("isync" : : : "memory");
|
|
} else {
|
|
slb_flush_and_rebolt();
|
|
}
|
|
|
|
/* Workaround POWER5 < DD2.1 issue */
|
|
if (offset == 1 || offset > SLB_CACHE_ENTRIES)
|
|
asm volatile("slbie %0" : : "r" (slbie_data));
|
|
|
|
get_paca()->slb_cache_ptr = 0;
|
|
get_paca()->context = mm->context;
|
|
|
|
/*
|
|
* preload some userspace segments into the SLB.
|
|
*/
|
|
if (test_tsk_thread_flag(tsk, TIF_32BIT))
|
|
unmapped_base = TASK_UNMAPPED_BASE_USER32;
|
|
else
|
|
unmapped_base = TASK_UNMAPPED_BASE_USER64;
|
|
|
|
if (is_kernel_addr(pc))
|
|
return;
|
|
slb_allocate(pc);
|
|
|
|
if (esids_match(pc,stack))
|
|
return;
|
|
|
|
if (is_kernel_addr(stack))
|
|
return;
|
|
slb_allocate(stack);
|
|
|
|
if (esids_match(pc,unmapped_base) || esids_match(stack,unmapped_base))
|
|
return;
|
|
|
|
if (is_kernel_addr(unmapped_base))
|
|
return;
|
|
slb_allocate(unmapped_base);
|
|
}
|
|
|
|
static inline void patch_slb_encoding(unsigned int *insn_addr,
|
|
unsigned int immed)
|
|
{
|
|
/* Assume the instruction had a "0" immediate value, just
|
|
* "or" in the new value
|
|
*/
|
|
*insn_addr |= immed;
|
|
flush_icache_range((unsigned long)insn_addr, 4+
|
|
(unsigned long)insn_addr);
|
|
}
|
|
|
|
void slb_initialize(void)
|
|
{
|
|
unsigned long linear_llp, vmalloc_llp, io_llp;
|
|
unsigned long lflags, vflags;
|
|
static int slb_encoding_inited;
|
|
extern unsigned int *slb_miss_kernel_load_linear;
|
|
extern unsigned int *slb_miss_kernel_load_io;
|
|
extern unsigned int *slb_compare_rr_to_size;
|
|
|
|
/* Prepare our SLB miss handler based on our page size */
|
|
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
|
|
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
|
|
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
|
|
|
|
if (!slb_encoding_inited) {
|
|
slb_encoding_inited = 1;
|
|
patch_slb_encoding(slb_miss_kernel_load_linear,
|
|
SLB_VSID_KERNEL | linear_llp);
|
|
patch_slb_encoding(slb_miss_kernel_load_io,
|
|
SLB_VSID_KERNEL | io_llp);
|
|
patch_slb_encoding(slb_compare_rr_to_size,
|
|
mmu_slb_size);
|
|
|
|
DBG("SLB: linear LLP = %04x\n", linear_llp);
|
|
DBG("SLB: io LLP = %04x\n", io_llp);
|
|
}
|
|
|
|
get_paca()->stab_rr = SLB_NUM_BOLTED;
|
|
|
|
/* On iSeries the bolted entries have already been set up by
|
|
* the hypervisor from the lparMap data in head.S */
|
|
if (firmware_has_feature(FW_FEATURE_ISERIES))
|
|
return;
|
|
|
|
lflags = SLB_VSID_KERNEL | linear_llp;
|
|
vflags = SLB_VSID_KERNEL | vmalloc_llp;
|
|
|
|
/* Invalidate the entire SLB (even slot 0) & all the ERATS */
|
|
asm volatile("isync":::"memory");
|
|
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
|
|
asm volatile("isync; slbia; isync":::"memory");
|
|
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
|
|
|
|
create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
|
|
|
|
slb_shadow_clear(2);
|
|
|
|
/* We don't bolt the stack for the time being - we're in boot,
|
|
* so the stack is in the bolted segment. By the time it goes
|
|
* elsewhere, we'll call _switch() which will bolt in the new
|
|
* one. */
|
|
asm volatile("isync":::"memory");
|
|
}
|