Allow propagating ethtool::rxnfc programming to the CPU/management port such that it is possible for such a CPU to perform e.g: Wake-on-LAN using filters configured by the switch. We need a tiny bit of cooperation between the switch drivers which is able to do the full flow matching, whereas the CPU/management port might not. The CPU/management driver needs to return -EOPNOTSUPP to indicate an non critical error, any other error code otherwise. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
		
			
				
	
	
		
			1305 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1305 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Broadcom Starfighter 2 DSA switch CFP support
 | 
						|
 *
 | 
						|
 * Copyright (C) 2016, Broadcom
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/ethtool.h>
 | 
						|
#include <linux/if_ether.h>
 | 
						|
#include <linux/in.h>
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <net/dsa.h>
 | 
						|
#include <linux/bitmap.h>
 | 
						|
 | 
						|
#include "bcm_sf2.h"
 | 
						|
#include "bcm_sf2_regs.h"
 | 
						|
 | 
						|
struct cfp_udf_slice_layout {
 | 
						|
	u8 slices[UDFS_PER_SLICE];
 | 
						|
	u32 mask_value;
 | 
						|
	u32 base_offset;
 | 
						|
};
 | 
						|
 | 
						|
struct cfp_udf_layout {
 | 
						|
	struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
 | 
						|
};
 | 
						|
 | 
						|
static const u8 zero_slice[UDFS_PER_SLICE] = { };
 | 
						|
 | 
						|
/* UDF slices layout for a TCPv4/UDPv4 specification */
 | 
						|
static const struct cfp_udf_layout udf_tcpip4_layout = {
 | 
						|
	.udfs = {
 | 
						|
		[1] = {
 | 
						|
			.slices = {
 | 
						|
				/* End of L2, byte offset 12, src IP[0:15] */
 | 
						|
				CFG_UDF_EOL2 | 6,
 | 
						|
				/* End of L2, byte offset 14, src IP[16:31] */
 | 
						|
				CFG_UDF_EOL2 | 7,
 | 
						|
				/* End of L2, byte offset 16, dst IP[0:15] */
 | 
						|
				CFG_UDF_EOL2 | 8,
 | 
						|
				/* End of L2, byte offset 18, dst IP[16:31] */
 | 
						|
				CFG_UDF_EOL2 | 9,
 | 
						|
				/* End of L3, byte offset 0, src port */
 | 
						|
				CFG_UDF_EOL3 | 0,
 | 
						|
				/* End of L3, byte offset 2, dst port */
 | 
						|
				CFG_UDF_EOL3 | 1,
 | 
						|
				0, 0, 0
 | 
						|
			},
 | 
						|
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 | 
						|
			.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
 | 
						|
		},
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
/* UDF slices layout for a TCPv6/UDPv6 specification */
 | 
						|
static const struct cfp_udf_layout udf_tcpip6_layout = {
 | 
						|
	.udfs = {
 | 
						|
		[0] = {
 | 
						|
			.slices = {
 | 
						|
				/* End of L2, byte offset 8, src IP[0:15] */
 | 
						|
				CFG_UDF_EOL2 | 4,
 | 
						|
				/* End of L2, byte offset 10, src IP[16:31] */
 | 
						|
				CFG_UDF_EOL2 | 5,
 | 
						|
				/* End of L2, byte offset 12, src IP[32:47] */
 | 
						|
				CFG_UDF_EOL2 | 6,
 | 
						|
				/* End of L2, byte offset 14, src IP[48:63] */
 | 
						|
				CFG_UDF_EOL2 | 7,
 | 
						|
				/* End of L2, byte offset 16, src IP[64:79] */
 | 
						|
				CFG_UDF_EOL2 | 8,
 | 
						|
				/* End of L2, byte offset 18, src IP[80:95] */
 | 
						|
				CFG_UDF_EOL2 | 9,
 | 
						|
				/* End of L2, byte offset 20, src IP[96:111] */
 | 
						|
				CFG_UDF_EOL2 | 10,
 | 
						|
				/* End of L2, byte offset 22, src IP[112:127] */
 | 
						|
				CFG_UDF_EOL2 | 11,
 | 
						|
				/* End of L3, byte offset 0, src port */
 | 
						|
				CFG_UDF_EOL3 | 0,
 | 
						|
			},
 | 
						|
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 | 
						|
			.base_offset = CORE_UDF_0_B_0_8_PORT_0,
 | 
						|
		},
 | 
						|
		[3] = {
 | 
						|
			.slices = {
 | 
						|
				/* End of L2, byte offset 24, dst IP[0:15] */
 | 
						|
				CFG_UDF_EOL2 | 12,
 | 
						|
				/* End of L2, byte offset 26, dst IP[16:31] */
 | 
						|
				CFG_UDF_EOL2 | 13,
 | 
						|
				/* End of L2, byte offset 28, dst IP[32:47] */
 | 
						|
				CFG_UDF_EOL2 | 14,
 | 
						|
				/* End of L2, byte offset 30, dst IP[48:63] */
 | 
						|
				CFG_UDF_EOL2 | 15,
 | 
						|
				/* End of L2, byte offset 32, dst IP[64:79] */
 | 
						|
				CFG_UDF_EOL2 | 16,
 | 
						|
				/* End of L2, byte offset 34, dst IP[80:95] */
 | 
						|
				CFG_UDF_EOL2 | 17,
 | 
						|
				/* End of L2, byte offset 36, dst IP[96:111] */
 | 
						|
				CFG_UDF_EOL2 | 18,
 | 
						|
				/* End of L2, byte offset 38, dst IP[112:127] */
 | 
						|
				CFG_UDF_EOL2 | 19,
 | 
						|
				/* End of L3, byte offset 2, dst port */
 | 
						|
				CFG_UDF_EOL3 | 1,
 | 
						|
			},
 | 
						|
			.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 | 
						|
			.base_offset = CORE_UDF_0_D_0_11_PORT_0,
 | 
						|
		},
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 | 
						|
{
 | 
						|
	unsigned int i, count = 0;
 | 
						|
 | 
						|
	for (i = 0; i < UDFS_PER_SLICE; i++) {
 | 
						|
		if (layout[i] != 0)
 | 
						|
			count++;
 | 
						|
	}
 | 
						|
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static inline u32 udf_upper_bits(unsigned int num_udf)
 | 
						|
{
 | 
						|
	return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 | 
						|
}
 | 
						|
 | 
						|
static inline u32 udf_lower_bits(unsigned int num_udf)
 | 
						|
{
 | 
						|
	return (u8)GENMASK(num_udf - 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 | 
						|
					     unsigned int start)
 | 
						|
{
 | 
						|
	const struct cfp_udf_slice_layout *slice_layout;
 | 
						|
	unsigned int slice_idx;
 | 
						|
 | 
						|
	for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 | 
						|
		slice_layout = &l->udfs[slice_idx];
 | 
						|
		if (memcmp(slice_layout->slices, zero_slice,
 | 
						|
			   sizeof(zero_slice)))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return slice_idx;
 | 
						|
}
 | 
						|
 | 
						|
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 | 
						|
				const struct cfp_udf_layout *layout,
 | 
						|
				unsigned int slice_num)
 | 
						|
{
 | 
						|
	u32 offset = layout->udfs[slice_num].base_offset;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < UDFS_PER_SLICE; i++)
 | 
						|
		core_writel(priv, layout->udfs[slice_num].slices[i],
 | 
						|
			    offset + i * 4);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 | 
						|
{
 | 
						|
	unsigned int timeout = 1000;
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_CFP_ACC);
 | 
						|
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 | 
						|
	reg |= OP_STR_DONE | op;
 | 
						|
	core_writel(priv, reg, CORE_CFP_ACC);
 | 
						|
 | 
						|
	do {
 | 
						|
		reg = core_readl(priv, CORE_CFP_ACC);
 | 
						|
		if (!(reg & OP_STR_DONE))
 | 
						|
			break;
 | 
						|
 | 
						|
		cpu_relax();
 | 
						|
	} while (timeout--);
 | 
						|
 | 
						|
	if (!timeout)
 | 
						|
		return -ETIMEDOUT;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 | 
						|
					     unsigned int addr)
 | 
						|
{
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	WARN_ON(addr >= priv->num_cfp_rules);
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_CFP_ACC);
 | 
						|
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 | 
						|
	reg |= addr << XCESS_ADDR_SHIFT;
 | 
						|
	core_writel(priv, reg, CORE_CFP_ACC);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 | 
						|
{
 | 
						|
	/* Entry #0 is reserved */
 | 
						|
	return priv->num_cfp_rules - 1;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 | 
						|
				   unsigned int rule_index,
 | 
						|
				   unsigned int port_num,
 | 
						|
				   unsigned int queue_num,
 | 
						|
				   bool fwd_map_change)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	/* Replace ARL derived destination with DST_MAP derived, define
 | 
						|
	 * which port and queue this should be forwarded to.
 | 
						|
	 */
 | 
						|
	if (fwd_map_change)
 | 
						|
		reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 | 
						|
		      BIT(port_num + DST_MAP_IB_SHIFT) |
 | 
						|
		      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 | 
						|
	else
 | 
						|
		reg = 0;
 | 
						|
 | 
						|
	core_writel(priv, reg, CORE_ACT_POL_DATA0);
 | 
						|
 | 
						|
	/* Set classification ID that needs to be put in Broadcom tag */
 | 
						|
	core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 | 
						|
 | 
						|
	core_writel(priv, 0, CORE_ACT_POL_DATA2);
 | 
						|
 | 
						|
	/* Configure policer RAM now */
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("Policer entry at %d failed\n", rule_index);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Disable the policer */
 | 
						|
	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 | 
						|
 | 
						|
	/* Now the rate meter */
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("Meter entry at %d failed\n", rule_index);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 | 
						|
				   struct ethtool_tcpip4_spec *v4_spec,
 | 
						|
				   unsigned int slice_num,
 | 
						|
				   bool mask)
 | 
						|
{
 | 
						|
	u32 reg, offset;
 | 
						|
 | 
						|
	/* C-Tag		[31:24]
 | 
						|
	 * UDF_n_A8		[23:8]
 | 
						|
	 * UDF_n_A7		[7:0]
 | 
						|
	 */
 | 
						|
	reg = 0;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(4);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(4);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
 | 
						|
	/* UDF_n_A7		[31:24]
 | 
						|
	 * UDF_n_A6		[23:8]
 | 
						|
	 * UDF_n_A5		[7:0]
 | 
						|
	 */
 | 
						|
	reg = be16_to_cpu(v4_spec->pdst) >> 8;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(3);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(3);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
 | 
						|
	/* UDF_n_A5		[31:24]
 | 
						|
	 * UDF_n_A4		[23:8]
 | 
						|
	 * UDF_n_A3		[7:0]
 | 
						|
	 */
 | 
						|
	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
 | 
						|
	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
 | 
						|
	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(2);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(2);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
 | 
						|
	/* UDF_n_A3		[31:24]
 | 
						|
	 * UDF_n_A2		[23:8]
 | 
						|
	 * UDF_n_A1		[7:0]
 | 
						|
	 */
 | 
						|
	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
 | 
						|
	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
 | 
						|
	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(1);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(1);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
 | 
						|
	/* UDF_n_A1		[31:24]
 | 
						|
	 * UDF_n_A0		[23:8]
 | 
						|
	 * Reserved		[7:4]
 | 
						|
	 * Slice ID		[3:2]
 | 
						|
	 * Slice valid		[1:0]
 | 
						|
	 */
 | 
						|
	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
 | 
						|
	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
 | 
						|
	      SLICE_NUM(slice_num) | SLICE_VALID;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(0);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(0);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 | 
						|
				     unsigned int port_num,
 | 
						|
				     unsigned int queue_num,
 | 
						|
				     struct ethtool_rx_flow_spec *fs)
 | 
						|
{
 | 
						|
	struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
 | 
						|
	const struct cfp_udf_layout *layout;
 | 
						|
	unsigned int slice_num, rule_index;
 | 
						|
	u8 ip_proto, ip_frag;
 | 
						|
	u8 num_udf;
 | 
						|
	u32 reg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	switch (fs->flow_type & ~FLOW_EXT) {
 | 
						|
	case TCP_V4_FLOW:
 | 
						|
		ip_proto = IPPROTO_TCP;
 | 
						|
		v4_spec = &fs->h_u.tcp_ip4_spec;
 | 
						|
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 | 
						|
		break;
 | 
						|
	case UDP_V4_FLOW:
 | 
						|
		ip_proto = IPPROTO_UDP;
 | 
						|
		v4_spec = &fs->h_u.udp_ip4_spec;
 | 
						|
		v4_m_spec = &fs->m_u.udp_ip4_spec;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 | 
						|
 | 
						|
	/* Locate the first rule available */
 | 
						|
	if (fs->location == RX_CLS_LOC_ANY)
 | 
						|
		rule_index = find_first_zero_bit(priv->cfp.used,
 | 
						|
						 priv->num_cfp_rules);
 | 
						|
	else
 | 
						|
		rule_index = fs->location;
 | 
						|
 | 
						|
	if (rule_index > bcm_sf2_cfp_rule_size(priv))
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	layout = &udf_tcpip4_layout;
 | 
						|
	/* We only use one UDF slice for now */
 | 
						|
	slice_num = bcm_sf2_get_slice_number(layout, 0);
 | 
						|
	if (slice_num == UDF_NUM_SLICES)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 | 
						|
 | 
						|
	/* Apply the UDF layout for this filter */
 | 
						|
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 | 
						|
 | 
						|
	/* Apply to all packets received through this port */
 | 
						|
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 | 
						|
 | 
						|
	/* Source port map match */
 | 
						|
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 | 
						|
 | 
						|
	/* S-Tag status		[31:30]
 | 
						|
	 * C-Tag status		[29:28]
 | 
						|
	 * L2 framing		[27:26]
 | 
						|
	 * L3 framing		[25:24]
 | 
						|
	 * IP ToS		[23:16]
 | 
						|
	 * IP proto		[15:08]
 | 
						|
	 * IP Fragm		[7]
 | 
						|
	 * Non 1st frag		[6]
 | 
						|
	 * IP Authen		[5]
 | 
						|
	 * TTL range		[4:3]
 | 
						|
	 * PPPoE session	[2]
 | 
						|
	 * Reserved		[1]
 | 
						|
	 * UDF_Valid[8]		[0]
 | 
						|
	 */
 | 
						|
	core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
 | 
						|
		    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 | 
						|
		    udf_upper_bits(num_udf),
 | 
						|
		    CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	/* Mask with the specific layout for IPv4 packets */
 | 
						|
	core_writel(priv, layout->udfs[slice_num].mask_value |
 | 
						|
		    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 | 
						|
 | 
						|
	/* UDF_Valid[7:0]	[31:24]
 | 
						|
	 * S-Tag		[23:8]
 | 
						|
	 * C-Tag		[7:0]
 | 
						|
	 */
 | 
						|
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 | 
						|
 | 
						|
	/* Mask all but valid UDFs */
 | 
						|
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 | 
						|
 | 
						|
	/* Program the match and the mask */
 | 
						|
	bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
 | 
						|
	bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
 | 
						|
 | 
						|
	/* Insert into TCAM now */
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("TCAM entry at addr %d failed\n", rule_index);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Insert into Action and policer RAMs now */
 | 
						|
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
 | 
						|
				      queue_num, true);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Turn on CFP for this rule now */
 | 
						|
	reg = core_readl(priv, CORE_CFP_CTL_REG);
 | 
						|
	reg |= BIT(port);
 | 
						|
	core_writel(priv, reg, CORE_CFP_CTL_REG);
 | 
						|
 | 
						|
	/* Flag the rule as being used and return it */
 | 
						|
	set_bit(rule_index, priv->cfp.used);
 | 
						|
	set_bit(rule_index, priv->cfp.unique);
 | 
						|
	fs->location = rule_index;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 | 
						|
				   const __be32 *ip6_addr, const __be16 port,
 | 
						|
				   unsigned int slice_num,
 | 
						|
				   bool mask)
 | 
						|
{
 | 
						|
	u32 reg, tmp, val, offset;
 | 
						|
 | 
						|
	/* C-Tag		[31:24]
 | 
						|
	 * UDF_n_B8		[23:8]	(port)
 | 
						|
	 * UDF_n_B7 (upper)	[7:0]	(addr[15:8])
 | 
						|
	 */
 | 
						|
	reg = be32_to_cpu(ip6_addr[3]);
 | 
						|
	val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(4);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(4);
 | 
						|
	core_writel(priv, val, offset);
 | 
						|
 | 
						|
	/* UDF_n_B7 (lower)	[31:24]	(addr[7:0])
 | 
						|
	 * UDF_n_B6		[23:8] (addr[31:16])
 | 
						|
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 | 
						|
	 */
 | 
						|
	tmp = be32_to_cpu(ip6_addr[2]);
 | 
						|
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 | 
						|
	      ((tmp >> 8) & 0xff);
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(3);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(3);
 | 
						|
	core_writel(priv, val, offset);
 | 
						|
 | 
						|
	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 | 
						|
	 * UDF_n_B4		[23:8] (addr[63:48])
 | 
						|
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 | 
						|
	 */
 | 
						|
	reg = be32_to_cpu(ip6_addr[1]);
 | 
						|
	val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 | 
						|
	      ((reg >> 8) & 0xff);
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(2);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(2);
 | 
						|
	core_writel(priv, val, offset);
 | 
						|
 | 
						|
	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 | 
						|
	 * UDF_n_B2		[23:8] (addr[95:80])
 | 
						|
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 | 
						|
	 */
 | 
						|
	tmp = be32_to_cpu(ip6_addr[0]);
 | 
						|
	val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 | 
						|
	      ((tmp >> 8) & 0xff);
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(1);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(1);
 | 
						|
	core_writel(priv, val, offset);
 | 
						|
 | 
						|
	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 | 
						|
	 * UDF_n_B0		[23:8] (addr[127:112])
 | 
						|
	 * Reserved		[7:4]
 | 
						|
	 * Slice ID		[3:2]
 | 
						|
	 * Slice valid		[1:0]
 | 
						|
	 */
 | 
						|
	reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 | 
						|
	       SLICE_NUM(slice_num) | SLICE_VALID;
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(0);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(0);
 | 
						|
	core_writel(priv, reg, offset);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 | 
						|
				     unsigned int port_num,
 | 
						|
				     unsigned int queue_num,
 | 
						|
				     struct ethtool_rx_flow_spec *fs)
 | 
						|
{
 | 
						|
	struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
 | 
						|
	unsigned int slice_num, rule_index[2];
 | 
						|
	const struct cfp_udf_layout *layout;
 | 
						|
	u8 ip_proto, ip_frag;
 | 
						|
	int ret = 0;
 | 
						|
	u8 num_udf;
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	switch (fs->flow_type & ~FLOW_EXT) {
 | 
						|
	case TCP_V6_FLOW:
 | 
						|
		ip_proto = IPPROTO_TCP;
 | 
						|
		v6_spec = &fs->h_u.tcp_ip6_spec;
 | 
						|
		v6_m_spec = &fs->m_u.tcp_ip6_spec;
 | 
						|
		break;
 | 
						|
	case UDP_V6_FLOW:
 | 
						|
		ip_proto = IPPROTO_UDP;
 | 
						|
		v6_spec = &fs->h_u.udp_ip6_spec;
 | 
						|
		v6_m_spec = &fs->m_u.udp_ip6_spec;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ip_frag = be32_to_cpu(fs->m_ext.data[0]);
 | 
						|
 | 
						|
	layout = &udf_tcpip6_layout;
 | 
						|
	slice_num = bcm_sf2_get_slice_number(layout, 0);
 | 
						|
	if (slice_num == UDF_NUM_SLICES)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 | 
						|
 | 
						|
	/* Negotiate two indexes, one for the second half which we are chained
 | 
						|
	 * from, which is what we will return to user-space, and a second one
 | 
						|
	 * which is used to store its first half. That first half does not
 | 
						|
	 * allow any choice of placement, so it just needs to find the next
 | 
						|
	 * available bit. We return the second half as fs->location because
 | 
						|
	 * that helps with the rule lookup later on since the second half is
 | 
						|
	 * chained from its first half, we can easily identify IPv6 CFP rules
 | 
						|
	 * by looking whether they carry a CHAIN_ID.
 | 
						|
	 *
 | 
						|
	 * We also want the second half to have a lower rule_index than its
 | 
						|
	 * first half because the HW search is by incrementing addresses.
 | 
						|
	 */
 | 
						|
	if (fs->location == RX_CLS_LOC_ANY)
 | 
						|
		rule_index[1] = find_first_zero_bit(priv->cfp.used,
 | 
						|
						    priv->num_cfp_rules);
 | 
						|
	else
 | 
						|
		rule_index[1] = fs->location;
 | 
						|
	if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	/* Flag it as used (cleared on error path) such that we can immediately
 | 
						|
	 * obtain a second one to chain from.
 | 
						|
	 */
 | 
						|
	set_bit(rule_index[1], priv->cfp.used);
 | 
						|
 | 
						|
	rule_index[0] = find_first_zero_bit(priv->cfp.used,
 | 
						|
					    priv->num_cfp_rules);
 | 
						|
	if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 | 
						|
		ret = -ENOSPC;
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Apply the UDF layout for this filter */
 | 
						|
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 | 
						|
 | 
						|
	/* Apply to all packets received through this port */
 | 
						|
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 | 
						|
 | 
						|
	/* Source port map match */
 | 
						|
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 | 
						|
 | 
						|
	/* S-Tag status		[31:30]
 | 
						|
	 * C-Tag status		[29:28]
 | 
						|
	 * L2 framing		[27:26]
 | 
						|
	 * L3 framing		[25:24]
 | 
						|
	 * IP ToS		[23:16]
 | 
						|
	 * IP proto		[15:08]
 | 
						|
	 * IP Fragm		[7]
 | 
						|
	 * Non 1st frag		[6]
 | 
						|
	 * IP Authen		[5]
 | 
						|
	 * TTL range		[4:3]
 | 
						|
	 * PPPoE session	[2]
 | 
						|
	 * Reserved		[1]
 | 
						|
	 * UDF_Valid[8]		[0]
 | 
						|
	 */
 | 
						|
	reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 | 
						|
		ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 | 
						|
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	/* Mask with the specific layout for IPv6 packets including
 | 
						|
	 * UDF_Valid[8]
 | 
						|
	 */
 | 
						|
	reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 | 
						|
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 | 
						|
 | 
						|
	/* UDF_Valid[7:0]	[31:24]
 | 
						|
	 * S-Tag		[23:8]
 | 
						|
	 * C-Tag		[7:0]
 | 
						|
	 */
 | 
						|
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
 | 
						|
 | 
						|
	/* Mask all but valid UDFs */
 | 
						|
	core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
 | 
						|
 | 
						|
	/* Slice the IPv6 source address and port */
 | 
						|
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
 | 
						|
				slice_num, false);
 | 
						|
	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
 | 
						|
				SLICE_NUM_MASK, true);
 | 
						|
 | 
						|
	/* Insert into TCAM now because we need to insert a second rule */
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Insert into Action and policer RAMs now */
 | 
						|
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
 | 
						|
				      queue_num, false);
 | 
						|
	if (ret)
 | 
						|
		goto out_err;
 | 
						|
 | 
						|
	/* Now deal with the second slice to chain this rule */
 | 
						|
	slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 | 
						|
	if (slice_num == UDF_NUM_SLICES) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 | 
						|
 | 
						|
	/* Apply the UDF layout for this filter */
 | 
						|
	bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 | 
						|
 | 
						|
	/* Chained rule, source port match is coming from the rule we are
 | 
						|
	 * chained from.
 | 
						|
	 */
 | 
						|
	core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 | 
						|
	core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * CHAIN ID		[31:24] chain to previous slice
 | 
						|
	 * Reserved		[23:20]
 | 
						|
	 * UDF_Valid[11:8]	[19:16]
 | 
						|
	 * UDF_Valid[7:0]	[15:8]
 | 
						|
	 * UDF_n_D11		[7:0]
 | 
						|
	 */
 | 
						|
	reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 | 
						|
		udf_lower_bits(num_udf) << 8;
 | 
						|
	core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 | 
						|
	reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 | 
						|
		udf_lower_bits(num_udf) << 8;
 | 
						|
	core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 | 
						|
 | 
						|
	/* Don't care */
 | 
						|
	core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
 | 
						|
 | 
						|
	/* Mask all */
 | 
						|
	core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
 | 
						|
 | 
						|
	bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
 | 
						|
			       false);
 | 
						|
	bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
 | 
						|
			       SLICE_NUM_MASK, true);
 | 
						|
 | 
						|
	/* Insert into TCAM now */
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
						|
	if (ret) {
 | 
						|
		pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 | 
						|
		goto out_err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Insert into Action and policer RAMs now, set chain ID to
 | 
						|
	 * the one we are chained to
 | 
						|
	 */
 | 
						|
	ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
 | 
						|
				      queue_num, true);
 | 
						|
	if (ret)
 | 
						|
		goto out_err;
 | 
						|
 | 
						|
	/* Turn on CFP for this rule now */
 | 
						|
	reg = core_readl(priv, CORE_CFP_CTL_REG);
 | 
						|
	reg |= BIT(port);
 | 
						|
	core_writel(priv, reg, CORE_CFP_CTL_REG);
 | 
						|
 | 
						|
	/* Flag the second half rule as being used now, return it as the
 | 
						|
	 * location, and flag it as unique while dumping rules
 | 
						|
	 */
 | 
						|
	set_bit(rule_index[0], priv->cfp.used);
 | 
						|
	set_bit(rule_index[1], priv->cfp.unique);
 | 
						|
	fs->location = rule_index[1];
 | 
						|
 | 
						|
	return ret;
 | 
						|
 | 
						|
out_err:
 | 
						|
	clear_bit(rule_index[1], priv->cfp.used);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 | 
						|
				struct ethtool_rx_flow_spec *fs)
 | 
						|
{
 | 
						|
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 | 
						|
	s8 cpu_port = ds->ports[port].cpu_dp->index;
 | 
						|
	__u64 ring_cookie = fs->ring_cookie;
 | 
						|
	unsigned int queue_num, port_num;
 | 
						|
	int ret = -EINVAL;
 | 
						|
 | 
						|
	/* Check for unsupported extensions */
 | 
						|
	if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
 | 
						|
	     fs->m_ext.data[1]))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (fs->location != RX_CLS_LOC_ANY &&
 | 
						|
	    test_bit(fs->location, priv->cfp.used))
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	if (fs->location != RX_CLS_LOC_ANY &&
 | 
						|
	    fs->location > bcm_sf2_cfp_rule_size(priv))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* This rule is a Wake-on-LAN filter and we must specifically
 | 
						|
	 * target the CPU port in order for it to be working.
 | 
						|
	 */
 | 
						|
	if (ring_cookie == RX_CLS_FLOW_WAKE)
 | 
						|
		ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 | 
						|
 | 
						|
	/* We do not support discarding packets, check that the
 | 
						|
	 * destination port is enabled and that we are within the
 | 
						|
	 * number of ports supported by the switch
 | 
						|
	 */
 | 
						|
	port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 | 
						|
 | 
						|
	if (ring_cookie == RX_CLS_FLOW_DISC ||
 | 
						|
	    !(dsa_is_user_port(ds, port_num) ||
 | 
						|
	      dsa_is_cpu_port(ds, port_num)) ||
 | 
						|
	    port_num >= priv->hw_params.num_ports)
 | 
						|
		return -EINVAL;
 | 
						|
	/*
 | 
						|
	 * We have a small oddity where Port 6 just does not have a
 | 
						|
	 * valid bit here (so we substract by one).
 | 
						|
	 */
 | 
						|
	queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 | 
						|
	if (port_num >= 7)
 | 
						|
		port_num -= 1;
 | 
						|
 | 
						|
	switch (fs->flow_type & ~FLOW_EXT) {
 | 
						|
	case TCP_V4_FLOW:
 | 
						|
	case UDP_V4_FLOW:
 | 
						|
		ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 | 
						|
						queue_num, fs);
 | 
						|
		break;
 | 
						|
	case TCP_V6_FLOW:
 | 
						|
	case UDP_V6_FLOW:
 | 
						|
		ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 | 
						|
						queue_num, fs);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 | 
						|
				    u32 loc, u32 *next_loc)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	/* Indicate which rule we want to read */
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, loc);
 | 
						|
 | 
						|
	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Check if this is possibly an IPv6 rule that would
 | 
						|
	 * indicate we need to delete its companion rule
 | 
						|
	 * as well
 | 
						|
	 */
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
						|
	if (next_loc)
 | 
						|
		*next_loc = (reg >> 24) & CHAIN_ID_MASK;
 | 
						|
 | 
						|
	/* Clear its valid bits */
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 | 
						|
	reg &= ~SLICE_VALID;
 | 
						|
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 | 
						|
 | 
						|
	/* Write back this entry into the TCAM now */
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	clear_bit(loc, priv->cfp.used);
 | 
						|
	clear_bit(loc, priv->cfp.unique);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
 | 
						|
				u32 loc)
 | 
						|
{
 | 
						|
	u32 next_loc = 0;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Refuse deleting unused rules, and those that are not unique since
 | 
						|
	 * that could leave IPv6 rules with one of the chained rule in the
 | 
						|
	 * table.
 | 
						|
	 */
 | 
						|
	if (!test_bit(loc, priv->cfp.unique) || loc == 0)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* If this was an IPv6 rule, delete is companion rule too */
 | 
						|
	if (next_loc)
 | 
						|
		ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < sizeof(flow->m_u); i++)
 | 
						|
		flow->m_u.hdata[i] ^= 0xff;
 | 
						|
 | 
						|
	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
 | 
						|
	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
 | 
						|
	flow->m_ext.data[0] ^= cpu_to_be32(~0);
 | 
						|
	flow->m_ext.data[1] ^= cpu_to_be32(~0);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
 | 
						|
				    struct ethtool_tcpip4_spec *v4_spec,
 | 
						|
				    bool mask)
 | 
						|
{
 | 
						|
	u32 reg, offset, ipv4;
 | 
						|
	u16 src_dst_port;
 | 
						|
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(3);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(3);
 | 
						|
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	/* src port [15:8] */
 | 
						|
	src_dst_port = reg << 8;
 | 
						|
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(2);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(2);
 | 
						|
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	/* src port [7:0] */
 | 
						|
	src_dst_port |= (reg >> 24);
 | 
						|
 | 
						|
	v4_spec->pdst = cpu_to_be16(src_dst_port);
 | 
						|
	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
 | 
						|
 | 
						|
	/* IPv4 dst [15:8] */
 | 
						|
	ipv4 = (reg & 0xff) << 8;
 | 
						|
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(1);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(1);
 | 
						|
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	/* IPv4 dst [31:16] */
 | 
						|
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 | 
						|
	/* IPv4 dst [7:0] */
 | 
						|
	ipv4 |= (reg >> 24) & 0xff;
 | 
						|
	v4_spec->ip4dst = cpu_to_be32(ipv4);
 | 
						|
 | 
						|
	/* IPv4 src [15:8] */
 | 
						|
	ipv4 = (reg & 0xff) << 8;
 | 
						|
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(0);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(0);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
 | 
						|
	/* Once the TCAM is programmed, the mask reflects the slice number
 | 
						|
	 * being matched, don't bother checking it when reading back the
 | 
						|
	 * mask spec
 | 
						|
	 */
 | 
						|
	if (!mask && !(reg & SLICE_VALID))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* IPv4 src [7:0] */
 | 
						|
	ipv4 |= (reg >> 24) & 0xff;
 | 
						|
	/* IPv4 src [31:16] */
 | 
						|
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
 | 
						|
	v4_spec->ip4src = cpu_to_be32(ipv4);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
						|
				     struct ethtool_rx_flow_spec *fs)
 | 
						|
{
 | 
						|
	struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
 | 
						|
	u32 reg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 | 
						|
	case IPPROTO_TCP:
 | 
						|
		fs->flow_type = TCP_V4_FLOW;
 | 
						|
		v4_spec = &fs->h_u.tcp_ip4_spec;
 | 
						|
		v4_m_spec = &fs->m_u.tcp_ip4_spec;
 | 
						|
		break;
 | 
						|
	case IPPROTO_UDP:
 | 
						|
		fs->flow_type = UDP_V4_FLOW;
 | 
						|
		v4_spec = &fs->h_u.udp_ip4_spec;
 | 
						|
		v4_m_spec = &fs->m_u.udp_ip4_spec;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
 | 
						|
	v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
 | 
						|
				     __be32 *ip6_addr, __be16 *port,
 | 
						|
				     bool mask)
 | 
						|
{
 | 
						|
	u32 reg, tmp, offset;
 | 
						|
 | 
						|
	/* C-Tag		[31:24]
 | 
						|
	 * UDF_n_B8		[23:8] (port)
 | 
						|
	 * UDF_n_B7 (upper)	[7:0] (addr[15:8])
 | 
						|
	 */
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(4);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(4);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	*port = cpu_to_be32(reg) >> 8;
 | 
						|
	tmp = (u32)(reg & 0xff) << 8;
 | 
						|
 | 
						|
	/* UDF_n_B7 (lower)	[31:24] (addr[7:0])
 | 
						|
	 * UDF_n_B6		[23:8] (addr[31:16])
 | 
						|
	 * UDF_n_B5 (upper)	[7:0] (addr[47:40])
 | 
						|
	 */
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(3);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(3);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	tmp |= (reg >> 24) & 0xff;
 | 
						|
	tmp |= (u32)((reg >> 8) << 16);
 | 
						|
	ip6_addr[3] = cpu_to_be32(tmp);
 | 
						|
	tmp = (u32)(reg & 0xff) << 8;
 | 
						|
 | 
						|
	/* UDF_n_B5 (lower)	[31:24] (addr[39:32])
 | 
						|
	 * UDF_n_B4		[23:8] (addr[63:48])
 | 
						|
	 * UDF_n_B3 (upper)	[7:0] (addr[79:72])
 | 
						|
	 */
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(2);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(2);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	tmp |= (reg >> 24) & 0xff;
 | 
						|
	tmp |= (u32)((reg >> 8) << 16);
 | 
						|
	ip6_addr[2] = cpu_to_be32(tmp);
 | 
						|
	tmp = (u32)(reg & 0xff) << 8;
 | 
						|
 | 
						|
	/* UDF_n_B3 (lower)	[31:24] (addr[71:64])
 | 
						|
	 * UDF_n_B2		[23:8] (addr[95:80])
 | 
						|
	 * UDF_n_B1 (upper)	[7:0] (addr[111:104])
 | 
						|
	 */
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(1);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(1);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	tmp |= (reg >> 24) & 0xff;
 | 
						|
	tmp |= (u32)((reg >> 8) << 16);
 | 
						|
	ip6_addr[1] = cpu_to_be32(tmp);
 | 
						|
	tmp = (u32)(reg & 0xff) << 8;
 | 
						|
 | 
						|
	/* UDF_n_B1 (lower)	[31:24] (addr[103:96])
 | 
						|
	 * UDF_n_B0		[23:8] (addr[127:112])
 | 
						|
	 * Reserved		[7:4]
 | 
						|
	 * Slice ID		[3:2]
 | 
						|
	 * Slice valid		[1:0]
 | 
						|
	 */
 | 
						|
	if (mask)
 | 
						|
		offset = CORE_CFP_MASK_PORT(0);
 | 
						|
	else
 | 
						|
		offset = CORE_CFP_DATA_PORT(0);
 | 
						|
	reg = core_readl(priv, offset);
 | 
						|
	tmp |= (reg >> 24) & 0xff;
 | 
						|
	tmp |= (u32)((reg >> 8) << 16);
 | 
						|
	ip6_addr[0] = cpu_to_be32(tmp);
 | 
						|
 | 
						|
	if (!mask && !(reg & SLICE_VALID))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
						|
				     struct ethtool_rx_flow_spec *fs,
 | 
						|
				     u32 next_loc)
 | 
						|
{
 | 
						|
	struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
 | 
						|
	u32 reg;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
 | 
						|
	 * assuming tcp_ip6_spec here being an union.
 | 
						|
	 */
 | 
						|
	v6_spec = &fs->h_u.tcp_ip6_spec;
 | 
						|
	v6_m_spec = &fs->m_u.tcp_ip6_spec;
 | 
						|
 | 
						|
	/* Read the second half first */
 | 
						|
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
 | 
						|
				       false);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
 | 
						|
				       &v6_m_spec->pdst, true);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Read last to avoid next entry clobbering the results during search
 | 
						|
	 * operations. We would not have the port enabled for this rule, so
 | 
						|
	 * don't bother checking it.
 | 
						|
	 */
 | 
						|
	(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
 | 
						|
 | 
						|
	/* The slice number is valid, so read the rule we are chained from now
 | 
						|
	 * which is our first half.
 | 
						|
	 */
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, next_loc);
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
 | 
						|
	case IPPROTO_TCP:
 | 
						|
		fs->flow_type = TCP_V6_FLOW;
 | 
						|
		break;
 | 
						|
	case IPPROTO_UDP:
 | 
						|
		fs->flow_type = UDP_V6_FLOW;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
 | 
						|
				       false);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
 | 
						|
					&v6_m_spec->psrc, true);
 | 
						|
}
 | 
						|
 | 
						|
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
 | 
						|
				struct ethtool_rxnfc *nfc)
 | 
						|
{
 | 
						|
	u32 reg, ipv4_or_chain_id;
 | 
						|
	unsigned int queue_num;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_ACT_POL_DATA0);
 | 
						|
 | 
						|
	ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Extract the destination port */
 | 
						|
	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
 | 
						|
				  DST_MAP_IB_MASK) - 1;
 | 
						|
 | 
						|
	/* There is no Port 6, so we compensate for that here */
 | 
						|
	if (nfc->fs.ring_cookie >= 6)
 | 
						|
		nfc->fs.ring_cookie++;
 | 
						|
	nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
 | 
						|
 | 
						|
	/* Extract the destination queue */
 | 
						|
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
 | 
						|
	nfc->fs.ring_cookie += queue_num;
 | 
						|
 | 
						|
	/* Extract the L3_FRAMING or CHAIN_ID */
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 | 
						|
 | 
						|
	/* With IPv6 rules this would contain a non-zero chain ID since
 | 
						|
	 * we reserve entry 0 and it cannot be used. So if we read 0 here
 | 
						|
	 * this means an IPv4 rule.
 | 
						|
	 */
 | 
						|
	ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
 | 
						|
	if (ipv4_or_chain_id == 0)
 | 
						|
		ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
 | 
						|
	else
 | 
						|
		ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
 | 
						|
						ipv4_or_chain_id);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Read last to avoid next entry clobbering the results during search
 | 
						|
	 * operations
 | 
						|
	 */
 | 
						|
	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
 | 
						|
	if (!(reg & 1 << port))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	bcm_sf2_invert_masks(&nfc->fs);
 | 
						|
 | 
						|
	/* Put the TCAM size here */
 | 
						|
	nfc->data = bcm_sf2_cfp_rule_size(priv);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* We implement the search doing a TCAM search operation */
 | 
						|
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
 | 
						|
				    int port, struct ethtool_rxnfc *nfc,
 | 
						|
				    u32 *rule_locs)
 | 
						|
{
 | 
						|
	unsigned int index = 1, rules_cnt = 0;
 | 
						|
 | 
						|
	for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
 | 
						|
		rule_locs[rules_cnt] = index;
 | 
						|
		rules_cnt++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Put the TCAM size here */
 | 
						|
	nfc->data = bcm_sf2_cfp_rule_size(priv);
 | 
						|
	nfc->rule_cnt = rules_cnt;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
 | 
						|
		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
 | 
						|
{
 | 
						|
	struct net_device *p = ds->ports[port].cpu_dp->master;
 | 
						|
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&priv->cfp.lock);
 | 
						|
 | 
						|
	switch (nfc->cmd) {
 | 
						|
	case ETHTOOL_GRXCLSRLCNT:
 | 
						|
		/* Subtract the default, unusable rule */
 | 
						|
		nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
 | 
						|
					      priv->num_cfp_rules) - 1;
 | 
						|
		/* We support specifying rule locations */
 | 
						|
		nfc->data |= RX_CLS_LOC_SPECIAL;
 | 
						|
		break;
 | 
						|
	case ETHTOOL_GRXCLSRULE:
 | 
						|
		ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
 | 
						|
		break;
 | 
						|
	case ETHTOOL_GRXCLSRLALL:
 | 
						|
		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&priv->cfp.lock);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Pass up the commands to the attached master network device */
 | 
						|
	if (p->ethtool_ops->get_rxnfc) {
 | 
						|
		ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
 | 
						|
		if (ret == -EOPNOTSUPP)
 | 
						|
			ret = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
 | 
						|
		      struct ethtool_rxnfc *nfc)
 | 
						|
{
 | 
						|
	struct net_device *p = ds->ports[port].cpu_dp->master;
 | 
						|
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&priv->cfp.lock);
 | 
						|
 | 
						|
	switch (nfc->cmd) {
 | 
						|
	case ETHTOOL_SRXCLSRLINS:
 | 
						|
		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
 | 
						|
		break;
 | 
						|
 | 
						|
	case ETHTOOL_SRXCLSRLDEL:
 | 
						|
		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ret = -EOPNOTSUPP;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	mutex_unlock(&priv->cfp.lock);
 | 
						|
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/* Pass up the commands to the attached master network device.
 | 
						|
	 * This can fail, so rollback the operation if we need to.
 | 
						|
	 */
 | 
						|
	if (p->ethtool_ops->set_rxnfc) {
 | 
						|
		ret = p->ethtool_ops->set_rxnfc(p, nfc);
 | 
						|
		if (ret && ret != -EOPNOTSUPP) {
 | 
						|
			mutex_lock(&priv->cfp.lock);
 | 
						|
			bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
 | 
						|
			mutex_unlock(&priv->cfp.lock);
 | 
						|
		} else {
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
 | 
						|
{
 | 
						|
	unsigned int timeout = 1000;
 | 
						|
	u32 reg;
 | 
						|
 | 
						|
	reg = core_readl(priv, CORE_CFP_ACC);
 | 
						|
	reg |= TCAM_RESET;
 | 
						|
	core_writel(priv, reg, CORE_CFP_ACC);
 | 
						|
 | 
						|
	do {
 | 
						|
		reg = core_readl(priv, CORE_CFP_ACC);
 | 
						|
		if (!(reg & TCAM_RESET))
 | 
						|
			break;
 | 
						|
 | 
						|
		cpu_relax();
 | 
						|
	} while (timeout--);
 | 
						|
 | 
						|
	if (!timeout)
 | 
						|
		return -ETIMEDOUT;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |