linux/fs/dcache.c
Linus Torvalds e2a0883e40 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile 1 from Al Viro:
 "This is _not_ all; in particular, Miklos' and Jan's stuff is not there
  yet."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (64 commits)
  ext4: initialization of ext4_li_mtx needs to be done earlier
  debugfs-related mode_t whack-a-mole
  hfsplus: add an ioctl to bless files
  hfsplus: change finder_info to u32
  hfsplus: initialise userflags
  qnx4: new helper - try_extent()
  qnx4: get rid of qnx4_bread/qnx4_getblk
  take removal of PF_FORKNOEXEC to flush_old_exec()
  trim includes in inode.c
  um: uml_dup_mmap() relies on ->mmap_sem being held, but activate_mm() doesn't hold it
  um: embed ->stub_pages[] into mmu_context
  gadgetfs: list_for_each_safe() misuse
  ocfs2: fix leaks on failure exits in module_init
  ecryptfs: make register_filesystem() the last potential failure exit
  ntfs: forgets to unregister sysctls on register_filesystem() failure
  logfs: missing cleanup on register_filesystem() failure
  jfs: mising cleanup on register_filesystem() failure
  make configfs_pin_fs() return root dentry on success
  configfs: configfs_create_dir() has parent dentry in dentry->d_parent
  configfs: sanitize configfs_create()
  ...
2012-03-21 13:36:41 -07:00

3077 lines
77 KiB
C

/*
* fs/dcache.c
*
* Complete reimplementation
* (C) 1997 Thomas Schoebel-Theuer,
* with heavy changes by Linus Torvalds
*/
/*
* Notes on the allocation strategy:
*
* The dcache is a master of the icache - whenever a dcache entry
* exists, the inode will always exist. "iput()" is done either when
* the dcache entry is deleted or garbage collected.
*/
#include <linux/syscalls.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <asm/uaccess.h>
#include <linux/security.h>
#include <linux/seqlock.h>
#include <linux/swap.h>
#include <linux/bootmem.h>
#include <linux/fs_struct.h>
#include <linux/hardirq.h>
#include <linux/bit_spinlock.h>
#include <linux/rculist_bl.h>
#include <linux/prefetch.h>
#include <linux/ratelimit.h>
#include "internal.h"
#include "mount.h"
/*
* Usage:
* dcache->d_inode->i_lock protects:
* - i_dentry, d_alias, d_inode of aliases
* dcache_hash_bucket lock protects:
* - the dcache hash table
* s_anon bl list spinlock protects:
* - the s_anon list (see __d_drop)
* dcache_lru_lock protects:
* - the dcache lru lists and counters
* d_lock protects:
* - d_flags
* - d_name
* - d_lru
* - d_count
* - d_unhashed()
* - d_parent and d_subdirs
* - childrens' d_child and d_parent
* - d_alias, d_inode
*
* Ordering:
* dentry->d_inode->i_lock
* dentry->d_lock
* dcache_lru_lock
* dcache_hash_bucket lock
* s_anon lock
*
* If there is an ancestor relationship:
* dentry->d_parent->...->d_parent->d_lock
* ...
* dentry->d_parent->d_lock
* dentry->d_lock
*
* If no ancestor relationship:
* if (dentry1 < dentry2)
* dentry1->d_lock
* dentry2->d_lock
*/
int sysctl_vfs_cache_pressure __read_mostly = 100;
EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
EXPORT_SYMBOL(rename_lock);
static struct kmem_cache *dentry_cache __read_mostly;
/*
* This is the single most critical data structure when it comes
* to the dcache: the hashtable for lookups. Somebody should try
* to make this good - I've just made it work.
*
* This hash-function tries to avoid losing too many bits of hash
* information, yet avoid using a prime hash-size or similar.
*/
#define D_HASHBITS d_hash_shift
#define D_HASHMASK d_hash_mask
static unsigned int d_hash_mask __read_mostly;
static unsigned int d_hash_shift __read_mostly;
static struct hlist_bl_head *dentry_hashtable __read_mostly;
static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
unsigned int hash)
{
hash += (unsigned long) parent / L1_CACHE_BYTES;
hash = hash + (hash >> D_HASHBITS);
return dentry_hashtable + (hash & D_HASHMASK);
}
/* Statistics gathering. */
struct dentry_stat_t dentry_stat = {
.age_limit = 45,
};
static DEFINE_PER_CPU(unsigned int, nr_dentry);
#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
static int get_nr_dentry(void)
{
int i;
int sum = 0;
for_each_possible_cpu(i)
sum += per_cpu(nr_dentry, i);
return sum < 0 ? 0 : sum;
}
int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
size_t *lenp, loff_t *ppos)
{
dentry_stat.nr_dentry = get_nr_dentry();
return proc_dointvec(table, write, buffer, lenp, ppos);
}
#endif
/*
* Compare 2 name strings, return 0 if they match, otherwise non-zero.
* The strings are both count bytes long, and count is non-zero.
*/
static inline int dentry_cmp(const unsigned char *cs, size_t scount,
const unsigned char *ct, size_t tcount)
{
#ifdef CONFIG_DCACHE_WORD_ACCESS
unsigned long a,b,mask;
if (unlikely(scount != tcount))
return 1;
for (;;) {
a = *(unsigned long *)cs;
b = *(unsigned long *)ct;
if (tcount < sizeof(unsigned long))
break;
if (unlikely(a != b))
return 1;
cs += sizeof(unsigned long);
ct += sizeof(unsigned long);
tcount -= sizeof(unsigned long);
if (!tcount)
return 0;
}
mask = ~(~0ul << tcount*8);
return unlikely(!!((a ^ b) & mask));
#else
if (scount != tcount)
return 1;
do {
if (*cs != *ct)
return 1;
cs++;
ct++;
tcount--;
} while (tcount);
return 0;
#endif
}
static void __d_free(struct rcu_head *head)
{
struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
WARN_ON(!list_empty(&dentry->d_alias));
if (dname_external(dentry))
kfree(dentry->d_name.name);
kmem_cache_free(dentry_cache, dentry);
}
/*
* no locks, please.
*/
static void d_free(struct dentry *dentry)
{
BUG_ON(dentry->d_count);
this_cpu_dec(nr_dentry);
if (dentry->d_op && dentry->d_op->d_release)
dentry->d_op->d_release(dentry);
/* if dentry was never visible to RCU, immediate free is OK */
if (!(dentry->d_flags & DCACHE_RCUACCESS))
__d_free(&dentry->d_u.d_rcu);
else
call_rcu(&dentry->d_u.d_rcu, __d_free);
}
/**
* dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
* @dentry: the target dentry
* After this call, in-progress rcu-walk path lookup will fail. This
* should be called after unhashing, and after changing d_inode (if
* the dentry has not already been unhashed).
*/
static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
{
assert_spin_locked(&dentry->d_lock);
/* Go through a barrier */
write_seqcount_barrier(&dentry->d_seq);
}
/*
* Release the dentry's inode, using the filesystem
* d_iput() operation if defined. Dentry has no refcount
* and is unhashed.
*/
static void dentry_iput(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dentry->d_inode->i_lock)
{
struct inode *inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
if (!inode->i_nlink)
fsnotify_inoderemove(inode);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
} else {
spin_unlock(&dentry->d_lock);
}
}
/*
* Release the dentry's inode, using the filesystem
* d_iput() operation if defined. dentry remains in-use.
*/
static void dentry_unlink_inode(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dentry->d_inode->i_lock)
{
struct inode *inode = dentry->d_inode;
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
dentry_rcuwalk_barrier(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
if (!inode->i_nlink)
fsnotify_inoderemove(inode);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
}
/*
* dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
*/
static void dentry_lru_add(struct dentry *dentry)
{
if (list_empty(&dentry->d_lru)) {
spin_lock(&dcache_lru_lock);
list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
spin_unlock(&dcache_lru_lock);
}
}
static void __dentry_lru_del(struct dentry *dentry)
{
list_del_init(&dentry->d_lru);
dentry->d_flags &= ~DCACHE_SHRINK_LIST;
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
/*
* Remove a dentry with references from the LRU.
*/
static void dentry_lru_del(struct dentry *dentry)
{
if (!list_empty(&dentry->d_lru)) {
spin_lock(&dcache_lru_lock);
__dentry_lru_del(dentry);
spin_unlock(&dcache_lru_lock);
}
}
/*
* Remove a dentry that is unreferenced and about to be pruned
* (unhashed and destroyed) from the LRU, and inform the file system.
* This wrapper should be called _prior_ to unhashing a victim dentry.
*/
static void dentry_lru_prune(struct dentry *dentry)
{
if (!list_empty(&dentry->d_lru)) {
if (dentry->d_flags & DCACHE_OP_PRUNE)
dentry->d_op->d_prune(dentry);
spin_lock(&dcache_lru_lock);
__dentry_lru_del(dentry);
spin_unlock(&dcache_lru_lock);
}
}
static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
{
spin_lock(&dcache_lru_lock);
if (list_empty(&dentry->d_lru)) {
list_add_tail(&dentry->d_lru, list);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
} else {
list_move_tail(&dentry->d_lru, list);
}
spin_unlock(&dcache_lru_lock);
}
/**
* d_kill - kill dentry and return parent
* @dentry: dentry to kill
* @parent: parent dentry
*
* The dentry must already be unhashed and removed from the LRU.
*
* If this is the root of the dentry tree, return NULL.
*
* dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
* d_kill.
*/
static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
__releases(dentry->d_lock)
__releases(parent->d_lock)
__releases(dentry->d_inode->i_lock)
{
list_del(&dentry->d_u.d_child);
/*
* Inform try_to_ascend() that we are no longer attached to the
* dentry tree
*/
dentry->d_flags |= DCACHE_DISCONNECTED;
if (parent)
spin_unlock(&parent->d_lock);
dentry_iput(dentry);
/*
* dentry_iput drops the locks, at which point nobody (except
* transient RCU lookups) can reach this dentry.
*/
d_free(dentry);
return parent;
}
/*
* Unhash a dentry without inserting an RCU walk barrier or checking that
* dentry->d_lock is locked. The caller must take care of that, if
* appropriate.
*/
static void __d_shrink(struct dentry *dentry)
{
if (!d_unhashed(dentry)) {
struct hlist_bl_head *b;
if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
b = &dentry->d_sb->s_anon;
else
b = d_hash(dentry->d_parent, dentry->d_name.hash);
hlist_bl_lock(b);
__hlist_bl_del(&dentry->d_hash);
dentry->d_hash.pprev = NULL;
hlist_bl_unlock(b);
}
}
/**
* d_drop - drop a dentry
* @dentry: dentry to drop
*
* d_drop() unhashes the entry from the parent dentry hashes, so that it won't
* be found through a VFS lookup any more. Note that this is different from
* deleting the dentry - d_delete will try to mark the dentry negative if
* possible, giving a successful _negative_ lookup, while d_drop will
* just make the cache lookup fail.
*
* d_drop() is used mainly for stuff that wants to invalidate a dentry for some
* reason (NFS timeouts or autofs deletes).
*
* __d_drop requires dentry->d_lock.
*/
void __d_drop(struct dentry *dentry)
{
if (!d_unhashed(dentry)) {
__d_shrink(dentry);
dentry_rcuwalk_barrier(dentry);
}
}
EXPORT_SYMBOL(__d_drop);
void d_drop(struct dentry *dentry)
{
spin_lock(&dentry->d_lock);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
}
EXPORT_SYMBOL(d_drop);
/*
* d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
* @dentry: dentry to drop
*
* This is called when we do a lookup on a placeholder dentry that needed to be
* looked up. The dentry should have been hashed in order for it to be found by
* the lookup code, but now needs to be unhashed while we do the actual lookup
* and clear the DCACHE_NEED_LOOKUP flag.
*/
void d_clear_need_lookup(struct dentry *dentry)
{
spin_lock(&dentry->d_lock);
__d_drop(dentry);
dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
spin_unlock(&dentry->d_lock);
}
EXPORT_SYMBOL(d_clear_need_lookup);
/*
* Finish off a dentry we've decided to kill.
* dentry->d_lock must be held, returns with it unlocked.
* If ref is non-zero, then decrement the refcount too.
* Returns dentry requiring refcount drop, or NULL if we're done.
*/
static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
__releases(dentry->d_lock)
{
struct inode *inode;
struct dentry *parent;
inode = dentry->d_inode;
if (inode && !spin_trylock(&inode->i_lock)) {
relock:
spin_unlock(&dentry->d_lock);
cpu_relax();
return dentry; /* try again with same dentry */
}
if (IS_ROOT(dentry))
parent = NULL;
else
parent = dentry->d_parent;
if (parent && !spin_trylock(&parent->d_lock)) {
if (inode)
spin_unlock(&inode->i_lock);
goto relock;
}
if (ref)
dentry->d_count--;
/*
* if dentry was on the d_lru list delete it from there.
* inform the fs via d_prune that this dentry is about to be
* unhashed and destroyed.
*/
dentry_lru_prune(dentry);
/* if it was on the hash then remove it */
__d_drop(dentry);
return d_kill(dentry, parent);
}
/*
* This is dput
*
* This is complicated by the fact that we do not want to put
* dentries that are no longer on any hash chain on the unused
* list: we'd much rather just get rid of them immediately.
*
* However, that implies that we have to traverse the dentry
* tree upwards to the parents which might _also_ now be
* scheduled for deletion (it may have been only waiting for
* its last child to go away).
*
* This tail recursion is done by hand as we don't want to depend
* on the compiler to always get this right (gcc generally doesn't).
* Real recursion would eat up our stack space.
*/
/*
* dput - release a dentry
* @dentry: dentry to release
*
* Release a dentry. This will drop the usage count and if appropriate
* call the dentry unlink method as well as removing it from the queues and
* releasing its resources. If the parent dentries were scheduled for release
* they too may now get deleted.
*/
void dput(struct dentry *dentry)
{
if (!dentry)
return;
repeat:
if (dentry->d_count == 1)
might_sleep();
spin_lock(&dentry->d_lock);
BUG_ON(!dentry->d_count);
if (dentry->d_count > 1) {
dentry->d_count--;
spin_unlock(&dentry->d_lock);
return;
}
if (dentry->d_flags & DCACHE_OP_DELETE) {
if (dentry->d_op->d_delete(dentry))
goto kill_it;
}
/* Unreachable? Get rid of it */
if (d_unhashed(dentry))
goto kill_it;
/*
* If this dentry needs lookup, don't set the referenced flag so that it
* is more likely to be cleaned up by the dcache shrinker in case of
* memory pressure.
*/
if (!d_need_lookup(dentry))
dentry->d_flags |= DCACHE_REFERENCED;
dentry_lru_add(dentry);
dentry->d_count--;
spin_unlock(&dentry->d_lock);
return;
kill_it:
dentry = dentry_kill(dentry, 1);
if (dentry)
goto repeat;
}
EXPORT_SYMBOL(dput);
/**
* d_invalidate - invalidate a dentry
* @dentry: dentry to invalidate
*
* Try to invalidate the dentry if it turns out to be
* possible. If there are other dentries that can be
* reached through this one we can't delete it and we
* return -EBUSY. On success we return 0.
*
* no dcache lock.
*/
int d_invalidate(struct dentry * dentry)
{
/*
* If it's already been dropped, return OK.
*/
spin_lock(&dentry->d_lock);
if (d_unhashed(dentry)) {
spin_unlock(&dentry->d_lock);
return 0;
}
/*
* Check whether to do a partial shrink_dcache
* to get rid of unused child entries.
*/
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&dentry->d_lock);
shrink_dcache_parent(dentry);
spin_lock(&dentry->d_lock);
}
/*
* Somebody else still using it?
*
* If it's a directory, we can't drop it
* for fear of somebody re-populating it
* with children (even though dropping it
* would make it unreachable from the root,
* we might still populate it if it was a
* working directory or similar).
* We also need to leave mountpoints alone,
* directory or not.
*/
if (dentry->d_count > 1 && dentry->d_inode) {
if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
spin_unlock(&dentry->d_lock);
return -EBUSY;
}
}
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
return 0;
}
EXPORT_SYMBOL(d_invalidate);
/* This must be called with d_lock held */
static inline void __dget_dlock(struct dentry *dentry)
{
dentry->d_count++;
}
static inline void __dget(struct dentry *dentry)
{
spin_lock(&dentry->d_lock);
__dget_dlock(dentry);
spin_unlock(&dentry->d_lock);
}
struct dentry *dget_parent(struct dentry *dentry)
{
struct dentry *ret;
repeat:
/*
* Don't need rcu_dereference because we re-check it was correct under
* the lock.
*/
rcu_read_lock();
ret = dentry->d_parent;
spin_lock(&ret->d_lock);
if (unlikely(ret != dentry->d_parent)) {
spin_unlock(&ret->d_lock);
rcu_read_unlock();
goto repeat;
}
rcu_read_unlock();
BUG_ON(!ret->d_count);
ret->d_count++;
spin_unlock(&ret->d_lock);
return ret;
}
EXPORT_SYMBOL(dget_parent);
/**
* d_find_alias - grab a hashed alias of inode
* @inode: inode in question
* @want_discon: flag, used by d_splice_alias, to request
* that only a DISCONNECTED alias be returned.
*
* If inode has a hashed alias, or is a directory and has any alias,
* acquire the reference to alias and return it. Otherwise return NULL.
* Notice that if inode is a directory there can be only one alias and
* it can be unhashed only if it has no children, or if it is the root
* of a filesystem.
*
* If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
* any other hashed alias over that one unless @want_discon is set,
* in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
*/
static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
{
struct dentry *alias, *discon_alias;
again:
discon_alias = NULL;
list_for_each_entry(alias, &inode->i_dentry, d_alias) {
spin_lock(&alias->d_lock);
if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
if (IS_ROOT(alias) &&
(alias->d_flags & DCACHE_DISCONNECTED)) {
discon_alias = alias;
} else if (!want_discon) {
__dget_dlock(alias);
spin_unlock(&alias->d_lock);
return alias;
}
}
spin_unlock(&alias->d_lock);
}
if (discon_alias) {
alias = discon_alias;
spin_lock(&alias->d_lock);
if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
if (IS_ROOT(alias) &&
(alias->d_flags & DCACHE_DISCONNECTED)) {
__dget_dlock(alias);
spin_unlock(&alias->d_lock);
return alias;
}
}
spin_unlock(&alias->d_lock);
goto again;
}
return NULL;
}
struct dentry *d_find_alias(struct inode *inode)
{
struct dentry *de = NULL;
if (!list_empty(&inode->i_dentry)) {
spin_lock(&inode->i_lock);
de = __d_find_alias(inode, 0);
spin_unlock(&inode->i_lock);
}
return de;
}
EXPORT_SYMBOL(d_find_alias);
/*
* Try to kill dentries associated with this inode.
* WARNING: you must own a reference to inode.
*/
void d_prune_aliases(struct inode *inode)
{
struct dentry *dentry;
restart:
spin_lock(&inode->i_lock);
list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
spin_lock(&dentry->d_lock);
if (!dentry->d_count) {
__dget_dlock(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&inode->i_lock);
dput(dentry);
goto restart;
}
spin_unlock(&dentry->d_lock);
}
spin_unlock(&inode->i_lock);
}
EXPORT_SYMBOL(d_prune_aliases);
/*
* Try to throw away a dentry - free the inode, dput the parent.
* Requires dentry->d_lock is held, and dentry->d_count == 0.
* Releases dentry->d_lock.
*
* This may fail if locks cannot be acquired no problem, just try again.
*/
static void try_prune_one_dentry(struct dentry *dentry)
__releases(dentry->d_lock)
{
struct dentry *parent;
parent = dentry_kill(dentry, 0);
/*
* If dentry_kill returns NULL, we have nothing more to do.
* if it returns the same dentry, trylocks failed. In either
* case, just loop again.
*
* Otherwise, we need to prune ancestors too. This is necessary
* to prevent quadratic behavior of shrink_dcache_parent(), but
* is also expected to be beneficial in reducing dentry cache
* fragmentation.
*/
if (!parent)
return;
if (parent == dentry)
return;
/* Prune ancestors. */
dentry = parent;
while (dentry) {
spin_lock(&dentry->d_lock);
if (dentry->d_count > 1) {
dentry->d_count--;
spin_unlock(&dentry->d_lock);
return;
}
dentry = dentry_kill(dentry, 1);
}
}
static void shrink_dentry_list(struct list_head *list)
{
struct dentry *dentry;
rcu_read_lock();
for (;;) {
dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
if (&dentry->d_lru == list)
break; /* empty */
spin_lock(&dentry->d_lock);
if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
spin_unlock(&dentry->d_lock);
continue;
}
/*
* We found an inuse dentry which was not removed from
* the LRU because of laziness during lookup. Do not free
* it - just keep it off the LRU list.
*/
if (dentry->d_count) {
dentry_lru_del(dentry);
spin_unlock(&dentry->d_lock);
continue;
}
rcu_read_unlock();
try_prune_one_dentry(dentry);
rcu_read_lock();
}
rcu_read_unlock();
}
/**
* prune_dcache_sb - shrink the dcache
* @sb: superblock
* @count: number of entries to try to free
*
* Attempt to shrink the superblock dcache LRU by @count entries. This is
* done when we need more memory an called from the superblock shrinker
* function.
*
* This function may fail to free any resources if all the dentries are in
* use.
*/
void prune_dcache_sb(struct super_block *sb, int count)
{
struct dentry *dentry;
LIST_HEAD(referenced);
LIST_HEAD(tmp);
relock:
spin_lock(&dcache_lru_lock);
while (!list_empty(&sb->s_dentry_lru)) {
dentry = list_entry(sb->s_dentry_lru.prev,
struct dentry, d_lru);
BUG_ON(dentry->d_sb != sb);
if (!spin_trylock(&dentry->d_lock)) {
spin_unlock(&dcache_lru_lock);
cpu_relax();
goto relock;
}
if (dentry->d_flags & DCACHE_REFERENCED) {
dentry->d_flags &= ~DCACHE_REFERENCED;
list_move(&dentry->d_lru, &referenced);
spin_unlock(&dentry->d_lock);
} else {
list_move_tail(&dentry->d_lru, &tmp);
dentry->d_flags |= DCACHE_SHRINK_LIST;
spin_unlock(&dentry->d_lock);
if (!--count)
break;
}
cond_resched_lock(&dcache_lru_lock);
}
if (!list_empty(&referenced))
list_splice(&referenced, &sb->s_dentry_lru);
spin_unlock(&dcache_lru_lock);
shrink_dentry_list(&tmp);
}
/**
* shrink_dcache_sb - shrink dcache for a superblock
* @sb: superblock
*
* Shrink the dcache for the specified super block. This is used to free
* the dcache before unmounting a file system.
*/
void shrink_dcache_sb(struct super_block *sb)
{
LIST_HEAD(tmp);
spin_lock(&dcache_lru_lock);
while (!list_empty(&sb->s_dentry_lru)) {
list_splice_init(&sb->s_dentry_lru, &tmp);
spin_unlock(&dcache_lru_lock);
shrink_dentry_list(&tmp);
spin_lock(&dcache_lru_lock);
}
spin_unlock(&dcache_lru_lock);
}
EXPORT_SYMBOL(shrink_dcache_sb);
/*
* destroy a single subtree of dentries for unmount
* - see the comments on shrink_dcache_for_umount() for a description of the
* locking
*/
static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
{
struct dentry *parent;
BUG_ON(!IS_ROOT(dentry));
for (;;) {
/* descend to the first leaf in the current subtree */
while (!list_empty(&dentry->d_subdirs))
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
/* consume the dentries from this leaf up through its parents
* until we find one with children or run out altogether */
do {
struct inode *inode;
/*
* remove the dentry from the lru, and inform
* the fs that this dentry is about to be
* unhashed and destroyed.
*/
dentry_lru_prune(dentry);
__d_shrink(dentry);
if (dentry->d_count != 0) {
printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%s}"
" still in use (%d)"
" [unmount of %s %s]\n",
dentry,
dentry->d_inode ?
dentry->d_inode->i_ino : 0UL,
dentry->d_name.name,
dentry->d_count,
dentry->d_sb->s_type->name,
dentry->d_sb->s_id);
BUG();
}
if (IS_ROOT(dentry)) {
parent = NULL;
list_del(&dentry->d_u.d_child);
} else {
parent = dentry->d_parent;
parent->d_count--;
list_del(&dentry->d_u.d_child);
}
inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
}
d_free(dentry);
/* finished when we fall off the top of the tree,
* otherwise we ascend to the parent and move to the
* next sibling if there is one */
if (!parent)
return;
dentry = parent;
} while (list_empty(&dentry->d_subdirs));
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
}
}
/*
* destroy the dentries attached to a superblock on unmounting
* - we don't need to use dentry->d_lock because:
* - the superblock is detached from all mountings and open files, so the
* dentry trees will not be rearranged by the VFS
* - s_umount is write-locked, so the memory pressure shrinker will ignore
* any dentries belonging to this superblock that it comes across
* - the filesystem itself is no longer permitted to rearrange the dentries
* in this superblock
*/
void shrink_dcache_for_umount(struct super_block *sb)
{
struct dentry *dentry;
if (down_read_trylock(&sb->s_umount))
BUG();
dentry = sb->s_root;
sb->s_root = NULL;
dentry->d_count--;
shrink_dcache_for_umount_subtree(dentry);
while (!hlist_bl_empty(&sb->s_anon)) {
dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
shrink_dcache_for_umount_subtree(dentry);
}
}
/*
* This tries to ascend one level of parenthood, but
* we can race with renaming, so we need to re-check
* the parenthood after dropping the lock and check
* that the sequence number still matches.
*/
static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
{
struct dentry *new = old->d_parent;
rcu_read_lock();
spin_unlock(&old->d_lock);
spin_lock(&new->d_lock);
/*
* might go back up the wrong parent if we have had a rename
* or deletion
*/
if (new != old->d_parent ||
(old->d_flags & DCACHE_DISCONNECTED) ||
(!locked && read_seqretry(&rename_lock, seq))) {
spin_unlock(&new->d_lock);
new = NULL;
}
rcu_read_unlock();
return new;
}
/*
* Search for at least 1 mount point in the dentry's subdirs.
* We descend to the next level whenever the d_subdirs
* list is non-empty and continue searching.
*/
/**
* have_submounts - check for mounts over a dentry
* @parent: dentry to check.
*
* Return true if the parent or its subdirectories contain
* a mount point
*/
int have_submounts(struct dentry *parent)
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int locked = 0;
seq = read_seqbegin(&rename_lock);
again:
this_parent = parent;
if (d_mountpoint(parent))
goto positive;
spin_lock(&this_parent->d_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
/* Have we found a mount point ? */
if (d_mountpoint(dentry)) {
spin_unlock(&dentry->d_lock);
spin_unlock(&this_parent->d_lock);
goto positive;
}
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
this_parent = dentry;
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
goto repeat;
}
spin_unlock(&dentry->d_lock);
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
struct dentry *child = this_parent;
this_parent = try_to_ascend(this_parent, locked, seq);
if (!this_parent)
goto rename_retry;
next = child->d_u.d_child.next;
goto resume;
}
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return 0; /* No mount points found in tree */
positive:
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return 1;
rename_retry:
locked = 1;
write_seqlock(&rename_lock);
goto again;
}
EXPORT_SYMBOL(have_submounts);
/*
* Search the dentry child list for the specified parent,
* and move any unused dentries to the end of the unused
* list for prune_dcache(). We descend to the next level
* whenever the d_subdirs list is non-empty and continue
* searching.
*
* It returns zero iff there are no unused children,
* otherwise it returns the number of children moved to
* the end of the unused list. This may not be the total
* number of unused children, because select_parent can
* drop the lock and return early due to latency
* constraints.
*/
static int select_parent(struct dentry *parent, struct list_head *dispose)
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int found = 0;
int locked = 0;
seq = read_seqbegin(&rename_lock);
again:
this_parent = parent;
spin_lock(&this_parent->d_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
/*
* move only zero ref count dentries to the dispose list.
*
* Those which are presently on the shrink list, being processed
* by shrink_dentry_list(), shouldn't be moved. Otherwise the
* loop in shrink_dcache_parent() might not make any progress
* and loop forever.
*/
if (dentry->d_count) {
dentry_lru_del(dentry);
} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
dentry_lru_move_list(dentry, dispose);
dentry->d_flags |= DCACHE_SHRINK_LIST;
found++;
}
/*
* We can return to the caller if we have found some (this
* ensures forward progress). We'll be coming back to find
* the rest.
*/
if (found && need_resched()) {
spin_unlock(&dentry->d_lock);
goto out;
}
/*
* Descend a level if the d_subdirs list is non-empty.
*/
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
this_parent = dentry;
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
goto repeat;
}
spin_unlock(&dentry->d_lock);
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
struct dentry *child = this_parent;
this_parent = try_to_ascend(this_parent, locked, seq);
if (!this_parent)
goto rename_retry;
next = child->d_u.d_child.next;
goto resume;
}
out:
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return found;
rename_retry:
if (found)
return found;
locked = 1;
write_seqlock(&rename_lock);
goto again;
}
/**
* shrink_dcache_parent - prune dcache
* @parent: parent of entries to prune
*
* Prune the dcache to remove unused children of the parent dentry.
*/
void shrink_dcache_parent(struct dentry * parent)
{
LIST_HEAD(dispose);
int found;
while ((found = select_parent(parent, &dispose)) != 0)
shrink_dentry_list(&dispose);
}
EXPORT_SYMBOL(shrink_dcache_parent);
/**
* __d_alloc - allocate a dcache entry
* @sb: filesystem it will belong to
* @name: qstr of the name
*
* Allocates a dentry. It returns %NULL if there is insufficient memory
* available. On a success the dentry is returned. The name passed in is
* copied and the copy passed in may be reused after this call.
*/
struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
{
struct dentry *dentry;
char *dname;
dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
if (!dentry)
return NULL;
if (name->len > DNAME_INLINE_LEN-1) {
dname = kmalloc(name->len + 1, GFP_KERNEL);
if (!dname) {
kmem_cache_free(dentry_cache, dentry);
return NULL;
}
} else {
dname = dentry->d_iname;
}
dentry->d_name.name = dname;
dentry->d_name.len = name->len;
dentry->d_name.hash = name->hash;
memcpy(dname, name->name, name->len);
dname[name->len] = 0;
dentry->d_count = 1;
dentry->d_flags = 0;
spin_lock_init(&dentry->d_lock);
seqcount_init(&dentry->d_seq);
dentry->d_inode = NULL;
dentry->d_parent = dentry;
dentry->d_sb = sb;
dentry->d_op = NULL;
dentry->d_fsdata = NULL;
INIT_HLIST_BL_NODE(&dentry->d_hash);
INIT_LIST_HEAD(&dentry->d_lru);
INIT_LIST_HEAD(&dentry->d_subdirs);
INIT_LIST_HEAD(&dentry->d_alias);
INIT_LIST_HEAD(&dentry->d_u.d_child);
d_set_d_op(dentry, dentry->d_sb->s_d_op);
this_cpu_inc(nr_dentry);
return dentry;
}
/**
* d_alloc - allocate a dcache entry
* @parent: parent of entry to allocate
* @name: qstr of the name
*
* Allocates a dentry. It returns %NULL if there is insufficient memory
* available. On a success the dentry is returned. The name passed in is
* copied and the copy passed in may be reused after this call.
*/
struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
{
struct dentry *dentry = __d_alloc(parent->d_sb, name);
if (!dentry)
return NULL;
spin_lock(&parent->d_lock);
/*
* don't need child lock because it is not subject
* to concurrency here
*/
__dget_dlock(parent);
dentry->d_parent = parent;
list_add(&dentry->d_u.d_child, &parent->d_subdirs);
spin_unlock(&parent->d_lock);
return dentry;
}
EXPORT_SYMBOL(d_alloc);
struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
{
struct dentry *dentry = __d_alloc(sb, name);
if (dentry)
dentry->d_flags |= DCACHE_DISCONNECTED;
return dentry;
}
EXPORT_SYMBOL(d_alloc_pseudo);
struct dentry *d_alloc_name(struct dentry *parent, const char *name)
{
struct qstr q;
q.name = name;
q.len = strlen(name);
q.hash = full_name_hash(q.name, q.len);
return d_alloc(parent, &q);
}
EXPORT_SYMBOL(d_alloc_name);
void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
{
WARN_ON_ONCE(dentry->d_op);
WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
DCACHE_OP_COMPARE |
DCACHE_OP_REVALIDATE |
DCACHE_OP_DELETE ));
dentry->d_op = op;
if (!op)
return;
if (op->d_hash)
dentry->d_flags |= DCACHE_OP_HASH;
if (op->d_compare)
dentry->d_flags |= DCACHE_OP_COMPARE;
if (op->d_revalidate)
dentry->d_flags |= DCACHE_OP_REVALIDATE;
if (op->d_delete)
dentry->d_flags |= DCACHE_OP_DELETE;
if (op->d_prune)
dentry->d_flags |= DCACHE_OP_PRUNE;
}
EXPORT_SYMBOL(d_set_d_op);
static void __d_instantiate(struct dentry *dentry, struct inode *inode)
{
spin_lock(&dentry->d_lock);
if (inode) {
if (unlikely(IS_AUTOMOUNT(inode)))
dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
list_add(&dentry->d_alias, &inode->i_dentry);
}
dentry->d_inode = inode;
dentry_rcuwalk_barrier(dentry);
spin_unlock(&dentry->d_lock);
fsnotify_d_instantiate(dentry, inode);
}
/**
* d_instantiate - fill in inode information for a dentry
* @entry: dentry to complete
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry.
*
* This turns negative dentries into productive full members
* of society.
*
* NOTE! This assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
void d_instantiate(struct dentry *entry, struct inode * inode)
{
BUG_ON(!list_empty(&entry->d_alias));
if (inode)
spin_lock(&inode->i_lock);
__d_instantiate(entry, inode);
if (inode)
spin_unlock(&inode->i_lock);
security_d_instantiate(entry, inode);
}
EXPORT_SYMBOL(d_instantiate);
/**
* d_instantiate_unique - instantiate a non-aliased dentry
* @entry: dentry to instantiate
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry. On success, it returns NULL.
* If an unhashed alias of "entry" already exists, then we return the
* aliased dentry instead and drop one reference to inode.
*
* Note that in order to avoid conflicts with rename() etc, the caller
* had better be holding the parent directory semaphore.
*
* This also assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
static struct dentry *__d_instantiate_unique(struct dentry *entry,
struct inode *inode)
{
struct dentry *alias;
int len = entry->d_name.len;
const char *name = entry->d_name.name;
unsigned int hash = entry->d_name.hash;
if (!inode) {
__d_instantiate(entry, NULL);
return NULL;
}
list_for_each_entry(alias, &inode->i_dentry, d_alias) {
struct qstr *qstr = &alias->d_name;
/*
* Don't need alias->d_lock here, because aliases with
* d_parent == entry->d_parent are not subject to name or
* parent changes, because the parent inode i_mutex is held.
*/
if (qstr->hash != hash)
continue;
if (alias->d_parent != entry->d_parent)
continue;
if (dentry_cmp(qstr->name, qstr->len, name, len))
continue;
__dget(alias);
return alias;
}
__d_instantiate(entry, inode);
return NULL;
}
struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
{
struct dentry *result;
BUG_ON(!list_empty(&entry->d_alias));
if (inode)
spin_lock(&inode->i_lock);
result = __d_instantiate_unique(entry, inode);
if (inode)
spin_unlock(&inode->i_lock);
if (!result) {
security_d_instantiate(entry, inode);
return NULL;
}
BUG_ON(!d_unhashed(result));
iput(inode);
return result;
}
EXPORT_SYMBOL(d_instantiate_unique);
struct dentry *d_make_root(struct inode *root_inode)
{
struct dentry *res = NULL;
if (root_inode) {
static const struct qstr name = { .name = "/", .len = 1 };
res = __d_alloc(root_inode->i_sb, &name);
if (res)
d_instantiate(res, root_inode);
else
iput(root_inode);
}
return res;
}
EXPORT_SYMBOL(d_make_root);
static struct dentry * __d_find_any_alias(struct inode *inode)
{
struct dentry *alias;
if (list_empty(&inode->i_dentry))
return NULL;
alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
__dget(alias);
return alias;
}
/**
* d_find_any_alias - find any alias for a given inode
* @inode: inode to find an alias for
*
* If any aliases exist for the given inode, take and return a
* reference for one of them. If no aliases exist, return %NULL.
*/
struct dentry *d_find_any_alias(struct inode *inode)
{
struct dentry *de;
spin_lock(&inode->i_lock);
de = __d_find_any_alias(inode);
spin_unlock(&inode->i_lock);
return de;
}
EXPORT_SYMBOL(d_find_any_alias);
/**
* d_obtain_alias - find or allocate a dentry for a given inode
* @inode: inode to allocate the dentry for
*
* Obtain a dentry for an inode resulting from NFS filehandle conversion or
* similar open by handle operations. The returned dentry may be anonymous,
* or may have a full name (if the inode was already in the cache).
*
* When called on a directory inode, we must ensure that the inode only ever
* has one dentry. If a dentry is found, that is returned instead of
* allocating a new one.
*
* On successful return, the reference to the inode has been transferred
* to the dentry. In case of an error the reference on the inode is released.
* To make it easier to use in export operations a %NULL or IS_ERR inode may
* be passed in and will be the error will be propagate to the return value,
* with a %NULL @inode replaced by ERR_PTR(-ESTALE).
*/
struct dentry *d_obtain_alias(struct inode *inode)
{
static const struct qstr anonstring = { .name = "" };
struct dentry *tmp;
struct dentry *res;
if (!inode)
return ERR_PTR(-ESTALE);
if (IS_ERR(inode))
return ERR_CAST(inode);
res = d_find_any_alias(inode);
if (res)
goto out_iput;
tmp = __d_alloc(inode->i_sb, &anonstring);
if (!tmp) {
res = ERR_PTR(-ENOMEM);
goto out_iput;
}
spin_lock(&inode->i_lock);
res = __d_find_any_alias(inode);
if (res) {
spin_unlock(&inode->i_lock);
dput(tmp);
goto out_iput;
}
/* attach a disconnected dentry */
spin_lock(&tmp->d_lock);
tmp->d_inode = inode;
tmp->d_flags |= DCACHE_DISCONNECTED;
list_add(&tmp->d_alias, &inode->i_dentry);
hlist_bl_lock(&tmp->d_sb->s_anon);
hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
hlist_bl_unlock(&tmp->d_sb->s_anon);
spin_unlock(&tmp->d_lock);
spin_unlock(&inode->i_lock);
security_d_instantiate(tmp, inode);
return tmp;
out_iput:
if (res && !IS_ERR(res))
security_d_instantiate(res, inode);
iput(inode);
return res;
}
EXPORT_SYMBOL(d_obtain_alias);
/**
* d_splice_alias - splice a disconnected dentry into the tree if one exists
* @inode: the inode which may have a disconnected dentry
* @dentry: a negative dentry which we want to point to the inode.
*
* If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
* DCACHE_DISCONNECTED), then d_move that in place of the given dentry
* and return it, else simply d_add the inode to the dentry and return NULL.
*
* This is needed in the lookup routine of any filesystem that is exportable
* (via knfsd) so that we can build dcache paths to directories effectively.
*
* If a dentry was found and moved, then it is returned. Otherwise NULL
* is returned. This matches the expected return value of ->lookup.
*
*/
struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
{
struct dentry *new = NULL;
if (IS_ERR(inode))
return ERR_CAST(inode);
if (inode && S_ISDIR(inode->i_mode)) {
spin_lock(&inode->i_lock);
new = __d_find_alias(inode, 1);
if (new) {
BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
spin_unlock(&inode->i_lock);
security_d_instantiate(new, inode);
d_move(new, dentry);
iput(inode);
} else {
/* already taking inode->i_lock, so d_add() by hand */
__d_instantiate(dentry, inode);
spin_unlock(&inode->i_lock);
security_d_instantiate(dentry, inode);
d_rehash(dentry);
}
} else
d_add(dentry, inode);
return new;
}
EXPORT_SYMBOL(d_splice_alias);
/**
* d_add_ci - lookup or allocate new dentry with case-exact name
* @inode: the inode case-insensitive lookup has found
* @dentry: the negative dentry that was passed to the parent's lookup func
* @name: the case-exact name to be associated with the returned dentry
*
* This is to avoid filling the dcache with case-insensitive names to the
* same inode, only the actual correct case is stored in the dcache for
* case-insensitive filesystems.
*
* For a case-insensitive lookup match and if the the case-exact dentry
* already exists in in the dcache, use it and return it.
*
* If no entry exists with the exact case name, allocate new dentry with
* the exact case, and return the spliced entry.
*/
struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
struct qstr *name)
{
int error;
struct dentry *found;
struct dentry *new;
/*
* First check if a dentry matching the name already exists,
* if not go ahead and create it now.
*/
found = d_hash_and_lookup(dentry->d_parent, name);
if (!found) {
new = d_alloc(dentry->d_parent, name);
if (!new) {
error = -ENOMEM;
goto err_out;
}
found = d_splice_alias(inode, new);
if (found) {
dput(new);
return found;
}
return new;
}
/*
* If a matching dentry exists, and it's not negative use it.
*
* Decrement the reference count to balance the iget() done
* earlier on.
*/
if (found->d_inode) {
if (unlikely(found->d_inode != inode)) {
/* This can't happen because bad inodes are unhashed. */
BUG_ON(!is_bad_inode(inode));
BUG_ON(!is_bad_inode(found->d_inode));
}
iput(inode);
return found;
}
/*
* We are going to instantiate this dentry, unhash it and clear the
* lookup flag so we can do that.
*/
if (unlikely(d_need_lookup(found)))
d_clear_need_lookup(found);
/*
* Negative dentry: instantiate it unless the inode is a directory and
* already has a dentry.
*/
new = d_splice_alias(inode, found);
if (new) {
dput(found);
found = new;
}
return found;
err_out:
iput(inode);
return ERR_PTR(error);
}
EXPORT_SYMBOL(d_add_ci);
/**
* __d_lookup_rcu - search for a dentry (racy, store-free)
* @parent: parent dentry
* @name: qstr of name we wish to find
* @seq: returns d_seq value at the point where the dentry was found
* @inode: returns dentry->d_inode when the inode was found valid.
* Returns: dentry, or NULL
*
* __d_lookup_rcu is the dcache lookup function for rcu-walk name
* resolution (store-free path walking) design described in
* Documentation/filesystems/path-lookup.txt.
*
* This is not to be used outside core vfs.
*
* __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
* held, and rcu_read_lock held. The returned dentry must not be stored into
* without taking d_lock and checking d_seq sequence count against @seq
* returned here.
*
* A refcount may be taken on the found dentry with the __d_rcu_to_refcount
* function.
*
* Alternatively, __d_lookup_rcu may be called again to look up the child of
* the returned dentry, so long as its parent's seqlock is checked after the
* child is looked up. Thus, an interlocking stepping of sequence lock checks
* is formed, giving integrity down the path walk.
*/
struct dentry *__d_lookup_rcu(const struct dentry *parent,
const struct qstr *name,
unsigned *seqp, struct inode **inode)
{
unsigned int len = name->len;
unsigned int hash = name->hash;
const unsigned char *str = name->name;
struct hlist_bl_head *b = d_hash(parent, hash);
struct hlist_bl_node *node;
struct dentry *dentry;
/*
* Note: There is significant duplication with __d_lookup_rcu which is
* required to prevent single threaded performance regressions
* especially on architectures where smp_rmb (in seqcounts) are costly.
* Keep the two functions in sync.
*/
/*
* The hash list is protected using RCU.
*
* Carefully use d_seq when comparing a candidate dentry, to avoid
* races with d_move().
*
* It is possible that concurrent renames can mess up our list
* walk here and result in missing our dentry, resulting in the
* false-negative result. d_lookup() protects against concurrent
* renames using rename_lock seqlock.
*
* See Documentation/filesystems/path-lookup.txt for more details.
*/
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
unsigned seq;
struct inode *i;
const char *tname;
int tlen;
if (dentry->d_name.hash != hash)
continue;
seqretry:
seq = read_seqcount_begin(&dentry->d_seq);
if (dentry->d_parent != parent)
continue;
if (d_unhashed(dentry))
continue;
tlen = dentry->d_name.len;
tname = dentry->d_name.name;
i = dentry->d_inode;
prefetch(tname);
/*
* This seqcount check is required to ensure name and
* len are loaded atomically, so as not to walk off the
* edge of memory when walking. If we could load this
* atomically some other way, we could drop this check.
*/
if (read_seqcount_retry(&dentry->d_seq, seq))
goto seqretry;
if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
if (parent->d_op->d_compare(parent, *inode,
dentry, i,
tlen, tname, name))
continue;
} else {
if (dentry_cmp(tname, tlen, str, len))
continue;
}
/*
* No extra seqcount check is required after the name
* compare. The caller must perform a seqcount check in
* order to do anything useful with the returned dentry
* anyway.
*/
*seqp = seq;
*inode = i;
return dentry;
}
return NULL;
}
/**
* d_lookup - search for a dentry
* @parent: parent dentry
* @name: qstr of name we wish to find
* Returns: dentry, or NULL
*
* d_lookup searches the children of the parent dentry for the name in
* question. If the dentry is found its reference count is incremented and the
* dentry is returned. The caller must use dput to free the entry when it has
* finished using it. %NULL is returned if the dentry does not exist.
*/
struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
{
struct dentry *dentry;
unsigned seq;
do {
seq = read_seqbegin(&rename_lock);
dentry = __d_lookup(parent, name);
if (dentry)
break;
} while (read_seqretry(&rename_lock, seq));
return dentry;
}
EXPORT_SYMBOL(d_lookup);
/**
* __d_lookup - search for a dentry (racy)
* @parent: parent dentry
* @name: qstr of name we wish to find
* Returns: dentry, or NULL
*
* __d_lookup is like d_lookup, however it may (rarely) return a
* false-negative result due to unrelated rename activity.
*
* __d_lookup is slightly faster by avoiding rename_lock read seqlock,
* however it must be used carefully, eg. with a following d_lookup in
* the case of failure.
*
* __d_lookup callers must be commented.
*/
struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
{
unsigned int len = name->len;
unsigned int hash = name->hash;
const unsigned char *str = name->name;
struct hlist_bl_head *b = d_hash(parent, hash);
struct hlist_bl_node *node;
struct dentry *found = NULL;
struct dentry *dentry;
/*
* Note: There is significant duplication with __d_lookup_rcu which is
* required to prevent single threaded performance regressions
* especially on architectures where smp_rmb (in seqcounts) are costly.
* Keep the two functions in sync.
*/
/*
* The hash list is protected using RCU.
*
* Take d_lock when comparing a candidate dentry, to avoid races
* with d_move().
*
* It is possible that concurrent renames can mess up our list
* walk here and result in missing our dentry, resulting in the
* false-negative result. d_lookup() protects against concurrent
* renames using rename_lock seqlock.
*
* See Documentation/filesystems/path-lookup.txt for more details.
*/
rcu_read_lock();
hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
const char *tname;
int tlen;
if (dentry->d_name.hash != hash)
continue;
spin_lock(&dentry->d_lock);
if (dentry->d_parent != parent)
goto next;
if (d_unhashed(dentry))
goto next;
/*
* It is safe to compare names since d_move() cannot
* change the qstr (protected by d_lock).
*/
tlen = dentry->d_name.len;
tname = dentry->d_name.name;
if (parent->d_flags & DCACHE_OP_COMPARE) {
if (parent->d_op->d_compare(parent, parent->d_inode,
dentry, dentry->d_inode,
tlen, tname, name))
goto next;
} else {
if (dentry_cmp(tname, tlen, str, len))
goto next;
}
dentry->d_count++;
found = dentry;
spin_unlock(&dentry->d_lock);
break;
next:
spin_unlock(&dentry->d_lock);
}
rcu_read_unlock();
return found;
}
/**
* d_hash_and_lookup - hash the qstr then search for a dentry
* @dir: Directory to search in
* @name: qstr of name we wish to find
*
* On hash failure or on lookup failure NULL is returned.
*/
struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
{
struct dentry *dentry = NULL;
/*
* Check for a fs-specific hash function. Note that we must
* calculate the standard hash first, as the d_op->d_hash()
* routine may choose to leave the hash value unchanged.
*/
name->hash = full_name_hash(name->name, name->len);
if (dir->d_flags & DCACHE_OP_HASH) {
if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
goto out;
}
dentry = d_lookup(dir, name);
out:
return dentry;
}
/**
* d_validate - verify dentry provided from insecure source (deprecated)
* @dentry: The dentry alleged to be valid child of @dparent
* @dparent: The parent dentry (known to be valid)
*
* An insecure source has sent us a dentry, here we verify it and dget() it.
* This is used by ncpfs in its readdir implementation.
* Zero is returned in the dentry is invalid.
*
* This function is slow for big directories, and deprecated, do not use it.
*/
int d_validate(struct dentry *dentry, struct dentry *dparent)
{
struct dentry *child;
spin_lock(&dparent->d_lock);
list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
if (dentry == child) {
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
__dget_dlock(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dparent->d_lock);
return 1;
}
}
spin_unlock(&dparent->d_lock);
return 0;
}
EXPORT_SYMBOL(d_validate);
/*
* When a file is deleted, we have two options:
* - turn this dentry into a negative dentry
* - unhash this dentry and free it.
*
* Usually, we want to just turn this into
* a negative dentry, but if anybody else is
* currently using the dentry or the inode
* we can't do that and we fall back on removing
* it from the hash queues and waiting for
* it to be deleted later when it has no users
*/
/**
* d_delete - delete a dentry
* @dentry: The dentry to delete
*
* Turn the dentry into a negative dentry if possible, otherwise
* remove it from the hash queues so it can be deleted later
*/
void d_delete(struct dentry * dentry)
{
struct inode *inode;
int isdir = 0;
/*
* Are we the only user?
*/
again:
spin_lock(&dentry->d_lock);
inode = dentry->d_inode;
isdir = S_ISDIR(inode->i_mode);
if (dentry->d_count == 1) {
if (inode && !spin_trylock(&inode->i_lock)) {
spin_unlock(&dentry->d_lock);
cpu_relax();
goto again;
}
dentry->d_flags &= ~DCACHE_CANT_MOUNT;
dentry_unlink_inode(dentry);
fsnotify_nameremove(dentry, isdir);
return;
}
if (!d_unhashed(dentry))
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
fsnotify_nameremove(dentry, isdir);
}
EXPORT_SYMBOL(d_delete);
static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
{
BUG_ON(!d_unhashed(entry));
hlist_bl_lock(b);
entry->d_flags |= DCACHE_RCUACCESS;
hlist_bl_add_head_rcu(&entry->d_hash, b);
hlist_bl_unlock(b);
}
static void _d_rehash(struct dentry * entry)
{
__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
}
/**
* d_rehash - add an entry back to the hash
* @entry: dentry to add to the hash
*
* Adds a dentry to the hash according to its name.
*/
void d_rehash(struct dentry * entry)
{
spin_lock(&entry->d_lock);
_d_rehash(entry);
spin_unlock(&entry->d_lock);
}
EXPORT_SYMBOL(d_rehash);
/**
* dentry_update_name_case - update case insensitive dentry with a new name
* @dentry: dentry to be updated
* @name: new name
*
* Update a case insensitive dentry with new case of name.
*
* dentry must have been returned by d_lookup with name @name. Old and new
* name lengths must match (ie. no d_compare which allows mismatched name
* lengths).
*
* Parent inode i_mutex must be held over d_lookup and into this call (to
* keep renames and concurrent inserts, and readdir(2) away).
*/
void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
{
BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
spin_lock(&dentry->d_lock);
write_seqcount_begin(&dentry->d_seq);
memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
write_seqcount_end(&dentry->d_seq);
spin_unlock(&dentry->d_lock);
}
EXPORT_SYMBOL(dentry_update_name_case);
static void switch_names(struct dentry *dentry, struct dentry *target)
{
if (dname_external(target)) {
if (dname_external(dentry)) {
/*
* Both external: swap the pointers
*/
swap(target->d_name.name, dentry->d_name.name);
} else {
/*
* dentry:internal, target:external. Steal target's
* storage and make target internal.
*/
memcpy(target->d_iname, dentry->d_name.name,
dentry->d_name.len + 1);
dentry->d_name.name = target->d_name.name;
target->d_name.name = target->d_iname;
}
} else {
if (dname_external(dentry)) {
/*
* dentry:external, target:internal. Give dentry's
* storage to target and make dentry internal
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
target->d_name.name = dentry->d_name.name;
dentry->d_name.name = dentry->d_iname;
} else {
/*
* Both are internal. Just copy target to dentry
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
dentry->d_name.len = target->d_name.len;
return;
}
}
swap(dentry->d_name.len, target->d_name.len);
}
static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
{
/*
* XXXX: do we really need to take target->d_lock?
*/
if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
spin_lock(&target->d_parent->d_lock);
else {
if (d_ancestor(dentry->d_parent, target->d_parent)) {
spin_lock(&dentry->d_parent->d_lock);
spin_lock_nested(&target->d_parent->d_lock,
DENTRY_D_LOCK_NESTED);
} else {
spin_lock(&target->d_parent->d_lock);
spin_lock_nested(&dentry->d_parent->d_lock,
DENTRY_D_LOCK_NESTED);
}
}
if (target < dentry) {
spin_lock_nested(&target->d_lock, 2);
spin_lock_nested(&dentry->d_lock, 3);
} else {
spin_lock_nested(&dentry->d_lock, 2);
spin_lock_nested(&target->d_lock, 3);
}
}
static void dentry_unlock_parents_for_move(struct dentry *dentry,
struct dentry *target)
{
if (target->d_parent != dentry->d_parent)
spin_unlock(&dentry->d_parent->d_lock);
if (target->d_parent != target)
spin_unlock(&target->d_parent->d_lock);
}
/*
* When switching names, the actual string doesn't strictly have to
* be preserved in the target - because we're dropping the target
* anyway. As such, we can just do a simple memcpy() to copy over
* the new name before we switch.
*
* Note that we have to be a lot more careful about getting the hash
* switched - we have to switch the hash value properly even if it
* then no longer matches the actual (corrupted) string of the target.
* The hash value has to match the hash queue that the dentry is on..
*/
/*
* __d_move - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way. Caller must hold
* rename_lock, the i_mutex of the source and target directories,
* and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
*/
static void __d_move(struct dentry * dentry, struct dentry * target)
{
if (!dentry->d_inode)
printk(KERN_WARNING "VFS: moving negative dcache entry\n");
BUG_ON(d_ancestor(dentry, target));
BUG_ON(d_ancestor(target, dentry));
dentry_lock_for_move(dentry, target);
write_seqcount_begin(&dentry->d_seq);
write_seqcount_begin(&target->d_seq);
/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
/*
* Move the dentry to the target hash queue. Don't bother checking
* for the same hash queue because of how unlikely it is.
*/
__d_drop(dentry);
__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
/* Unhash the target: dput() will then get rid of it */
__d_drop(target);
list_del(&dentry->d_u.d_child);
list_del(&target->d_u.d_child);
/* Switch the names.. */
switch_names(dentry, target);
swap(dentry->d_name.hash, target->d_name.hash);
/* ... and switch the parents */
if (IS_ROOT(dentry)) {
dentry->d_parent = target->d_parent;
target->d_parent = target;
INIT_LIST_HEAD(&target->d_u.d_child);
} else {
swap(dentry->d_parent, target->d_parent);
/* And add them back to the (new) parent lists */
list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
}
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
write_seqcount_end(&target->d_seq);
write_seqcount_end(&dentry->d_seq);
dentry_unlock_parents_for_move(dentry, target);
spin_unlock(&target->d_lock);
fsnotify_d_move(dentry);
spin_unlock(&dentry->d_lock);
}
/*
* d_move - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way. See the locking
* requirements for __d_move.
*/
void d_move(struct dentry *dentry, struct dentry *target)
{
write_seqlock(&rename_lock);
__d_move(dentry, target);
write_sequnlock(&rename_lock);
}
EXPORT_SYMBOL(d_move);
/**
* d_ancestor - search for an ancestor
* @p1: ancestor dentry
* @p2: child dentry
*
* Returns the ancestor dentry of p2 which is a child of p1, if p1 is
* an ancestor of p2, else NULL.
*/
struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
{
struct dentry *p;
for (p = p2; !IS_ROOT(p); p = p->d_parent) {
if (p->d_parent == p1)
return p;
}
return NULL;
}
/*
* This helper attempts to cope with remotely renamed directories
*
* It assumes that the caller is already holding
* dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
*
* Note: If ever the locking in lock_rename() changes, then please
* remember to update this too...
*/
static struct dentry *__d_unalias(struct inode *inode,
struct dentry *dentry, struct dentry *alias)
{
struct mutex *m1 = NULL, *m2 = NULL;
struct dentry *ret;
/* If alias and dentry share a parent, then no extra locks required */
if (alias->d_parent == dentry->d_parent)
goto out_unalias;
/* See lock_rename() */
ret = ERR_PTR(-EBUSY);
if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
goto out_err;
m1 = &dentry->d_sb->s_vfs_rename_mutex;
if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
goto out_err;
m2 = &alias->d_parent->d_inode->i_mutex;
out_unalias:
__d_move(alias, dentry);
ret = alias;
out_err:
spin_unlock(&inode->i_lock);
if (m2)
mutex_unlock(m2);
if (m1)
mutex_unlock(m1);
return ret;
}
/*
* Prepare an anonymous dentry for life in the superblock's dentry tree as a
* named dentry in place of the dentry to be replaced.
* returns with anon->d_lock held!
*/
static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
{
struct dentry *dparent, *aparent;
dentry_lock_for_move(anon, dentry);
write_seqcount_begin(&dentry->d_seq);
write_seqcount_begin(&anon->d_seq);
dparent = dentry->d_parent;
aparent = anon->d_parent;
switch_names(dentry, anon);
swap(dentry->d_name.hash, anon->d_name.hash);
dentry->d_parent = (aparent == anon) ? dentry : aparent;
list_del(&dentry->d_u.d_child);
if (!IS_ROOT(dentry))
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&dentry->d_u.d_child);
anon->d_parent = (dparent == dentry) ? anon : dparent;
list_del(&anon->d_u.d_child);
if (!IS_ROOT(anon))
list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&anon->d_u.d_child);
write_seqcount_end(&dentry->d_seq);
write_seqcount_end(&anon->d_seq);
dentry_unlock_parents_for_move(anon, dentry);
spin_unlock(&dentry->d_lock);
/* anon->d_lock still locked, returns locked */
anon->d_flags &= ~DCACHE_DISCONNECTED;
}
/**
* d_materialise_unique - introduce an inode into the tree
* @dentry: candidate dentry
* @inode: inode to bind to the dentry, to which aliases may be attached
*
* Introduces an dentry into the tree, substituting an extant disconnected
* root directory alias in its place if there is one. Caller must hold the
* i_mutex of the parent directory.
*/
struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
{
struct dentry *actual;
BUG_ON(!d_unhashed(dentry));
if (!inode) {
actual = dentry;
__d_instantiate(dentry, NULL);
d_rehash(actual);
goto out_nolock;
}
spin_lock(&inode->i_lock);
if (S_ISDIR(inode->i_mode)) {
struct dentry *alias;
/* Does an aliased dentry already exist? */
alias = __d_find_alias(inode, 0);
if (alias) {
actual = alias;
write_seqlock(&rename_lock);
if (d_ancestor(alias, dentry)) {
/* Check for loops */
actual = ERR_PTR(-ELOOP);
} else if (IS_ROOT(alias)) {
/* Is this an anonymous mountpoint that we
* could splice into our tree? */
__d_materialise_dentry(dentry, alias);
write_sequnlock(&rename_lock);
__d_drop(alias);
goto found;
} else {
/* Nope, but we must(!) avoid directory
* aliasing */
actual = __d_unalias(inode, dentry, alias);
}
write_sequnlock(&rename_lock);
if (IS_ERR(actual)) {
if (PTR_ERR(actual) == -ELOOP)
pr_warn_ratelimited(
"VFS: Lookup of '%s' in %s %s"
" would have caused loop\n",
dentry->d_name.name,
inode->i_sb->s_type->name,
inode->i_sb->s_id);
dput(alias);
}
goto out_nolock;
}
}
/* Add a unique reference */
actual = __d_instantiate_unique(dentry, inode);
if (!actual)
actual = dentry;
else
BUG_ON(!d_unhashed(actual));
spin_lock(&actual->d_lock);
found:
_d_rehash(actual);
spin_unlock(&actual->d_lock);
spin_unlock(&inode->i_lock);
out_nolock:
if (actual == dentry) {
security_d_instantiate(dentry, inode);
return NULL;
}
iput(inode);
return actual;
}
EXPORT_SYMBOL_GPL(d_materialise_unique);
static int prepend(char **buffer, int *buflen, const char *str, int namelen)
{
*buflen -= namelen;
if (*buflen < 0)
return -ENAMETOOLONG;
*buffer -= namelen;
memcpy(*buffer, str, namelen);
return 0;
}
static int prepend_name(char **buffer, int *buflen, struct qstr *name)
{
return prepend(buffer, buflen, name->name, name->len);
}
/**
* prepend_path - Prepend path string to a buffer
* @path: the dentry/vfsmount to report
* @root: root vfsmnt/dentry
* @buffer: pointer to the end of the buffer
* @buflen: pointer to buffer length
*
* Caller holds the rename_lock.
*/
static int prepend_path(const struct path *path,
const struct path *root,
char **buffer, int *buflen)
{
struct dentry *dentry = path->dentry;
struct vfsmount *vfsmnt = path->mnt;
struct mount *mnt = real_mount(vfsmnt);
bool slash = false;
int error = 0;
br_read_lock(vfsmount_lock);
while (dentry != root->dentry || vfsmnt != root->mnt) {
struct dentry * parent;
if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
/* Global root? */
if (!mnt_has_parent(mnt))
goto global_root;
dentry = mnt->mnt_mountpoint;
mnt = mnt->mnt_parent;
vfsmnt = &mnt->mnt;
continue;
}
parent = dentry->d_parent;
prefetch(parent);
spin_lock(&dentry->d_lock);
error = prepend_name(buffer, buflen, &dentry->d_name);
spin_unlock(&dentry->d_lock);
if (!error)
error = prepend(buffer, buflen, "/", 1);
if (error)
break;
slash = true;
dentry = parent;
}
if (!error && !slash)
error = prepend(buffer, buflen, "/", 1);
out:
br_read_unlock(vfsmount_lock);
return error;
global_root:
/*
* Filesystems needing to implement special "root names"
* should do so with ->d_dname()
*/
if (IS_ROOT(dentry) &&
(dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
WARN(1, "Root dentry has weird name <%.*s>\n",
(int) dentry->d_name.len, dentry->d_name.name);
}
if (!slash)
error = prepend(buffer, buflen, "/", 1);
if (!error)
error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
goto out;
}
/**
* __d_path - return the path of a dentry
* @path: the dentry/vfsmount to report
* @root: root vfsmnt/dentry
* @buf: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name.
*
* Returns a pointer into the buffer or an error code if the
* path was too long.
*
* "buflen" should be positive.
*
* If the path is not reachable from the supplied root, return %NULL.
*/
char *__d_path(const struct path *path,
const struct path *root,
char *buf, int buflen)
{
char *res = buf + buflen;
int error;
prepend(&res, &buflen, "\0", 1);
write_seqlock(&rename_lock);
error = prepend_path(path, root, &res, &buflen);
write_sequnlock(&rename_lock);
if (error < 0)
return ERR_PTR(error);
if (error > 0)
return NULL;
return res;
}
char *d_absolute_path(const struct path *path,
char *buf, int buflen)
{
struct path root = {};
char *res = buf + buflen;
int error;
prepend(&res, &buflen, "\0", 1);
write_seqlock(&rename_lock);
error = prepend_path(path, &root, &res, &buflen);
write_sequnlock(&rename_lock);
if (error > 1)
error = -EINVAL;
if (error < 0)
return ERR_PTR(error);
return res;
}
/*
* same as __d_path but appends "(deleted)" for unlinked files.
*/
static int path_with_deleted(const struct path *path,
const struct path *root,
char **buf, int *buflen)
{
prepend(buf, buflen, "\0", 1);
if (d_unlinked(path->dentry)) {
int error = prepend(buf, buflen, " (deleted)", 10);
if (error)
return error;
}
return prepend_path(path, root, buf, buflen);
}
static int prepend_unreachable(char **buffer, int *buflen)
{
return prepend(buffer, buflen, "(unreachable)", 13);
}
/**
* d_path - return the path of a dentry
* @path: path to report
* @buf: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name. If the entry has been deleted
* the string " (deleted)" is appended. Note that this is ambiguous.
*
* Returns a pointer into the buffer or an error code if the path was
* too long. Note: Callers should use the returned pointer, not the passed
* in buffer, to use the name! The implementation often starts at an offset
* into the buffer, and may leave 0 bytes at the start.
*
* "buflen" should be positive.
*/
char *d_path(const struct path *path, char *buf, int buflen)
{
char *res = buf + buflen;
struct path root;
int error;
/*
* We have various synthetic filesystems that never get mounted. On
* these filesystems dentries are never used for lookup purposes, and
* thus don't need to be hashed. They also don't need a name until a
* user wants to identify the object in /proc/pid/fd/. The little hack
* below allows us to generate a name for these objects on demand:
*/
if (path->dentry->d_op && path->dentry->d_op->d_dname)
return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
get_fs_root(current->fs, &root);
write_seqlock(&rename_lock);
error = path_with_deleted(path, &root, &res, &buflen);
if (error < 0)
res = ERR_PTR(error);
write_sequnlock(&rename_lock);
path_put(&root);
return res;
}
EXPORT_SYMBOL(d_path);
/**
* d_path_with_unreachable - return the path of a dentry
* @path: path to report
* @buf: buffer to return value in
* @buflen: buffer length
*
* The difference from d_path() is that this prepends "(unreachable)"
* to paths which are unreachable from the current process' root.
*/
char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
{
char *res = buf + buflen;
struct path root;
int error;
if (path->dentry->d_op && path->dentry->d_op->d_dname)
return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
get_fs_root(current->fs, &root);
write_seqlock(&rename_lock);
error = path_with_deleted(path, &root, &res, &buflen);
if (error > 0)
error = prepend_unreachable(&res, &buflen);
write_sequnlock(&rename_lock);
path_put(&root);
if (error)
res = ERR_PTR(error);
return res;
}
/*
* Helper function for dentry_operations.d_dname() members
*/
char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
const char *fmt, ...)
{
va_list args;
char temp[64];
int sz;
va_start(args, fmt);
sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
va_end(args);
if (sz > sizeof(temp) || sz > buflen)
return ERR_PTR(-ENAMETOOLONG);
buffer += buflen - sz;
return memcpy(buffer, temp, sz);
}
/*
* Write full pathname from the root of the filesystem into the buffer.
*/
static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
{
char *end = buf + buflen;
char *retval;
prepend(&end, &buflen, "\0", 1);
if (buflen < 1)
goto Elong;
/* Get '/' right */
retval = end-1;
*retval = '/';
while (!IS_ROOT(dentry)) {
struct dentry *parent = dentry->d_parent;
int error;
prefetch(parent);
spin_lock(&dentry->d_lock);
error = prepend_name(&end, &buflen, &dentry->d_name);
spin_unlock(&dentry->d_lock);
if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
goto Elong;
retval = end;
dentry = parent;
}
return retval;
Elong:
return ERR_PTR(-ENAMETOOLONG);
}
char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
{
char *retval;
write_seqlock(&rename_lock);
retval = __dentry_path(dentry, buf, buflen);
write_sequnlock(&rename_lock);
return retval;
}
EXPORT_SYMBOL(dentry_path_raw);
char *dentry_path(struct dentry *dentry, char *buf, int buflen)
{
char *p = NULL;
char *retval;
write_seqlock(&rename_lock);
if (d_unlinked(dentry)) {
p = buf + buflen;
if (prepend(&p, &buflen, "//deleted", 10) != 0)
goto Elong;
buflen++;
}
retval = __dentry_path(dentry, buf, buflen);
write_sequnlock(&rename_lock);
if (!IS_ERR(retval) && p)
*p = '/'; /* restore '/' overriden with '\0' */
return retval;
Elong:
return ERR_PTR(-ENAMETOOLONG);
}
/*
* NOTE! The user-level library version returns a
* character pointer. The kernel system call just
* returns the length of the buffer filled (which
* includes the ending '\0' character), or a negative
* error value. So libc would do something like
*
* char *getcwd(char * buf, size_t size)
* {
* int retval;
*
* retval = sys_getcwd(buf, size);
* if (retval >= 0)
* return buf;
* errno = -retval;
* return NULL;
* }
*/
SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
{
int error;
struct path pwd, root;
char *page = (char *) __get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
get_fs_root_and_pwd(current->fs, &root, &pwd);
error = -ENOENT;
write_seqlock(&rename_lock);
if (!d_unlinked(pwd.dentry)) {
unsigned long len;
char *cwd = page + PAGE_SIZE;
int buflen = PAGE_SIZE;
prepend(&cwd, &buflen, "\0", 1);
error = prepend_path(&pwd, &root, &cwd, &buflen);
write_sequnlock(&rename_lock);
if (error < 0)
goto out;
/* Unreachable from current root */
if (error > 0) {
error = prepend_unreachable(&cwd, &buflen);
if (error)
goto out;
}
error = -ERANGE;
len = PAGE_SIZE + page - cwd;
if (len <= size) {
error = len;
if (copy_to_user(buf, cwd, len))
error = -EFAULT;
}
} else {
write_sequnlock(&rename_lock);
}
out:
path_put(&pwd);
path_put(&root);
free_page((unsigned long) page);
return error;
}
/*
* Test whether new_dentry is a subdirectory of old_dentry.
*
* Trivially implemented using the dcache structure
*/
/**
* is_subdir - is new dentry a subdirectory of old_dentry
* @new_dentry: new dentry
* @old_dentry: old dentry
*
* Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
* Returns 0 otherwise.
* Caller must ensure that "new_dentry" is pinned before calling is_subdir()
*/
int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
{
int result;
unsigned seq;
if (new_dentry == old_dentry)
return 1;
do {
/* for restarting inner loop in case of seq retry */
seq = read_seqbegin(&rename_lock);
/*
* Need rcu_readlock to protect against the d_parent trashing
* due to d_move
*/
rcu_read_lock();
if (d_ancestor(old_dentry, new_dentry))
result = 1;
else
result = 0;
rcu_read_unlock();
} while (read_seqretry(&rename_lock, seq));
return result;
}
void d_genocide(struct dentry *root)
{
struct dentry *this_parent;
struct list_head *next;
unsigned seq;
int locked = 0;
seq = read_seqbegin(&rename_lock);
again:
this_parent = root;
spin_lock(&this_parent->d_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
if (d_unhashed(dentry) || !dentry->d_inode) {
spin_unlock(&dentry->d_lock);
continue;
}
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&this_parent->d_lock);
spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
this_parent = dentry;
spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
goto repeat;
}
if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
dentry->d_flags |= DCACHE_GENOCIDE;
dentry->d_count--;
}
spin_unlock(&dentry->d_lock);
}
if (this_parent != root) {
struct dentry *child = this_parent;
if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
this_parent->d_flags |= DCACHE_GENOCIDE;
this_parent->d_count--;
}
this_parent = try_to_ascend(this_parent, locked, seq);
if (!this_parent)
goto rename_retry;
next = child->d_u.d_child.next;
goto resume;
}
spin_unlock(&this_parent->d_lock);
if (!locked && read_seqretry(&rename_lock, seq))
goto rename_retry;
if (locked)
write_sequnlock(&rename_lock);
return;
rename_retry:
locked = 1;
write_seqlock(&rename_lock);
goto again;
}
/**
* find_inode_number - check for dentry with name
* @dir: directory to check
* @name: Name to find.
*
* Check whether a dentry already exists for the given name,
* and return the inode number if it has an inode. Otherwise
* 0 is returned.
*
* This routine is used to post-process directory listings for
* filesystems using synthetic inode numbers, and is necessary
* to keep getcwd() working.
*/
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
struct dentry * dentry;
ino_t ino = 0;
dentry = d_hash_and_lookup(dir, name);
if (dentry) {
if (dentry->d_inode)
ino = dentry->d_inode->i_ino;
dput(dentry);
}
return ino;
}
EXPORT_SYMBOL(find_inode_number);
static __initdata unsigned long dhash_entries;
static int __init set_dhash_entries(char *str)
{
if (!str)
return 0;
dhash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("dhash_entries=", set_dhash_entries);
static void __init dcache_init_early(void)
{
unsigned int loop;
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_bl_head),
dhash_entries,
13,
HASH_EARLY,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1U << d_hash_shift); loop++)
INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
}
static void __init dcache_init(void)
{
unsigned int loop;
/*
* A constructor could be added for stable state like the lists,
* but it is probably not worth it because of the cache nature
* of the dcache.
*/
dentry_cache = KMEM_CACHE(dentry,
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
/* Hash may have been set up in dcache_init_early */
if (!hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_bl_head),
dhash_entries,
13,
0,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1U << d_hash_shift); loop++)
INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
}
/* SLAB cache for __getname() consumers */
struct kmem_cache *names_cachep __read_mostly;
EXPORT_SYMBOL(names_cachep);
EXPORT_SYMBOL(d_genocide);
void __init vfs_caches_init_early(void)
{
dcache_init_early();
inode_init_early();
}
void __init vfs_caches_init(unsigned long mempages)
{
unsigned long reserve;
/* Base hash sizes on available memory, with a reserve equal to
150% of current kernel size */
reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
mempages -= reserve;
names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
dcache_init();
inode_init();
files_init(mempages);
mnt_init();
bdev_cache_init();
chrdev_init();
}