1b17366d69
Pull powerpc updates from Ben Herrenschmidt: "So here's my next branch for powerpc. A bit late as I was on vacation last week. It's mostly the same stuff that was in next already, I just added two patches today which are the wiring up of lockref for powerpc, which for some reason fell through the cracks last time and is trivial. The highlights are, in addition to a bunch of bug fixes: - Reworked Machine Check handling on kernels running without a hypervisor (or acting as a hypervisor). Provides hooks to handle some errors in real mode such as TLB errors, handle SLB errors, etc... - Support for retrieving memory error information from the service processor on IBM servers running without a hypervisor and routing them to the memory poison infrastructure. - _PAGE_NUMA support on server processors - 32-bit BookE relocatable kernel support - FSL e6500 hardware tablewalk support - A bunch of new/revived board support - FSL e6500 deeper idle states and altivec powerdown support You'll notice a generic mm change here, it has been acked by the relevant authorities and is a pre-req for our _PAGE_NUMA support" * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (121 commits) powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked() powerpc: Add support for the optimised lockref implementation powerpc/powernv: Call OPAL sync before kexec'ing powerpc/eeh: Escalate error on non-existing PE powerpc/eeh: Handle multiple EEH errors powerpc: Fix transactional FP/VMX/VSX unavailable handlers powerpc: Don't corrupt transactional state when using FP/VMX in kernel powerpc: Reclaim two unused thread_info flag bits powerpc: Fix races with irq_work Move precessing of MCE queued event out from syscall exit path. pseries/cpuidle: Remove redundant call to ppc64_runlatch_off() in cpu idle routines powerpc: Make add_system_ram_resources() __init powerpc: add SATA_MV to ppc64_defconfig powerpc/powernv: Increase candidate fw image size powerpc: Add debug checks to catch invalid cpu-to-node mappings powerpc: Fix the setup of CPU-to-Node mappings during CPU online powerpc/iommu: Don't detach device without IOMMU group powerpc/eeh: Hotplug improvement powerpc/eeh: Call opal_pci_reinit() on powernv for restoring config space powerpc/eeh: Add restore_config operation ...
1640 lines
42 KiB
C
1640 lines
42 KiB
C
/*
|
|
* Derived from "arch/i386/kernel/process.c"
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
|
|
* Paul Mackerras (paulus@cs.anu.edu.au)
|
|
*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/time.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/tm.h>
|
|
#include <asm/debug.h>
|
|
#ifdef CONFIG_PPC64
|
|
#include <asm/firmware.h>
|
|
#endif
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
/* Transactional Memory debug */
|
|
#ifdef TM_DEBUG_SW
|
|
#define TM_DEBUG(x...) printk(KERN_INFO x)
|
|
#else
|
|
#define TM_DEBUG(x...) do { } while(0)
|
|
#endif
|
|
|
|
extern unsigned long _get_SP(void);
|
|
|
|
#ifndef CONFIG_SMP
|
|
struct task_struct *last_task_used_math = NULL;
|
|
struct task_struct *last_task_used_altivec = NULL;
|
|
struct task_struct *last_task_used_vsx = NULL;
|
|
struct task_struct *last_task_used_spe = NULL;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
void giveup_fpu_maybe_transactional(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* If we are saving the current thread's registers, and the
|
|
* thread is in a transactional state, set the TIF_RESTORE_TM
|
|
* bit so that we know to restore the registers before
|
|
* returning to userspace.
|
|
*/
|
|
if (tsk == current && tsk->thread.regs &&
|
|
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
|
|
!test_thread_flag(TIF_RESTORE_TM)) {
|
|
tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
|
|
set_thread_flag(TIF_RESTORE_TM);
|
|
}
|
|
|
|
giveup_fpu(tsk);
|
|
}
|
|
|
|
void giveup_altivec_maybe_transactional(struct task_struct *tsk)
|
|
{
|
|
/*
|
|
* If we are saving the current thread's registers, and the
|
|
* thread is in a transactional state, set the TIF_RESTORE_TM
|
|
* bit so that we know to restore the registers before
|
|
* returning to userspace.
|
|
*/
|
|
if (tsk == current && tsk->thread.regs &&
|
|
MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
|
|
!test_thread_flag(TIF_RESTORE_TM)) {
|
|
tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
|
|
set_thread_flag(TIF_RESTORE_TM);
|
|
}
|
|
|
|
giveup_altivec(tsk);
|
|
}
|
|
|
|
#else
|
|
#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
|
|
#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
#ifdef CONFIG_PPC_FPU
|
|
/*
|
|
* Make sure the floating-point register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_fp_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
/*
|
|
* We need to disable preemption here because if we didn't,
|
|
* another process could get scheduled after the regs->msr
|
|
* test but before we have finished saving the FP registers
|
|
* to the thread_struct. That process could take over the
|
|
* FPU, and then when we get scheduled again we would store
|
|
* bogus values for the remaining FP registers.
|
|
*/
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_FP) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* This should only ever be called for current or
|
|
* for a stopped child process. Since we save away
|
|
* the FP register state on context switch on SMP,
|
|
* there is something wrong if a stopped child appears
|
|
* to still have its FP state in the CPU registers.
|
|
*/
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_fpu_maybe_transactional(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
|
|
#endif /* CONFIG_PPC_FPU */
|
|
|
|
void enable_kernel_fp(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
|
|
giveup_fpu_maybe_transactional(current);
|
|
else
|
|
giveup_fpu(NULL); /* just enables FP for kernel */
|
|
#else
|
|
giveup_fpu_maybe_transactional(last_task_used_math);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_fp);
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
void enable_kernel_altivec(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
|
|
giveup_altivec_maybe_transactional(current);
|
|
else
|
|
giveup_altivec_notask();
|
|
#else
|
|
giveup_altivec_maybe_transactional(last_task_used_altivec);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_altivec);
|
|
|
|
/*
|
|
* Make sure the VMX/Altivec register state in the
|
|
* the thread_struct is up to date for task tsk.
|
|
*/
|
|
void flush_altivec_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_VEC) {
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_altivec_maybe_transactional(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
|
|
#ifdef CONFIG_VSX
|
|
#if 0
|
|
/* not currently used, but some crazy RAID module might want to later */
|
|
void enable_kernel_vsx(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
|
|
giveup_vsx(current);
|
|
else
|
|
giveup_vsx(NULL); /* just enable vsx for kernel - force */
|
|
#else
|
|
giveup_vsx(last_task_used_vsx);
|
|
#endif /* CONFIG_SMP */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_vsx);
|
|
#endif
|
|
|
|
void giveup_vsx(struct task_struct *tsk)
|
|
{
|
|
giveup_fpu_maybe_transactional(tsk);
|
|
giveup_altivec_maybe_transactional(tsk);
|
|
__giveup_vsx(tsk);
|
|
}
|
|
|
|
void flush_vsx_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_VSX) {
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
giveup_vsx(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
|
|
#endif /* CONFIG_VSX */
|
|
|
|
#ifdef CONFIG_SPE
|
|
|
|
void enable_kernel_spe(void)
|
|
{
|
|
WARN_ON(preemptible());
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
|
|
giveup_spe(current);
|
|
else
|
|
giveup_spe(NULL); /* just enable SPE for kernel - force */
|
|
#else
|
|
giveup_spe(last_task_used_spe);
|
|
#endif /* __SMP __ */
|
|
}
|
|
EXPORT_SYMBOL(enable_kernel_spe);
|
|
|
|
void flush_spe_to_thread(struct task_struct *tsk)
|
|
{
|
|
if (tsk->thread.regs) {
|
|
preempt_disable();
|
|
if (tsk->thread.regs->msr & MSR_SPE) {
|
|
#ifdef CONFIG_SMP
|
|
BUG_ON(tsk != current);
|
|
#endif
|
|
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
|
|
giveup_spe(tsk);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#ifndef CONFIG_SMP
|
|
/*
|
|
* If we are doing lazy switching of CPU state (FP, altivec or SPE),
|
|
* and the current task has some state, discard it.
|
|
*/
|
|
void discard_lazy_cpu_state(void)
|
|
{
|
|
preempt_disable();
|
|
if (last_task_used_math == current)
|
|
last_task_used_math = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (last_task_used_altivec == current)
|
|
last_task_used_altivec = NULL;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_VSX
|
|
if (last_task_used_vsx == current)
|
|
last_task_used_vsx = NULL;
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_SPE
|
|
if (last_task_used_spe == current)
|
|
last_task_used_spe = NULL;
|
|
#endif
|
|
preempt_enable();
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
void do_send_trap(struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code, int signal_code, int breakpt)
|
|
{
|
|
siginfo_t info;
|
|
|
|
current->thread.trap_nr = signal_code;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
/* Deliver the signal to userspace */
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = breakpt; /* breakpoint or watchpoint id */
|
|
info.si_code = signal_code;
|
|
info.si_addr = (void __user *)address;
|
|
force_sig_info(SIGTRAP, &info, current);
|
|
}
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
void do_break (struct pt_regs *regs, unsigned long address,
|
|
unsigned long error_code)
|
|
{
|
|
siginfo_t info;
|
|
|
|
current->thread.trap_nr = TRAP_HWBKPT;
|
|
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
|
|
11, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
if (debugger_break_match(regs))
|
|
return;
|
|
|
|
/* Clear the breakpoint */
|
|
hw_breakpoint_disable();
|
|
|
|
/* Deliver the signal to userspace */
|
|
info.si_signo = SIGTRAP;
|
|
info.si_errno = 0;
|
|
info.si_code = TRAP_HWBKPT;
|
|
info.si_addr = (void __user *)address;
|
|
force_sig_info(SIGTRAP, &info, current);
|
|
}
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
/*
|
|
* Set the debug registers back to their default "safe" values.
|
|
*/
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
thread->debug.iac1 = thread->debug.iac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
thread->debug.iac3 = thread->debug.iac4 = 0;
|
|
#endif
|
|
thread->debug.dac1 = thread->debug.dac2 = 0;
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
thread->debug.dvc1 = thread->debug.dvc2 = 0;
|
|
#endif
|
|
thread->debug.dbcr0 = 0;
|
|
#ifdef CONFIG_BOOKE
|
|
/*
|
|
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
|
|
*/
|
|
thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
|
|
DBCR1_IAC3US | DBCR1_IAC4US;
|
|
/*
|
|
* Force Data Address Compare User/Supervisor bits to be User-only
|
|
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
|
|
*/
|
|
thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
|
|
#else
|
|
thread->debug.dbcr1 = 0;
|
|
#endif
|
|
}
|
|
|
|
static void prime_debug_regs(struct debug_reg *debug)
|
|
{
|
|
/*
|
|
* We could have inherited MSR_DE from userspace, since
|
|
* it doesn't get cleared on exception entry. Make sure
|
|
* MSR_DE is clear before we enable any debug events.
|
|
*/
|
|
mtmsr(mfmsr() & ~MSR_DE);
|
|
|
|
mtspr(SPRN_IAC1, debug->iac1);
|
|
mtspr(SPRN_IAC2, debug->iac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
|
|
mtspr(SPRN_IAC3, debug->iac3);
|
|
mtspr(SPRN_IAC4, debug->iac4);
|
|
#endif
|
|
mtspr(SPRN_DAC1, debug->dac1);
|
|
mtspr(SPRN_DAC2, debug->dac2);
|
|
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
|
|
mtspr(SPRN_DVC1, debug->dvc1);
|
|
mtspr(SPRN_DVC2, debug->dvc2);
|
|
#endif
|
|
mtspr(SPRN_DBCR0, debug->dbcr0);
|
|
mtspr(SPRN_DBCR1, debug->dbcr1);
|
|
#ifdef CONFIG_BOOKE
|
|
mtspr(SPRN_DBCR2, debug->dbcr2);
|
|
#endif
|
|
}
|
|
/*
|
|
* Unless neither the old or new thread are making use of the
|
|
* debug registers, set the debug registers from the values
|
|
* stored in the new thread.
|
|
*/
|
|
void switch_booke_debug_regs(struct debug_reg *new_debug)
|
|
{
|
|
if ((current->thread.debug.dbcr0 & DBCR0_IDM)
|
|
|| (new_debug->dbcr0 & DBCR0_IDM))
|
|
prime_debug_regs(new_debug);
|
|
}
|
|
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
|
|
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
static void set_debug_reg_defaults(struct thread_struct *thread)
|
|
{
|
|
thread->hw_brk.address = 0;
|
|
thread->hw_brk.type = 0;
|
|
set_breakpoint(&thread->hw_brk);
|
|
}
|
|
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
mtspr(SPRN_DAC1, dabr);
|
|
#ifdef CONFIG_PPC_47x
|
|
isync();
|
|
#endif
|
|
return 0;
|
|
}
|
|
#elif defined(CONFIG_PPC_BOOK3S)
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
mtspr(SPRN_DABR, dabr);
|
|
if (cpu_has_feature(CPU_FTR_DABRX))
|
|
mtspr(SPRN_DABRX, dabrx);
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
static inline int set_dabr(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long dabr, dabrx;
|
|
|
|
dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
|
|
dabrx = ((brk->type >> 3) & 0x7);
|
|
|
|
if (ppc_md.set_dabr)
|
|
return ppc_md.set_dabr(dabr, dabrx);
|
|
|
|
return __set_dabr(dabr, dabrx);
|
|
}
|
|
|
|
static inline int set_dawr(struct arch_hw_breakpoint *brk)
|
|
{
|
|
unsigned long dawr, dawrx, mrd;
|
|
|
|
dawr = brk->address;
|
|
|
|
dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
|
|
<< (63 - 58); //* read/write bits */
|
|
dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
|
|
<< (63 - 59); //* translate */
|
|
dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
|
|
>> 3; //* PRIM bits */
|
|
/* dawr length is stored in field MDR bits 48:53. Matches range in
|
|
doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
|
|
0b111111=64DW.
|
|
brk->len is in bytes.
|
|
This aligns up to double word size, shifts and does the bias.
|
|
*/
|
|
mrd = ((brk->len + 7) >> 3) - 1;
|
|
dawrx |= (mrd & 0x3f) << (63 - 53);
|
|
|
|
if (ppc_md.set_dawr)
|
|
return ppc_md.set_dawr(dawr, dawrx);
|
|
mtspr(SPRN_DAWR, dawr);
|
|
mtspr(SPRN_DAWRX, dawrx);
|
|
return 0;
|
|
}
|
|
|
|
int set_breakpoint(struct arch_hw_breakpoint *brk)
|
|
{
|
|
__get_cpu_var(current_brk) = *brk;
|
|
|
|
if (cpu_has_feature(CPU_FTR_DAWR))
|
|
return set_dawr(brk);
|
|
|
|
return set_dabr(brk);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
|
|
#endif
|
|
|
|
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
|
|
struct arch_hw_breakpoint *b)
|
|
{
|
|
if (a->address != b->address)
|
|
return false;
|
|
if (a->type != b->type)
|
|
return false;
|
|
if (a->len != b->len)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static void tm_reclaim_thread(struct thread_struct *thr,
|
|
struct thread_info *ti, uint8_t cause)
|
|
{
|
|
unsigned long msr_diff = 0;
|
|
|
|
/*
|
|
* If FP/VSX registers have been already saved to the
|
|
* thread_struct, move them to the transact_fp array.
|
|
* We clear the TIF_RESTORE_TM bit since after the reclaim
|
|
* the thread will no longer be transactional.
|
|
*/
|
|
if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
|
|
msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
|
|
if (msr_diff & MSR_FP)
|
|
memcpy(&thr->transact_fp, &thr->fp_state,
|
|
sizeof(struct thread_fp_state));
|
|
if (msr_diff & MSR_VEC)
|
|
memcpy(&thr->transact_vr, &thr->vr_state,
|
|
sizeof(struct thread_vr_state));
|
|
clear_ti_thread_flag(ti, TIF_RESTORE_TM);
|
|
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
|
|
}
|
|
|
|
tm_reclaim(thr, thr->regs->msr, cause);
|
|
|
|
/* Having done the reclaim, we now have the checkpointed
|
|
* FP/VSX values in the registers. These might be valid
|
|
* even if we have previously called enable_kernel_fp() or
|
|
* flush_fp_to_thread(), so update thr->regs->msr to
|
|
* indicate their current validity.
|
|
*/
|
|
thr->regs->msr |= msr_diff;
|
|
}
|
|
|
|
void tm_reclaim_current(uint8_t cause)
|
|
{
|
|
tm_enable();
|
|
tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
|
|
}
|
|
|
|
static inline void tm_reclaim_task(struct task_struct *tsk)
|
|
{
|
|
/* We have to work out if we're switching from/to a task that's in the
|
|
* middle of a transaction.
|
|
*
|
|
* In switching we need to maintain a 2nd register state as
|
|
* oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
|
|
* checkpointed (tbegin) state in ckpt_regs and saves the transactional
|
|
* (current) FPRs into oldtask->thread.transact_fpr[].
|
|
*
|
|
* We also context switch (save) TFHAR/TEXASR/TFIAR in here.
|
|
*/
|
|
struct thread_struct *thr = &tsk->thread;
|
|
|
|
if (!thr->regs)
|
|
return;
|
|
|
|
if (!MSR_TM_ACTIVE(thr->regs->msr))
|
|
goto out_and_saveregs;
|
|
|
|
/* Stash the original thread MSR, as giveup_fpu et al will
|
|
* modify it. We hold onto it to see whether the task used
|
|
* FP & vector regs. If the TIF_RESTORE_TM flag is set,
|
|
* tm_orig_msr is already set.
|
|
*/
|
|
if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
|
|
thr->tm_orig_msr = thr->regs->msr;
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
|
|
"ccr=%lx, msr=%lx, trap=%lx)\n",
|
|
tsk->pid, thr->regs->nip,
|
|
thr->regs->ccr, thr->regs->msr,
|
|
thr->regs->trap);
|
|
|
|
tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
|
|
|
|
TM_DEBUG("--- tm_reclaim on pid %d complete\n",
|
|
tsk->pid);
|
|
|
|
out_and_saveregs:
|
|
/* Always save the regs here, even if a transaction's not active.
|
|
* This context-switches a thread's TM info SPRs. We do it here to
|
|
* be consistent with the restore path (in recheckpoint) which
|
|
* cannot happen later in _switch().
|
|
*/
|
|
tm_save_sprs(thr);
|
|
}
|
|
|
|
static inline void tm_recheckpoint_new_task(struct task_struct *new)
|
|
{
|
|
unsigned long msr;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_TM))
|
|
return;
|
|
|
|
/* Recheckpoint the registers of the thread we're about to switch to.
|
|
*
|
|
* If the task was using FP, we non-lazily reload both the original and
|
|
* the speculative FP register states. This is because the kernel
|
|
* doesn't see if/when a TM rollback occurs, so if we take an FP
|
|
* unavoidable later, we are unable to determine which set of FP regs
|
|
* need to be restored.
|
|
*/
|
|
if (!new->thread.regs)
|
|
return;
|
|
|
|
/* The TM SPRs are restored here, so that TEXASR.FS can be set
|
|
* before the trecheckpoint and no explosion occurs.
|
|
*/
|
|
tm_restore_sprs(&new->thread);
|
|
|
|
if (!MSR_TM_ACTIVE(new->thread.regs->msr))
|
|
return;
|
|
msr = new->thread.tm_orig_msr;
|
|
/* Recheckpoint to restore original checkpointed register state. */
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d "
|
|
"(new->msr 0x%lx, new->origmsr 0x%lx)\n",
|
|
new->pid, new->thread.regs->msr, msr);
|
|
|
|
/* This loads the checkpointed FP/VEC state, if used */
|
|
tm_recheckpoint(&new->thread, msr);
|
|
|
|
/* This loads the speculative FP/VEC state, if used */
|
|
if (msr & MSR_FP) {
|
|
do_load_up_transact_fpu(&new->thread);
|
|
new->thread.regs->msr |=
|
|
(MSR_FP | new->thread.fpexc_mode);
|
|
}
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (msr & MSR_VEC) {
|
|
do_load_up_transact_altivec(&new->thread);
|
|
new->thread.regs->msr |= MSR_VEC;
|
|
}
|
|
#endif
|
|
/* We may as well turn on VSX too since all the state is restored now */
|
|
if (msr & MSR_VSX)
|
|
new->thread.regs->msr |= MSR_VSX;
|
|
|
|
TM_DEBUG("*** tm_recheckpoint of pid %d complete "
|
|
"(kernel msr 0x%lx)\n",
|
|
new->pid, mfmsr());
|
|
}
|
|
|
|
static inline void __switch_to_tm(struct task_struct *prev)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_TM)) {
|
|
tm_enable();
|
|
tm_reclaim_task(prev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called if we are on the way out to userspace and the
|
|
* TIF_RESTORE_TM flag is set. It checks if we need to reload
|
|
* FP and/or vector state and does so if necessary.
|
|
* If userspace is inside a transaction (whether active or
|
|
* suspended) and FP/VMX/VSX instructions have ever been enabled
|
|
* inside that transaction, then we have to keep them enabled
|
|
* and keep the FP/VMX/VSX state loaded while ever the transaction
|
|
* continues. The reason is that if we didn't, and subsequently
|
|
* got a FP/VMX/VSX unavailable interrupt inside a transaction,
|
|
* we don't know whether it's the same transaction, and thus we
|
|
* don't know which of the checkpointed state and the transactional
|
|
* state to use.
|
|
*/
|
|
void restore_tm_state(struct pt_regs *regs)
|
|
{
|
|
unsigned long msr_diff;
|
|
|
|
clear_thread_flag(TIF_RESTORE_TM);
|
|
if (!MSR_TM_ACTIVE(regs->msr))
|
|
return;
|
|
|
|
msr_diff = current->thread.tm_orig_msr & ~regs->msr;
|
|
msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
|
|
if (msr_diff & MSR_FP) {
|
|
fp_enable();
|
|
load_fp_state(¤t->thread.fp_state);
|
|
regs->msr |= current->thread.fpexc_mode;
|
|
}
|
|
if (msr_diff & MSR_VEC) {
|
|
vec_enable();
|
|
load_vr_state(¤t->thread.vr_state);
|
|
}
|
|
regs->msr |= msr_diff;
|
|
}
|
|
|
|
#else
|
|
#define tm_recheckpoint_new_task(new)
|
|
#define __switch_to_tm(prev)
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *new)
|
|
{
|
|
struct thread_struct *new_thread, *old_thread;
|
|
struct task_struct *last;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct ppc64_tlb_batch *batch;
|
|
#endif
|
|
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
/* Back up the TAR across context switches.
|
|
* Note that the TAR is not available for use in the kernel. (To
|
|
* provide this, the TAR should be backed up/restored on exception
|
|
* entry/exit instead, and be in pt_regs. FIXME, this should be in
|
|
* pt_regs anyway (for debug).)
|
|
* Save the TAR here before we do treclaim/trecheckpoint as these
|
|
* will change the TAR.
|
|
*/
|
|
save_tar(&prev->thread);
|
|
|
|
__switch_to_tm(prev);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* avoid complexity of lazy save/restore of fpu
|
|
* by just saving it every time we switch out if
|
|
* this task used the fpu during the last quantum.
|
|
*
|
|
* If it tries to use the fpu again, it'll trap and
|
|
* reload its fp regs. So we don't have to do a restore
|
|
* every switch, just a save.
|
|
* -- Cort
|
|
*/
|
|
if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
|
|
giveup_fpu(prev);
|
|
#ifdef CONFIG_ALTIVEC
|
|
/*
|
|
* If the previous thread used altivec in the last quantum
|
|
* (thus changing altivec regs) then save them.
|
|
* We used to check the VRSAVE register but not all apps
|
|
* set it, so we don't rely on it now (and in fact we need
|
|
* to save & restore VSCR even if VRSAVE == 0). -- paulus
|
|
*
|
|
* On SMP we always save/restore altivec regs just to avoid the
|
|
* complexity of changing processors.
|
|
* -- Cort
|
|
*/
|
|
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
|
|
giveup_altivec(prev);
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_VSX
|
|
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
|
|
/* VMX and FPU registers are already save here */
|
|
__giveup_vsx(prev);
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_SPE
|
|
/*
|
|
* If the previous thread used spe in the last quantum
|
|
* (thus changing spe regs) then save them.
|
|
*
|
|
* On SMP we always save/restore spe regs just to avoid the
|
|
* complexity of changing processors.
|
|
*/
|
|
if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
|
|
giveup_spe(prev);
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#else /* CONFIG_SMP */
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Avoid the trap. On smp this this never happens since
|
|
* we don't set last_task_used_altivec -- Cort
|
|
*/
|
|
if (new->thread.regs && last_task_used_altivec == new)
|
|
new->thread.regs->msr |= MSR_VEC;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_VSX
|
|
if (new->thread.regs && last_task_used_vsx == new)
|
|
new->thread.regs->msr |= MSR_VSX;
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_SPE
|
|
/* Avoid the trap. On smp this this never happens since
|
|
* we don't set last_task_used_spe
|
|
*/
|
|
if (new->thread.regs && last_task_used_spe == new)
|
|
new->thread.regs->msr |= MSR_SPE;
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
|
|
switch_booke_debug_regs(&new->thread.debug);
|
|
#else
|
|
/*
|
|
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
|
|
* schedule DABR
|
|
*/
|
|
#ifndef CONFIG_HAVE_HW_BREAKPOINT
|
|
if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
|
|
set_breakpoint(&new->thread.hw_brk);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
#endif
|
|
|
|
|
|
new_thread = &new->thread;
|
|
old_thread = ¤t->thread;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* Collect processor utilization data per process
|
|
*/
|
|
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
|
|
struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
|
|
long unsigned start_tb, current_tb;
|
|
start_tb = old_thread->start_tb;
|
|
cu->current_tb = current_tb = mfspr(SPRN_PURR);
|
|
old_thread->accum_tb += (current_tb - start_tb);
|
|
new_thread->start_tb = current_tb;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
batch = &__get_cpu_var(ppc64_tlb_batch);
|
|
if (batch->active) {
|
|
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
|
|
if (batch->index)
|
|
__flush_tlb_pending(batch);
|
|
batch->active = 0;
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
/*
|
|
* We can't take a PMU exception inside _switch() since there is a
|
|
* window where the kernel stack SLB and the kernel stack are out
|
|
* of sync. Hard disable here.
|
|
*/
|
|
hard_irq_disable();
|
|
|
|
tm_recheckpoint_new_task(new);
|
|
|
|
last = _switch(old_thread, new_thread);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
|
|
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
|
|
batch = &__get_cpu_var(ppc64_tlb_batch);
|
|
batch->active = 1;
|
|
}
|
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|
|
|
|
return last;
|
|
}
|
|
|
|
static int instructions_to_print = 16;
|
|
|
|
static void show_instructions(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
|
|
sizeof(int));
|
|
|
|
printk("Instruction dump:");
|
|
|
|
for (i = 0; i < instructions_to_print; i++) {
|
|
int instr;
|
|
|
|
if (!(i % 8))
|
|
printk("\n");
|
|
|
|
#if !defined(CONFIG_BOOKE)
|
|
/* If executing with the IMMU off, adjust pc rather
|
|
* than print XXXXXXXX.
|
|
*/
|
|
if (!(regs->msr & MSR_IR))
|
|
pc = (unsigned long)phys_to_virt(pc);
|
|
#endif
|
|
|
|
/* We use __get_user here *only* to avoid an OOPS on a
|
|
* bad address because the pc *should* only be a
|
|
* kernel address.
|
|
*/
|
|
if (!__kernel_text_address(pc) ||
|
|
__get_user(instr, (unsigned int __user *)pc)) {
|
|
printk(KERN_CONT "XXXXXXXX ");
|
|
} else {
|
|
if (regs->nip == pc)
|
|
printk(KERN_CONT "<%08x> ", instr);
|
|
else
|
|
printk(KERN_CONT "%08x ", instr);
|
|
}
|
|
|
|
pc += sizeof(int);
|
|
}
|
|
|
|
printk("\n");
|
|
}
|
|
|
|
static struct regbit {
|
|
unsigned long bit;
|
|
const char *name;
|
|
} msr_bits[] = {
|
|
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
|
|
{MSR_SF, "SF"},
|
|
{MSR_HV, "HV"},
|
|
#endif
|
|
{MSR_VEC, "VEC"},
|
|
{MSR_VSX, "VSX"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_CE, "CE"},
|
|
#endif
|
|
{MSR_EE, "EE"},
|
|
{MSR_PR, "PR"},
|
|
{MSR_FP, "FP"},
|
|
{MSR_ME, "ME"},
|
|
#ifdef CONFIG_BOOKE
|
|
{MSR_DE, "DE"},
|
|
#else
|
|
{MSR_SE, "SE"},
|
|
{MSR_BE, "BE"},
|
|
#endif
|
|
{MSR_IR, "IR"},
|
|
{MSR_DR, "DR"},
|
|
{MSR_PMM, "PMM"},
|
|
#ifndef CONFIG_BOOKE
|
|
{MSR_RI, "RI"},
|
|
{MSR_LE, "LE"},
|
|
#endif
|
|
{0, NULL}
|
|
};
|
|
|
|
static void printbits(unsigned long val, struct regbit *bits)
|
|
{
|
|
const char *sep = "";
|
|
|
|
printk("<");
|
|
for (; bits->bit; ++bits)
|
|
if (val & bits->bit) {
|
|
printk("%s%s", sep, bits->name);
|
|
sep = ",";
|
|
}
|
|
printk(">");
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
#define REG "%016lx"
|
|
#define REGS_PER_LINE 4
|
|
#define LAST_VOLATILE 13
|
|
#else
|
|
#define REG "%08lx"
|
|
#define REGS_PER_LINE 8
|
|
#define LAST_VOLATILE 12
|
|
#endif
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
int i, trap;
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
|
|
regs->nip, regs->link, regs->ctr);
|
|
printk("REGS: %p TRAP: %04lx %s (%s)\n",
|
|
regs, regs->trap, print_tainted(), init_utsname()->release);
|
|
printk("MSR: "REG" ", regs->msr);
|
|
printbits(regs->msr, msr_bits);
|
|
printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
|
|
trap = TRAP(regs);
|
|
if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
|
|
printk("CFAR: "REG" ", regs->orig_gpr3);
|
|
if (trap == 0x200 || trap == 0x300 || trap == 0x600)
|
|
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
|
|
printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
|
|
#else
|
|
printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
|
|
#endif
|
|
#ifdef CONFIG_PPC64
|
|
printk("SOFTE: %ld ", regs->softe);
|
|
#endif
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (MSR_TM_ACTIVE(regs->msr))
|
|
printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
|
|
#endif
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
if ((i % REGS_PER_LINE) == 0)
|
|
printk("\nGPR%02d: ", i);
|
|
printk(REG " ", regs->gpr[i]);
|
|
if (i == LAST_VOLATILE && !FULL_REGS(regs))
|
|
break;
|
|
}
|
|
printk("\n");
|
|
#ifdef CONFIG_KALLSYMS
|
|
/*
|
|
* Lookup NIP late so we have the best change of getting the
|
|
* above info out without failing
|
|
*/
|
|
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
|
|
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
|
|
#endif
|
|
show_stack(current, (unsigned long *) regs->gpr[1]);
|
|
if (!user_mode(regs))
|
|
show_instructions(regs);
|
|
}
|
|
|
|
void exit_thread(void)
|
|
{
|
|
discard_lazy_cpu_state();
|
|
}
|
|
|
|
void flush_thread(void)
|
|
{
|
|
discard_lazy_cpu_state();
|
|
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
flush_ptrace_hw_breakpoint(current);
|
|
#else /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
set_debug_reg_defaults(¤t->thread);
|
|
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
|
|
}
|
|
|
|
void
|
|
release_thread(struct task_struct *t)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* this gets called so that we can store coprocessor state into memory and
|
|
* copy the current task into the new thread.
|
|
*/
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
flush_fp_to_thread(src);
|
|
flush_altivec_to_thread(src);
|
|
flush_vsx_to_thread(src);
|
|
flush_spe_to_thread(src);
|
|
|
|
*dst = *src;
|
|
|
|
clear_task_ebb(dst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy a thread..
|
|
*/
|
|
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long usp,
|
|
unsigned long arg, struct task_struct *p)
|
|
{
|
|
struct pt_regs *childregs, *kregs;
|
|
extern void ret_from_fork(void);
|
|
extern void ret_from_kernel_thread(void);
|
|
void (*f)(void);
|
|
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
|
|
|
|
/* Copy registers */
|
|
sp -= sizeof(struct pt_regs);
|
|
childregs = (struct pt_regs *) sp;
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
struct thread_info *ti = (void *)task_stack_page(p);
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->gpr[1] = sp + sizeof(struct pt_regs);
|
|
childregs->gpr[14] = usp; /* function */
|
|
#ifdef CONFIG_PPC64
|
|
clear_tsk_thread_flag(p, TIF_32BIT);
|
|
childregs->softe = 1;
|
|
#endif
|
|
childregs->gpr[15] = arg;
|
|
p->thread.regs = NULL; /* no user register state */
|
|
ti->flags |= _TIF_RESTOREALL;
|
|
f = ret_from_kernel_thread;
|
|
} else {
|
|
struct pt_regs *regs = current_pt_regs();
|
|
CHECK_FULL_REGS(regs);
|
|
*childregs = *regs;
|
|
if (usp)
|
|
childregs->gpr[1] = usp;
|
|
p->thread.regs = childregs;
|
|
childregs->gpr[3] = 0; /* Result from fork() */
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_PPC64
|
|
if (!is_32bit_task())
|
|
childregs->gpr[13] = childregs->gpr[6];
|
|
else
|
|
#endif
|
|
childregs->gpr[2] = childregs->gpr[6];
|
|
}
|
|
|
|
f = ret_from_fork;
|
|
}
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
|
|
/*
|
|
* The way this works is that at some point in the future
|
|
* some task will call _switch to switch to the new task.
|
|
* That will pop off the stack frame created below and start
|
|
* the new task running at ret_from_fork. The new task will
|
|
* do some house keeping and then return from the fork or clone
|
|
* system call, using the stack frame created above.
|
|
*/
|
|
((unsigned long *)sp)[0] = 0;
|
|
sp -= sizeof(struct pt_regs);
|
|
kregs = (struct pt_regs *) sp;
|
|
sp -= STACK_FRAME_OVERHEAD;
|
|
p->thread.ksp = sp;
|
|
#ifdef CONFIG_PPC32
|
|
p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
|
|
_ALIGN_UP(sizeof(struct thread_info), 16);
|
|
#endif
|
|
#ifdef CONFIG_HAVE_HW_BREAKPOINT
|
|
p->thread.ptrace_bps[0] = NULL;
|
|
#endif
|
|
|
|
p->thread.fp_save_area = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
p->thread.vr_save_area = NULL;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
if (mmu_has_feature(MMU_FTR_SLB)) {
|
|
unsigned long sp_vsid;
|
|
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
|
|
|
|
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
|
|
<< SLB_VSID_SHIFT_1T;
|
|
else
|
|
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
|
|
<< SLB_VSID_SHIFT;
|
|
sp_vsid |= SLB_VSID_KERNEL | llp;
|
|
p->thread.ksp_vsid = sp_vsid;
|
|
}
|
|
#endif /* CONFIG_PPC_STD_MMU_64 */
|
|
#ifdef CONFIG_PPC64
|
|
if (cpu_has_feature(CPU_FTR_DSCR)) {
|
|
p->thread.dscr_inherit = current->thread.dscr_inherit;
|
|
p->thread.dscr = current->thread.dscr;
|
|
}
|
|
if (cpu_has_feature(CPU_FTR_HAS_PPR))
|
|
p->thread.ppr = INIT_PPR;
|
|
#endif
|
|
/*
|
|
* The PPC64 ABI makes use of a TOC to contain function
|
|
* pointers. The function (ret_from_except) is actually a pointer
|
|
* to the TOC entry. The first entry is a pointer to the actual
|
|
* function.
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
kregs->nip = *((unsigned long *)f);
|
|
#else
|
|
kregs->nip = (unsigned long)f;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up a thread for executing a new program
|
|
*/
|
|
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
|
|
#endif
|
|
|
|
/*
|
|
* If we exec out of a kernel thread then thread.regs will not be
|
|
* set. Do it now.
|
|
*/
|
|
if (!current->thread.regs) {
|
|
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
|
|
current->thread.regs = regs - 1;
|
|
}
|
|
|
|
memset(regs->gpr, 0, sizeof(regs->gpr));
|
|
regs->ctr = 0;
|
|
regs->link = 0;
|
|
regs->xer = 0;
|
|
regs->ccr = 0;
|
|
regs->gpr[1] = sp;
|
|
|
|
/*
|
|
* We have just cleared all the nonvolatile GPRs, so make
|
|
* FULL_REGS(regs) return true. This is necessary to allow
|
|
* ptrace to examine the thread immediately after exec.
|
|
*/
|
|
regs->trap &= ~1UL;
|
|
|
|
#ifdef CONFIG_PPC32
|
|
regs->mq = 0;
|
|
regs->nip = start;
|
|
regs->msr = MSR_USER;
|
|
#else
|
|
if (!is_32bit_task()) {
|
|
unsigned long entry;
|
|
|
|
if (is_elf2_task()) {
|
|
/* Look ma, no function descriptors! */
|
|
entry = start;
|
|
|
|
/*
|
|
* Ulrich says:
|
|
* The latest iteration of the ABI requires that when
|
|
* calling a function (at its global entry point),
|
|
* the caller must ensure r12 holds the entry point
|
|
* address (so that the function can quickly
|
|
* establish addressability).
|
|
*/
|
|
regs->gpr[12] = start;
|
|
/* Make sure that's restored on entry to userspace. */
|
|
set_thread_flag(TIF_RESTOREALL);
|
|
} else {
|
|
unsigned long toc;
|
|
|
|
/* start is a relocated pointer to the function
|
|
* descriptor for the elf _start routine. The first
|
|
* entry in the function descriptor is the entry
|
|
* address of _start and the second entry is the TOC
|
|
* value we need to use.
|
|
*/
|
|
__get_user(entry, (unsigned long __user *)start);
|
|
__get_user(toc, (unsigned long __user *)start+1);
|
|
|
|
/* Check whether the e_entry function descriptor entries
|
|
* need to be relocated before we can use them.
|
|
*/
|
|
if (load_addr != 0) {
|
|
entry += load_addr;
|
|
toc += load_addr;
|
|
}
|
|
regs->gpr[2] = toc;
|
|
}
|
|
regs->nip = entry;
|
|
regs->msr = MSR_USER64;
|
|
} else {
|
|
regs->nip = start;
|
|
regs->gpr[2] = 0;
|
|
regs->msr = MSR_USER32;
|
|
}
|
|
#endif
|
|
discard_lazy_cpu_state();
|
|
#ifdef CONFIG_VSX
|
|
current->thread.used_vsr = 0;
|
|
#endif
|
|
memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
|
|
current->thread.fp_save_area = NULL;
|
|
#ifdef CONFIG_ALTIVEC
|
|
memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
|
|
current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
|
|
current->thread.vr_save_area = NULL;
|
|
current->thread.vrsave = 0;
|
|
current->thread.used_vr = 0;
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_SPE
|
|
memset(current->thread.evr, 0, sizeof(current->thread.evr));
|
|
current->thread.acc = 0;
|
|
current->thread.spefscr = 0;
|
|
current->thread.used_spe = 0;
|
|
#endif /* CONFIG_SPE */
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
if (cpu_has_feature(CPU_FTR_TM))
|
|
regs->msr |= MSR_TM;
|
|
current->thread.tm_tfhar = 0;
|
|
current->thread.tm_texasr = 0;
|
|
current->thread.tm_tfiar = 0;
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
}
|
|
|
|
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
|
|
| PR_FP_EXC_RES | PR_FP_EXC_INV)
|
|
|
|
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
/* This is a bit hairy. If we are an SPE enabled processor
|
|
* (have embedded fp) we store the IEEE exception enable flags in
|
|
* fpexc_mode. fpexc_mode is also used for setting FP exception
|
|
* mode (asyn, precise, disabled) for 'Classic' FP. */
|
|
if (val & PR_FP_EXC_SW_ENABLE) {
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
tsk->thread.fpexc_mode = val &
|
|
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
|
|
return 0;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
/* on a CONFIG_SPE this does not hurt us. The bits that
|
|
* __pack_fe01 use do not overlap with bits used for
|
|
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
|
|
* on CONFIG_SPE implementations are reserved so writing to
|
|
* them does not change anything */
|
|
if (val > PR_FP_EXC_PRECISE)
|
|
return -EINVAL;
|
|
tsk->thread.fpexc_mode = __pack_fe01(val);
|
|
if (regs != NULL && (regs->msr & MSR_FP) != 0)
|
|
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
|
|
| tsk->thread.fpexc_mode;
|
|
return 0;
|
|
}
|
|
|
|
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
|
|
#ifdef CONFIG_SPE
|
|
if (cpu_has_feature(CPU_FTR_SPE)) {
|
|
/*
|
|
* When the sticky exception bits are set
|
|
* directly by userspace, it must call prctl
|
|
* with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
|
|
* in the existing prctl settings) or
|
|
* PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
|
|
* the bits being set). <fenv.h> functions
|
|
* saving and restoring the whole
|
|
* floating-point environment need to do so
|
|
* anyway to restore the prctl settings from
|
|
* the saved environment.
|
|
*/
|
|
tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
|
|
val = tsk->thread.fpexc_mode;
|
|
} else
|
|
return -EINVAL;
|
|
#else
|
|
return -EINVAL;
|
|
#endif
|
|
else
|
|
val = __unpack_fe01(tsk->thread.fpexc_mode);
|
|
return put_user(val, (unsigned int __user *) adr);
|
|
}
|
|
|
|
int set_endian(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
|
|
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
|
|
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (val == PR_ENDIAN_BIG)
|
|
regs->msr &= ~MSR_LE;
|
|
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
|
|
regs->msr |= MSR_LE;
|
|
else
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int get_endian(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
struct pt_regs *regs = tsk->thread.regs;
|
|
unsigned int val;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
|
|
!cpu_has_feature(CPU_FTR_REAL_LE))
|
|
return -EINVAL;
|
|
|
|
if (regs == NULL)
|
|
return -EINVAL;
|
|
|
|
if (regs->msr & MSR_LE) {
|
|
if (cpu_has_feature(CPU_FTR_REAL_LE))
|
|
val = PR_ENDIAN_LITTLE;
|
|
else
|
|
val = PR_ENDIAN_PPC_LITTLE;
|
|
} else
|
|
val = PR_ENDIAN_BIG;
|
|
|
|
return put_user(val, (unsigned int __user *)adr);
|
|
}
|
|
|
|
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
|
|
{
|
|
tsk->thread.align_ctl = val;
|
|
return 0;
|
|
}
|
|
|
|
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
|
|
{
|
|
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
|
|
}
|
|
|
|
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page;
|
|
unsigned long cpu = task_cpu(p);
|
|
|
|
/*
|
|
* Avoid crashing if the stack has overflowed and corrupted
|
|
* task_cpu(p), which is in the thread_info struct.
|
|
*/
|
|
if (cpu < NR_CPUS && cpu_possible(cpu)) {
|
|
stack_page = (unsigned long) hardirq_ctx[cpu];
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
stack_page = (unsigned long) softirq_ctx[cpu];
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int validate_sp(unsigned long sp, struct task_struct *p,
|
|
unsigned long nbytes)
|
|
{
|
|
unsigned long stack_page = (unsigned long)task_stack_page(p);
|
|
|
|
if (sp >= stack_page + sizeof(struct thread_struct)
|
|
&& sp <= stack_page + THREAD_SIZE - nbytes)
|
|
return 1;
|
|
|
|
return valid_irq_stack(sp, p, nbytes);
|
|
}
|
|
|
|
EXPORT_SYMBOL(validate_sp);
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long ip, sp;
|
|
int count = 0;
|
|
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
sp = p->thread.ksp;
|
|
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
|
|
return 0;
|
|
|
|
do {
|
|
sp = *(unsigned long *)sp;
|
|
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
|
|
return 0;
|
|
if (count > 0) {
|
|
ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
|
|
if (!in_sched_functions(ip))
|
|
return ip;
|
|
}
|
|
} while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
|
|
|
|
void show_stack(struct task_struct *tsk, unsigned long *stack)
|
|
{
|
|
unsigned long sp, ip, lr, newsp;
|
|
int count = 0;
|
|
int firstframe = 1;
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
int curr_frame = current->curr_ret_stack;
|
|
extern void return_to_handler(void);
|
|
unsigned long rth = (unsigned long)return_to_handler;
|
|
unsigned long mrth = -1;
|
|
#ifdef CONFIG_PPC64
|
|
extern void mod_return_to_handler(void);
|
|
rth = *(unsigned long *)rth;
|
|
mrth = (unsigned long)mod_return_to_handler;
|
|
mrth = *(unsigned long *)mrth;
|
|
#endif
|
|
#endif
|
|
|
|
sp = (unsigned long) stack;
|
|
if (tsk == NULL)
|
|
tsk = current;
|
|
if (sp == 0) {
|
|
if (tsk == current)
|
|
asm("mr %0,1" : "=r" (sp));
|
|
else
|
|
sp = tsk->thread.ksp;
|
|
}
|
|
|
|
lr = 0;
|
|
printk("Call Trace:\n");
|
|
do {
|
|
if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
|
|
return;
|
|
|
|
stack = (unsigned long *) sp;
|
|
newsp = stack[0];
|
|
ip = stack[STACK_FRAME_LR_SAVE];
|
|
if (!firstframe || ip != lr) {
|
|
printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
if ((ip == rth || ip == mrth) && curr_frame >= 0) {
|
|
printk(" (%pS)",
|
|
(void *)current->ret_stack[curr_frame].ret);
|
|
curr_frame--;
|
|
}
|
|
#endif
|
|
if (firstframe)
|
|
printk(" (unreliable)");
|
|
printk("\n");
|
|
}
|
|
firstframe = 0;
|
|
|
|
/*
|
|
* See if this is an exception frame.
|
|
* We look for the "regshere" marker in the current frame.
|
|
*/
|
|
if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
|
|
&& stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
|
|
struct pt_regs *regs = (struct pt_regs *)
|
|
(sp + STACK_FRAME_OVERHEAD);
|
|
lr = regs->link;
|
|
printk("--- Exception: %lx at %pS\n LR = %pS\n",
|
|
regs->trap, (void *)regs->nip, (void *)lr);
|
|
firstframe = 1;
|
|
}
|
|
|
|
sp = newsp;
|
|
} while (count++ < kstack_depth_to_print);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_on(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
unsigned long ctrl;
|
|
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl |= CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
|
|
ti->local_flags |= _TLF_RUNLATCH;
|
|
}
|
|
|
|
/* Called with hard IRQs off */
|
|
void notrace __ppc64_runlatch_off(void)
|
|
{
|
|
struct thread_info *ti = current_thread_info();
|
|
unsigned long ctrl;
|
|
|
|
ti->local_flags &= ~_TLF_RUNLATCH;
|
|
|
|
ctrl = mfspr(SPRN_CTRLF);
|
|
ctrl &= ~CTRL_RUNLATCH;
|
|
mtspr(SPRN_CTRLT, ctrl);
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_int() & ~PAGE_MASK;
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
static inline unsigned long brk_rnd(void)
|
|
{
|
|
unsigned long rnd = 0;
|
|
|
|
/* 8MB for 32bit, 1GB for 64bit */
|
|
if (is_32bit_task())
|
|
rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
|
|
else
|
|
rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
|
|
|
|
return rnd << PAGE_SHIFT;
|
|
}
|
|
|
|
unsigned long arch_randomize_brk(struct mm_struct *mm)
|
|
{
|
|
unsigned long base = mm->brk;
|
|
unsigned long ret;
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU_64
|
|
/*
|
|
* If we are using 1TB segments and we are allowed to randomise
|
|
* the heap, we can put it above 1TB so it is backed by a 1TB
|
|
* segment. Otherwise the heap will be in the bottom 1TB
|
|
* which always uses 256MB segments and this may result in a
|
|
* performance penalty.
|
|
*/
|
|
if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
|
|
base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
|
|
#endif
|
|
|
|
ret = PAGE_ALIGN(base + brk_rnd());
|
|
|
|
if (ret < mm->brk)
|
|
return mm->brk;
|
|
|
|
return ret;
|
|
}
|
|
|
|
unsigned long randomize_et_dyn(unsigned long base)
|
|
{
|
|
unsigned long ret = PAGE_ALIGN(base + brk_rnd());
|
|
|
|
if (ret < base)
|
|
return base;
|
|
|
|
return ret;
|
|
}
|