linux/drivers/net/r6040.c
Julia Lawall 3f6602ad56 drivers/net/r6040.c: Eliminate double sizeof
Taking sizeof the result of sizeof is quite strange and does not seem to be
what is wanted here.

This was fixed using the following semantic patch.
(http://www.emn.fr/x-info/coccinelle/)

// <smpl>
@@
expression E;
@@

- sizeof (
  sizeof (E)
- )
// </smpl>

Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-06-27 01:28:25 -04:00

1136 lines
29 KiB
C

/*
* RDC R6040 Fast Ethernet MAC support
*
* Copyright (C) 2004 Sten Wang <sten.wang@rdc.com.tw>
* Copyright (C) 2007
* Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
* Florian Fainelli <florian@openwrt.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#define DRV_NAME "r6040"
#define DRV_VERSION "0.16"
#define DRV_RELDATE "10Nov2007"
/* PHY CHIP Address */
#define PHY1_ADDR 1 /* For MAC1 */
#define PHY2_ADDR 2 /* For MAC2 */
#define PHY_MODE 0x3100 /* PHY CHIP Register 0 */
#define PHY_CAP 0x01E1 /* PHY CHIP Register 4 */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (6000 * HZ / 1000)
/* RDC MAC I/O Size */
#define R6040_IO_SIZE 256
/* MAX RDC MAC */
#define MAX_MAC 2
/* MAC registers */
#define MCR0 0x00 /* Control register 0 */
#define MCR1 0x04 /* Control register 1 */
#define MAC_RST 0x0001 /* Reset the MAC */
#define MBCR 0x08 /* Bus control */
#define MT_ICR 0x0C /* TX interrupt control */
#define MR_ICR 0x10 /* RX interrupt control */
#define MTPR 0x14 /* TX poll command register */
#define MR_BSR 0x18 /* RX buffer size */
#define MR_DCR 0x1A /* RX descriptor control */
#define MLSR 0x1C /* Last status */
#define MMDIO 0x20 /* MDIO control register */
#define MDIO_WRITE 0x4000 /* MDIO write */
#define MDIO_READ 0x2000 /* MDIO read */
#define MMRD 0x24 /* MDIO read data register */
#define MMWD 0x28 /* MDIO write data register */
#define MTD_SA0 0x2C /* TX descriptor start address 0 */
#define MTD_SA1 0x30 /* TX descriptor start address 1 */
#define MRD_SA0 0x34 /* RX descriptor start address 0 */
#define MRD_SA1 0x38 /* RX descriptor start address 1 */
#define MISR 0x3C /* Status register */
#define MIER 0x40 /* INT enable register */
#define MSK_INT 0x0000 /* Mask off interrupts */
#define ME_CISR 0x44 /* Event counter INT status */
#define ME_CIER 0x48 /* Event counter INT enable */
#define MR_CNT 0x50 /* Successfully received packet counter */
#define ME_CNT0 0x52 /* Event counter 0 */
#define ME_CNT1 0x54 /* Event counter 1 */
#define ME_CNT2 0x56 /* Event counter 2 */
#define ME_CNT3 0x58 /* Event counter 3 */
#define MT_CNT 0x5A /* Successfully transmit packet counter */
#define ME_CNT4 0x5C /* Event counter 4 */
#define MP_CNT 0x5E /* Pause frame counter register */
#define MAR0 0x60 /* Hash table 0 */
#define MAR1 0x62 /* Hash table 1 */
#define MAR2 0x64 /* Hash table 2 */
#define MAR3 0x66 /* Hash table 3 */
#define MID_0L 0x68 /* Multicast address MID0 Low */
#define MID_0M 0x6A /* Multicast address MID0 Medium */
#define MID_0H 0x6C /* Multicast address MID0 High */
#define MID_1L 0x70 /* MID1 Low */
#define MID_1M 0x72 /* MID1 Medium */
#define MID_1H 0x74 /* MID1 High */
#define MID_2L 0x78 /* MID2 Low */
#define MID_2M 0x7A /* MID2 Medium */
#define MID_2H 0x7C /* MID2 High */
#define MID_3L 0x80 /* MID3 Low */
#define MID_3M 0x82 /* MID3 Medium */
#define MID_3H 0x84 /* MID3 High */
#define PHY_CC 0x88 /* PHY status change configuration register */
#define PHY_ST 0x8A /* PHY status register */
#define MAC_SM 0xAC /* MAC status machine */
#define MAC_ID 0xBE /* Identifier register */
#define TX_DCNT 0x80 /* TX descriptor count */
#define RX_DCNT 0x80 /* RX descriptor count */
#define MAX_BUF_SIZE 0x600
#define RX_DESC_SIZE (RX_DCNT * sizeof(struct r6040_descriptor))
#define TX_DESC_SIZE (TX_DCNT * sizeof(struct r6040_descriptor))
#define MBCR_DEFAULT 0x012A /* MAC Bus Control Register */
#define MCAST_MAX 4 /* Max number multicast addresses to filter */
/* PHY settings */
#define ICPLUS_PHY_ID 0x0243
MODULE_AUTHOR("Sten Wang <sten.wang@rdc.com.tw>,"
"Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>,"
"Florian Fainelli <florian@openwrt.org>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RDC R6040 NAPI PCI FastEthernet driver");
#define RX_INT 0x0001
#define TX_INT 0x0010
#define RX_NO_DESC_INT 0x0002
#define INT_MASK (RX_INT | TX_INT)
struct r6040_descriptor {
u16 status, len; /* 0-3 */
__le32 buf; /* 4-7 */
__le32 ndesc; /* 8-B */
u32 rev1; /* C-F */
char *vbufp; /* 10-13 */
struct r6040_descriptor *vndescp; /* 14-17 */
struct sk_buff *skb_ptr; /* 18-1B */
u32 rev2; /* 1C-1F */
} __attribute__((aligned(32)));
struct r6040_private {
spinlock_t lock; /* driver lock */
struct timer_list timer;
struct pci_dev *pdev;
struct r6040_descriptor *rx_insert_ptr;
struct r6040_descriptor *rx_remove_ptr;
struct r6040_descriptor *tx_insert_ptr;
struct r6040_descriptor *tx_remove_ptr;
struct r6040_descriptor *rx_ring;
struct r6040_descriptor *tx_ring;
dma_addr_t rx_ring_dma;
dma_addr_t tx_ring_dma;
u16 tx_free_desc, rx_free_desc, phy_addr, phy_mode;
u16 mcr0, mcr1;
u16 switch_sig;
struct net_device *dev;
struct mii_if_info mii_if;
struct napi_struct napi;
void __iomem *base;
};
static char version[] __devinitdata = KERN_INFO DRV_NAME
": RDC R6040 NAPI net driver,"
"version "DRV_VERSION " (" DRV_RELDATE ")\n";
static int phy_table[] = { PHY1_ADDR, PHY2_ADDR };
/* Read a word data from PHY Chip */
static int phy_read(void __iomem *ioaddr, int phy_addr, int reg)
{
int limit = 2048;
u16 cmd;
iowrite16(MDIO_READ + reg + (phy_addr << 8), ioaddr + MMDIO);
/* Wait for the read bit to be cleared */
while (limit--) {
cmd = ioread16(ioaddr + MMDIO);
if (cmd & MDIO_READ)
break;
}
return ioread16(ioaddr + MMRD);
}
/* Write a word data from PHY Chip */
static void phy_write(void __iomem *ioaddr, int phy_addr, int reg, u16 val)
{
int limit = 2048;
u16 cmd;
iowrite16(val, ioaddr + MMWD);
/* Write the command to the MDIO bus */
iowrite16(MDIO_WRITE + reg + (phy_addr << 8), ioaddr + MMDIO);
/* Wait for the write bit to be cleared */
while (limit--) {
cmd = ioread16(ioaddr + MMDIO);
if (cmd & MDIO_WRITE)
break;
}
}
static int mdio_read(struct net_device *dev, int mii_id, int reg)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
return (phy_read(ioaddr, lp->phy_addr, reg));
}
static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
phy_write(ioaddr, lp->phy_addr, reg, val);
}
static void r6040_free_txbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < TX_DCNT; i++) {
if (lp->tx_insert_ptr->skb_ptr) {
pci_unmap_single(lp->pdev,
le32_to_cpu(lp->tx_insert_ptr->buf),
MAX_BUF_SIZE, PCI_DMA_TODEVICE);
dev_kfree_skb(lp->tx_insert_ptr->skb_ptr);
lp->rx_insert_ptr->skb_ptr = NULL;
}
lp->tx_insert_ptr = lp->tx_insert_ptr->vndescp;
}
}
static void r6040_free_rxbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < RX_DCNT; i++) {
if (lp->rx_insert_ptr->skb_ptr) {
pci_unmap_single(lp->pdev,
le32_to_cpu(lp->rx_insert_ptr->buf),
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(lp->rx_insert_ptr->skb_ptr);
lp->rx_insert_ptr->skb_ptr = NULL;
}
lp->rx_insert_ptr = lp->rx_insert_ptr->vndescp;
}
}
static void r6040_init_ring_desc(struct r6040_descriptor *desc_ring,
dma_addr_t desc_dma, int size)
{
struct r6040_descriptor *desc = desc_ring;
dma_addr_t mapping = desc_dma;
while (size-- > 0) {
mapping += sizeof(*desc);
desc->ndesc = cpu_to_le32(mapping);
desc->vndescp = desc + 1;
desc++;
}
desc--;
desc->ndesc = cpu_to_le32(desc_dma);
desc->vndescp = desc_ring;
}
/* Allocate skb buffer for rx descriptor */
static void rx_buf_alloc(struct r6040_private *lp, struct net_device *dev)
{
struct r6040_descriptor *descptr;
void __iomem *ioaddr = lp->base;
descptr = lp->rx_insert_ptr;
while (lp->rx_free_desc < RX_DCNT) {
descptr->skb_ptr = netdev_alloc_skb(dev, MAX_BUF_SIZE);
if (!descptr->skb_ptr)
break;
descptr->buf = cpu_to_le32(pci_map_single(lp->pdev,
descptr->skb_ptr->data,
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE));
descptr->status = 0x8000;
descptr = descptr->vndescp;
lp->rx_free_desc++;
/* Trigger RX DMA */
iowrite16(lp->mcr0 | 0x0002, ioaddr);
}
lp->rx_insert_ptr = descptr;
}
static void r6040_alloc_txbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
lp->tx_free_desc = TX_DCNT;
lp->tx_remove_ptr = lp->tx_insert_ptr = lp->tx_ring;
r6040_init_ring_desc(lp->tx_ring, lp->tx_ring_dma, TX_DCNT);
iowrite16(lp->tx_ring_dma, ioaddr + MTD_SA0);
iowrite16(lp->tx_ring_dma >> 16, ioaddr + MTD_SA1);
}
static void r6040_alloc_rxbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
lp->rx_free_desc = 0;
lp->rx_remove_ptr = lp->rx_insert_ptr = lp->rx_ring;
r6040_init_ring_desc(lp->rx_ring, lp->rx_ring_dma, RX_DCNT);
rx_buf_alloc(lp, dev);
iowrite16(lp->rx_ring_dma, ioaddr + MRD_SA0);
iowrite16(lp->rx_ring_dma >> 16, ioaddr + MRD_SA1);
}
static void r6040_tx_timeout(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
printk(KERN_WARNING "%s: transmit timed out, status %4.4x, PHY status "
"%4.4x\n",
dev->name, ioread16(ioaddr + MIER),
mdio_read(dev, priv->mii_if.phy_id, MII_BMSR));
disable_irq(dev->irq);
napi_disable(&priv->napi);
spin_lock(&priv->lock);
/* Clear all descriptors */
r6040_free_txbufs(dev);
r6040_free_rxbufs(dev);
r6040_alloc_txbufs(dev);
r6040_alloc_rxbufs(dev);
/* Reset MAC */
iowrite16(MAC_RST, ioaddr + MCR1);
spin_unlock(&priv->lock);
enable_irq(dev->irq);
dev->stats.tx_errors++;
netif_wake_queue(dev);
}
static struct net_device_stats *r6040_get_stats(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
dev->stats.rx_crc_errors += ioread8(ioaddr + ME_CNT1);
dev->stats.multicast += ioread8(ioaddr + ME_CNT0);
spin_unlock_irqrestore(&priv->lock, flags);
return &dev->stats;
}
/* Stop RDC MAC and Free the allocated resource */
static void r6040_down(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
struct pci_dev *pdev = lp->pdev;
int limit = 2048;
u16 *adrp;
u16 cmd;
/* Stop MAC */
iowrite16(MSK_INT, ioaddr + MIER); /* Mask Off Interrupt */
iowrite16(MAC_RST, ioaddr + MCR1); /* Reset RDC MAC */
while (limit--) {
cmd = ioread16(ioaddr + MCR1);
if (cmd & 0x1)
break;
}
/* Restore MAC Address to MIDx */
adrp = (u16 *) dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
free_irq(dev->irq, dev);
/* Free RX buffer */
r6040_free_rxbufs(dev);
/* Free TX buffer */
r6040_free_txbufs(dev);
/* Free Descriptor memory */
pci_free_consistent(pdev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma);
pci_free_consistent(pdev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma);
}
static int r6040_close(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
/* deleted timer */
del_timer_sync(&lp->timer);
spin_lock_irq(&lp->lock);
netif_stop_queue(dev);
r6040_down(dev);
spin_unlock_irq(&lp->lock);
return 0;
}
/* Status of PHY CHIP */
static int phy_mode_chk(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int phy_dat;
/* PHY Link Status Check */
phy_dat = phy_read(ioaddr, lp->phy_addr, 1);
if (!(phy_dat & 0x4))
phy_dat = 0x8000; /* Link Failed, full duplex */
/* PHY Chip Auto-Negotiation Status */
phy_dat = phy_read(ioaddr, lp->phy_addr, 1);
if (phy_dat & 0x0020) {
/* Auto Negotiation Mode */
phy_dat = phy_read(ioaddr, lp->phy_addr, 5);
phy_dat &= phy_read(ioaddr, lp->phy_addr, 4);
if (phy_dat & 0x140)
/* Force full duplex */
phy_dat = 0x8000;
else
phy_dat = 0;
} else {
/* Force Mode */
phy_dat = phy_read(ioaddr, lp->phy_addr, 0);
if (phy_dat & 0x100)
phy_dat = 0x8000;
else
phy_dat = 0x0000;
}
return phy_dat;
};
static void r6040_set_carrier(struct mii_if_info *mii)
{
if (phy_mode_chk(mii->dev)) {
/* autoneg is off: Link is always assumed to be up */
if (!netif_carrier_ok(mii->dev))
netif_carrier_on(mii->dev);
} else
phy_mode_chk(mii->dev);
}
static int r6040_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct r6040_private *lp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(rq);
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
spin_unlock_irq(&lp->lock);
r6040_set_carrier(&lp->mii_if);
return rc;
}
static int r6040_rx(struct net_device *dev, int limit)
{
struct r6040_private *priv = netdev_priv(dev);
int count;
void __iomem *ioaddr = priv->base;
u16 err;
for (count = 0; count < limit; ++count) {
struct r6040_descriptor *descptr = priv->rx_remove_ptr;
struct sk_buff *skb_ptr;
/* Disable RX interrupt */
iowrite16(ioread16(ioaddr + MIER) & (~RX_INT), ioaddr + MIER);
descptr = priv->rx_remove_ptr;
/* Check for errors */
err = ioread16(ioaddr + MLSR);
if (err & 0x0400)
dev->stats.rx_errors++;
/* RX FIFO over-run */
if (err & 0x8000)
dev->stats.rx_fifo_errors++;
/* RX descriptor unavailable */
if (err & 0x0080)
dev->stats.rx_frame_errors++;
/* Received packet with length over buffer lenght */
if (err & 0x0020)
dev->stats.rx_over_errors++;
/* Received packet with too long or short */
if (err & (0x0010 | 0x0008))
dev->stats.rx_length_errors++;
/* Received packet with CRC errors */
if (err & 0x0004) {
spin_lock(&priv->lock);
dev->stats.rx_crc_errors++;
spin_unlock(&priv->lock);
}
while (priv->rx_free_desc) {
/* No RX packet */
if (descptr->status & 0x8000)
break;
skb_ptr = descptr->skb_ptr;
if (!skb_ptr) {
printk(KERN_ERR "%s: Inconsistent RX"
"descriptor chain\n",
dev->name);
break;
}
descptr->skb_ptr = NULL;
skb_ptr->dev = priv->dev;
/* Do not count the CRC */
skb_put(skb_ptr, descptr->len - 4);
pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf),
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE);
skb_ptr->protocol = eth_type_trans(skb_ptr, priv->dev);
/* Send to upper layer */
netif_receive_skb(skb_ptr);
dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += descptr->len;
/* To next descriptor */
descptr = descptr->vndescp;
priv->rx_free_desc--;
}
priv->rx_remove_ptr = descptr;
}
/* Allocate new RX buffer */
if (priv->rx_free_desc < RX_DCNT)
rx_buf_alloc(priv, priv->dev);
return count;
}
static void r6040_tx(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
struct r6040_descriptor *descptr;
void __iomem *ioaddr = priv->base;
struct sk_buff *skb_ptr;
u16 err;
spin_lock(&priv->lock);
descptr = priv->tx_remove_ptr;
while (priv->tx_free_desc < TX_DCNT) {
/* Check for errors */
err = ioread16(ioaddr + MLSR);
if (err & 0x0200)
dev->stats.rx_fifo_errors++;
if (err & (0x2000 | 0x4000))
dev->stats.tx_carrier_errors++;
if (descptr->status & 0x8000)
break; /* Not complete */
skb_ptr = descptr->skb_ptr;
pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf),
skb_ptr->len, PCI_DMA_TODEVICE);
/* Free buffer */
dev_kfree_skb_irq(skb_ptr);
descptr->skb_ptr = NULL;
/* To next descriptor */
descptr = descptr->vndescp;
priv->tx_free_desc++;
}
priv->tx_remove_ptr = descptr;
if (priv->tx_free_desc)
netif_wake_queue(dev);
spin_unlock(&priv->lock);
}
static int r6040_poll(struct napi_struct *napi, int budget)
{
struct r6040_private *priv =
container_of(napi, struct r6040_private, napi);
struct net_device *dev = priv->dev;
void __iomem *ioaddr = priv->base;
int work_done;
work_done = r6040_rx(dev, budget);
if (work_done < budget) {
netif_rx_complete(dev, napi);
/* Enable RX interrupt */
iowrite16(ioread16(ioaddr + MIER) | RX_INT, ioaddr + MIER);
}
return work_done;
}
/* The RDC interrupt handler. */
static irqreturn_t r6040_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 status;
/* Mask off RDC MAC interrupt */
iowrite16(MSK_INT, ioaddr + MIER);
/* Read MISR status and clear */
status = ioread16(ioaddr + MISR);
if (status == 0x0000 || status == 0xffff)
return IRQ_NONE;
/* RX interrupt request */
if (status & 0x01) {
netif_rx_schedule(dev, &lp->napi);
iowrite16(TX_INT, ioaddr + MIER);
}
/* TX interrupt request */
if (status & 0x10)
r6040_tx(dev);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void r6040_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
r6040_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* Init RDC MAC */
static void r6040_up(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
/* Initialise and alloc RX/TX buffers */
r6040_alloc_txbufs(dev);
r6040_alloc_rxbufs(dev);
/* Buffer Size Register */
iowrite16(MAX_BUF_SIZE, ioaddr + MR_BSR);
/* Read the PHY ID */
lp->switch_sig = phy_read(ioaddr, 0, 2);
if (lp->switch_sig == ICPLUS_PHY_ID) {
phy_write(ioaddr, 29, 31, 0x175C); /* Enable registers */
lp->phy_mode = 0x8000;
} else {
/* PHY Mode Check */
phy_write(ioaddr, lp->phy_addr, 4, PHY_CAP);
phy_write(ioaddr, lp->phy_addr, 0, PHY_MODE);
if (PHY_MODE == 0x3100)
lp->phy_mode = phy_mode_chk(dev);
else
lp->phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0;
}
/* MAC Bus Control Register */
iowrite16(MBCR_DEFAULT, ioaddr + MBCR);
/* MAC TX/RX Enable */
lp->mcr0 |= lp->phy_mode;
iowrite16(lp->mcr0, ioaddr);
/* set interrupt waiting time and packet numbers */
iowrite16(0x0F06, ioaddr + MT_ICR);
iowrite16(0x0F06, ioaddr + MR_ICR);
/* improve performance (by RDC guys) */
phy_write(ioaddr, 30, 17, (phy_read(ioaddr, 30, 17) | 0x4000));
phy_write(ioaddr, 30, 17, ~((~phy_read(ioaddr, 30, 17)) | 0x2000));
phy_write(ioaddr, 0, 19, 0x0000);
phy_write(ioaddr, 0, 30, 0x01F0);
/* Interrupt Mask Register */
iowrite16(INT_MASK, ioaddr + MIER);
}
/*
A periodic timer routine
Polling PHY Chip Link Status
*/
static void r6040_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 phy_mode;
/* Polling PHY Chip Status */
if (PHY_MODE == 0x3100)
phy_mode = phy_mode_chk(dev);
else
phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0;
if (phy_mode != lp->phy_mode) {
lp->phy_mode = phy_mode;
lp->mcr0 = (lp->mcr0 & 0x7fff) | phy_mode;
iowrite16(lp->mcr0, ioaddr);
printk(KERN_INFO "Link Change %x \n", ioread16(ioaddr));
}
/* Timer active again */
mod_timer(&lp->timer, round_jiffies(jiffies + HZ));
}
/* Read/set MAC address routines */
static void r6040_mac_address(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 *adrp;
/* MAC operation register */
iowrite16(0x01, ioaddr + MCR1); /* Reset MAC */
iowrite16(2, ioaddr + MAC_SM); /* Reset internal state machine */
iowrite16(0, ioaddr + MAC_SM);
udelay(5000);
/* Restore MAC Address */
adrp = (u16 *) dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
}
static int r6040_open(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int ret;
/* Request IRQ and Register interrupt handler */
ret = request_irq(dev->irq, &r6040_interrupt,
IRQF_SHARED, dev->name, dev);
if (ret)
return ret;
/* Set MAC address */
r6040_mac_address(dev);
/* Allocate Descriptor memory */
lp->rx_ring =
pci_alloc_consistent(lp->pdev, RX_DESC_SIZE, &lp->rx_ring_dma);
if (!lp->rx_ring)
return -ENOMEM;
lp->tx_ring =
pci_alloc_consistent(lp->pdev, TX_DESC_SIZE, &lp->tx_ring_dma);
if (!lp->tx_ring) {
pci_free_consistent(lp->pdev, RX_DESC_SIZE, lp->rx_ring,
lp->rx_ring_dma);
return -ENOMEM;
}
r6040_up(dev);
napi_enable(&lp->napi);
netif_start_queue(dev);
/* set and active a timer process */
setup_timer(&lp->timer, r6040_timer, (unsigned long) dev);
if (lp->switch_sig != ICPLUS_PHY_ID)
mod_timer(&lp->timer, jiffies + HZ);
return 0;
}
static int r6040_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
struct r6040_descriptor *descptr;
void __iomem *ioaddr = lp->base;
unsigned long flags;
int ret = NETDEV_TX_OK;
/* Critical Section */
spin_lock_irqsave(&lp->lock, flags);
/* TX resource check */
if (!lp->tx_free_desc) {
spin_unlock_irqrestore(&lp->lock, flags);
netif_stop_queue(dev);
printk(KERN_ERR DRV_NAME ": no tx descriptor\n");
ret = NETDEV_TX_BUSY;
return ret;
}
/* Statistic Counter */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* Set TX descriptor & Transmit it */
lp->tx_free_desc--;
descptr = lp->tx_insert_ptr;
if (skb->len < MISR)
descptr->len = MISR;
else
descptr->len = skb->len;
descptr->skb_ptr = skb;
descptr->buf = cpu_to_le32(pci_map_single(lp->pdev,
skb->data, skb->len, PCI_DMA_TODEVICE));
descptr->status = 0x8000;
/* Trigger the MAC to check the TX descriptor */
iowrite16(0x01, ioaddr + MTPR);
lp->tx_insert_ptr = descptr->vndescp;
/* If no tx resource, stop */
if (!lp->tx_free_desc)
netif_stop_queue(dev);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&lp->lock, flags);
return ret;
}
static void r6040_multicast_list(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 *adrp;
u16 reg;
unsigned long flags;
struct dev_mc_list *dmi = dev->mc_list;
int i;
/* MAC Address */
adrp = (u16 *)dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
/* Promiscous Mode */
spin_lock_irqsave(&lp->lock, flags);
/* Clear AMCP & PROM bits */
reg = ioread16(ioaddr) & ~0x0120;
if (dev->flags & IFF_PROMISC) {
reg |= 0x0020;
lp->mcr0 |= 0x0020;
}
/* Too many multicast addresses
* accept all traffic */
else if ((dev->mc_count > MCAST_MAX)
|| (dev->flags & IFF_ALLMULTI))
reg |= 0x0020;
iowrite16(reg, ioaddr);
spin_unlock_irqrestore(&lp->lock, flags);
/* Build the hash table */
if (dev->mc_count > MCAST_MAX) {
u16 hash_table[4];
u32 crc;
for (i = 0; i < 4; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
char *addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
}
/* Write the index of the hash table */
for (i = 0; i < 4; i++)
iowrite16(hash_table[i] << 14, ioaddr + MCR1);
/* Fill the MAC hash tables with their values */
iowrite16(hash_table[0], ioaddr + MAR0);
iowrite16(hash_table[1], ioaddr + MAR1);
iowrite16(hash_table[2], ioaddr + MAR2);
iowrite16(hash_table[3], ioaddr + MAR3);
}
/* Multicast Address 1~4 case */
for (i = 0, dmi; (i < dev->mc_count) && (i < MCAST_MAX); i++) {
adrp = (u16 *)dmi->dmi_addr;
iowrite16(adrp[0], ioaddr + MID_1L + 8*i);
iowrite16(adrp[1], ioaddr + MID_1M + 8*i);
iowrite16(adrp[2], ioaddr + MID_1H + 8*i);
dmi = dmi->next;
}
for (i = dev->mc_count; i < MCAST_MAX; i++) {
iowrite16(0xffff, ioaddr + MID_0L + 8*i);
iowrite16(0xffff, ioaddr + MID_0M + 8*i);
iowrite16(0xffff, ioaddr + MID_0H + 8*i);
}
}
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct r6040_private *rp = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(rp->pdev));
}
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct r6040_private *rp = netdev_priv(dev);
int rc;
spin_lock_irq(&rp->lock);
rc = mii_ethtool_gset(&rp->mii_if, cmd);
spin_unlock_irq(&rp->lock);
return rc;
}
static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct r6040_private *rp = netdev_priv(dev);
int rc;
spin_lock_irq(&rp->lock);
rc = mii_ethtool_sset(&rp->mii_if, cmd);
spin_unlock_irq(&rp->lock);
r6040_set_carrier(&rp->mii_if);
return rc;
}
static u32 netdev_get_link(struct net_device *dev)
{
struct r6040_private *rp = netdev_priv(dev);
return mii_link_ok(&rp->mii_if);
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_settings = netdev_get_settings,
.set_settings = netdev_set_settings,
.get_link = netdev_get_link,
};
static int __devinit r6040_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct r6040_private *lp;
void __iomem *ioaddr;
int err, io_size = R6040_IO_SIZE;
static int card_idx = -1;
int bar = 0;
long pioaddr;
u16 *adrp;
printk(KERN_INFO "%s\n", version);
err = pci_enable_device(pdev);
if (err)
return err;
/* this should always be supported */
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses"
"not supported by the card\n");
return -ENODEV;
}
if (pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses"
"not supported by the card\n");
return -ENODEV;
}
/* IO Size check */
if (pci_resource_len(pdev, 0) < io_size) {
printk(KERN_ERR "Insufficient PCI resources, aborting\n");
return -EIO;
}
pioaddr = pci_resource_start(pdev, 0); /* IO map base address */
pci_set_master(pdev);
dev = alloc_etherdev(sizeof(struct r6040_private));
if (!dev) {
printk(KERN_ERR "Failed to allocate etherdev\n");
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
lp->pdev = pdev;
if (pci_request_regions(pdev, DRV_NAME)) {
printk(KERN_ERR DRV_NAME ": Failed to request PCI regions\n");
err = -ENODEV;
goto err_out_disable;
}
ioaddr = pci_iomap(pdev, bar, io_size);
if (!ioaddr) {
printk(KERN_ERR "ioremap failed for device %s\n",
pci_name(pdev));
return -EIO;
}
/* Init system & device */
lp->base = ioaddr;
dev->irq = pdev->irq;
spin_lock_init(&lp->lock);
pci_set_drvdata(pdev, dev);
/* Set MAC address */
card_idx++;
adrp = (u16 *)dev->dev_addr;
adrp[0] = ioread16(ioaddr + MID_0L);
adrp[1] = ioread16(ioaddr + MID_0M);
adrp[2] = ioread16(ioaddr + MID_0H);
/* Link new device into r6040_root_dev */
lp->pdev = pdev;
/* Init RDC private data */
lp->mcr0 = 0x1002;
lp->phy_addr = phy_table[card_idx];
lp->switch_sig = 0;
/* The RDC-specific entries in the device structure. */
dev->open = &r6040_open;
dev->hard_start_xmit = &r6040_start_xmit;
dev->stop = &r6040_close;
dev->get_stats = r6040_get_stats;
dev->set_multicast_list = &r6040_multicast_list;
dev->do_ioctl = &r6040_ioctl;
dev->ethtool_ops = &netdev_ethtool_ops;
dev->tx_timeout = &r6040_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = r6040_poll_controller;
#endif
netif_napi_add(dev, &lp->napi, r6040_poll, 64);
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = mdio_read;
lp->mii_if.mdio_write = mdio_write;
lp->mii_if.phy_id = lp->phy_addr;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
/* Register net device. After this dev->name assign */
err = register_netdev(dev);
if (err) {
printk(KERN_ERR DRV_NAME ": Failed to register net device\n");
goto err_out_res;
}
return 0;
err_out_res:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return err;
}
static void __devexit r6040_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
unregister_netdev(dev);
pci_release_regions(pdev);
free_netdev(dev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_device_id r6040_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_RDC, 0x6040) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, r6040_pci_tbl);
static struct pci_driver r6040_driver = {
.name = DRV_NAME,
.id_table = r6040_pci_tbl,
.probe = r6040_init_one,
.remove = __devexit_p(r6040_remove_one),
};
static int __init r6040_init(void)
{
return pci_register_driver(&r6040_driver);
}
static void __exit r6040_cleanup(void)
{
pci_unregister_driver(&r6040_driver);
}
module_init(r6040_init);
module_exit(r6040_cleanup);