forked from Minki/linux
bcf8039ed4
We were walking right into huge page areas in the pagemap walker, and calling the pmds pmd_bad() and clearing them. That leaked huge pages. Bad. This patch at least works around that for now. It ignores huge pages in the pagemap walker for the time being, and won't leak those pages. Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
771 lines
19 KiB
C
771 lines
19 KiB
C
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
#include "internal.h"
|
|
|
|
void task_mem(struct seq_file *m, struct mm_struct *mm)
|
|
{
|
|
unsigned long data, text, lib;
|
|
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
|
|
|
|
/*
|
|
* Note: to minimize their overhead, mm maintains hiwater_vm and
|
|
* hiwater_rss only when about to *lower* total_vm or rss. Any
|
|
* collector of these hiwater stats must therefore get total_vm
|
|
* and rss too, which will usually be the higher. Barriers? not
|
|
* worth the effort, such snapshots can always be inconsistent.
|
|
*/
|
|
hiwater_vm = total_vm = mm->total_vm;
|
|
if (hiwater_vm < mm->hiwater_vm)
|
|
hiwater_vm = mm->hiwater_vm;
|
|
hiwater_rss = total_rss = get_mm_rss(mm);
|
|
if (hiwater_rss < mm->hiwater_rss)
|
|
hiwater_rss = mm->hiwater_rss;
|
|
|
|
data = mm->total_vm - mm->shared_vm - mm->stack_vm;
|
|
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
|
|
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
|
|
seq_printf(m,
|
|
"VmPeak:\t%8lu kB\n"
|
|
"VmSize:\t%8lu kB\n"
|
|
"VmLck:\t%8lu kB\n"
|
|
"VmHWM:\t%8lu kB\n"
|
|
"VmRSS:\t%8lu kB\n"
|
|
"VmData:\t%8lu kB\n"
|
|
"VmStk:\t%8lu kB\n"
|
|
"VmExe:\t%8lu kB\n"
|
|
"VmLib:\t%8lu kB\n"
|
|
"VmPTE:\t%8lu kB\n",
|
|
hiwater_vm << (PAGE_SHIFT-10),
|
|
(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
|
|
mm->locked_vm << (PAGE_SHIFT-10),
|
|
hiwater_rss << (PAGE_SHIFT-10),
|
|
total_rss << (PAGE_SHIFT-10),
|
|
data << (PAGE_SHIFT-10),
|
|
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
|
|
(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
|
|
}
|
|
|
|
unsigned long task_vsize(struct mm_struct *mm)
|
|
{
|
|
return PAGE_SIZE * mm->total_vm;
|
|
}
|
|
|
|
int task_statm(struct mm_struct *mm, int *shared, int *text,
|
|
int *data, int *resident)
|
|
{
|
|
*shared = get_mm_counter(mm, file_rss);
|
|
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
|
|
>> PAGE_SHIFT;
|
|
*data = mm->total_vm - mm->shared_vm;
|
|
*resident = *shared + get_mm_counter(mm, anon_rss);
|
|
return mm->total_vm;
|
|
}
|
|
|
|
static void pad_len_spaces(struct seq_file *m, int len)
|
|
{
|
|
len = 25 + sizeof(void*) * 6 - len;
|
|
if (len < 1)
|
|
len = 1;
|
|
seq_printf(m, "%*c", len, ' ');
|
|
}
|
|
|
|
static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
|
|
{
|
|
if (vma && vma != priv->tail_vma) {
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
static void *m_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
unsigned long last_addr = m->version;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma, *tail_vma = NULL;
|
|
loff_t l = *pos;
|
|
|
|
/* Clear the per syscall fields in priv */
|
|
priv->task = NULL;
|
|
priv->tail_vma = NULL;
|
|
|
|
/*
|
|
* We remember last_addr rather than next_addr to hit with
|
|
* mmap_cache most of the time. We have zero last_addr at
|
|
* the beginning and also after lseek. We will have -1 last_addr
|
|
* after the end of the vmas.
|
|
*/
|
|
|
|
if (last_addr == -1UL)
|
|
return NULL;
|
|
|
|
priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
|
|
if (!priv->task)
|
|
return NULL;
|
|
|
|
mm = mm_for_maps(priv->task);
|
|
if (!mm)
|
|
return NULL;
|
|
|
|
tail_vma = get_gate_vma(priv->task);
|
|
priv->tail_vma = tail_vma;
|
|
|
|
/* Start with last addr hint */
|
|
vma = find_vma(mm, last_addr);
|
|
if (last_addr && vma) {
|
|
vma = vma->vm_next;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check the vma index is within the range and do
|
|
* sequential scan until m_index.
|
|
*/
|
|
vma = NULL;
|
|
if ((unsigned long)l < mm->map_count) {
|
|
vma = mm->mmap;
|
|
while (l-- && vma)
|
|
vma = vma->vm_next;
|
|
goto out;
|
|
}
|
|
|
|
if (l != mm->map_count)
|
|
tail_vma = NULL; /* After gate vma */
|
|
|
|
out:
|
|
if (vma)
|
|
return vma;
|
|
|
|
/* End of vmas has been reached */
|
|
m->version = (tail_vma != NULL)? 0: -1UL;
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
return tail_vma;
|
|
}
|
|
|
|
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct vm_area_struct *vma = v;
|
|
struct vm_area_struct *tail_vma = priv->tail_vma;
|
|
|
|
(*pos)++;
|
|
if (vma && (vma != tail_vma) && vma->vm_next)
|
|
return vma->vm_next;
|
|
vma_stop(priv, vma);
|
|
return (vma != tail_vma)? tail_vma: NULL;
|
|
}
|
|
|
|
static void m_stop(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct vm_area_struct *vma = v;
|
|
|
|
vma_stop(priv, vma);
|
|
if (priv->task)
|
|
put_task_struct(priv->task);
|
|
}
|
|
|
|
static int do_maps_open(struct inode *inode, struct file *file,
|
|
const struct seq_operations *ops)
|
|
{
|
|
struct proc_maps_private *priv;
|
|
int ret = -ENOMEM;
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (priv) {
|
|
priv->pid = proc_pid(inode);
|
|
ret = seq_open(file, ops);
|
|
if (!ret) {
|
|
struct seq_file *m = file->private_data;
|
|
m->private = priv;
|
|
} else {
|
|
kfree(priv);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int show_map(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct task_struct *task = priv->task;
|
|
struct vm_area_struct *vma = v;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct file *file = vma->vm_file;
|
|
int flags = vma->vm_flags;
|
|
unsigned long ino = 0;
|
|
dev_t dev = 0;
|
|
int len;
|
|
|
|
if (maps_protect && !ptrace_may_attach(task))
|
|
return -EACCES;
|
|
|
|
if (file) {
|
|
struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
|
|
dev = inode->i_sb->s_dev;
|
|
ino = inode->i_ino;
|
|
}
|
|
|
|
seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
|
|
vma->vm_start,
|
|
vma->vm_end,
|
|
flags & VM_READ ? 'r' : '-',
|
|
flags & VM_WRITE ? 'w' : '-',
|
|
flags & VM_EXEC ? 'x' : '-',
|
|
flags & VM_MAYSHARE ? 's' : 'p',
|
|
vma->vm_pgoff << PAGE_SHIFT,
|
|
MAJOR(dev), MINOR(dev), ino, &len);
|
|
|
|
/*
|
|
* Print the dentry name for named mappings, and a
|
|
* special [heap] marker for the heap:
|
|
*/
|
|
if (file) {
|
|
pad_len_spaces(m, len);
|
|
seq_path(m, &file->f_path, "\n");
|
|
} else {
|
|
const char *name = arch_vma_name(vma);
|
|
if (!name) {
|
|
if (mm) {
|
|
if (vma->vm_start <= mm->start_brk &&
|
|
vma->vm_end >= mm->brk) {
|
|
name = "[heap]";
|
|
} else if (vma->vm_start <= mm->start_stack &&
|
|
vma->vm_end >= mm->start_stack) {
|
|
name = "[stack]";
|
|
}
|
|
} else {
|
|
name = "[vdso]";
|
|
}
|
|
}
|
|
if (name) {
|
|
pad_len_spaces(m, len);
|
|
seq_puts(m, name);
|
|
}
|
|
}
|
|
seq_putc(m, '\n');
|
|
|
|
if (m->count < m->size) /* vma is copied successfully */
|
|
m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_map
|
|
};
|
|
|
|
static int maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_maps_op);
|
|
}
|
|
|
|
const struct file_operations proc_maps_operations = {
|
|
.open = maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
/*
|
|
* Proportional Set Size(PSS): my share of RSS.
|
|
*
|
|
* PSS of a process is the count of pages it has in memory, where each
|
|
* page is divided by the number of processes sharing it. So if a
|
|
* process has 1000 pages all to itself, and 1000 shared with one other
|
|
* process, its PSS will be 1500.
|
|
*
|
|
* To keep (accumulated) division errors low, we adopt a 64bit
|
|
* fixed-point pss counter to minimize division errors. So (pss >>
|
|
* PSS_SHIFT) would be the real byte count.
|
|
*
|
|
* A shift of 12 before division means (assuming 4K page size):
|
|
* - 1M 3-user-pages add up to 8KB errors;
|
|
* - supports mapcount up to 2^24, or 16M;
|
|
* - supports PSS up to 2^52 bytes, or 4PB.
|
|
*/
|
|
#define PSS_SHIFT 12
|
|
|
|
#ifdef CONFIG_PROC_PAGE_MONITOR
|
|
struct mem_size_stats {
|
|
struct vm_area_struct *vma;
|
|
unsigned long resident;
|
|
unsigned long shared_clean;
|
|
unsigned long shared_dirty;
|
|
unsigned long private_clean;
|
|
unsigned long private_dirty;
|
|
unsigned long referenced;
|
|
unsigned long swap;
|
|
u64 pss;
|
|
};
|
|
|
|
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = mss->vma;
|
|
pte_t *pte, ptent;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
int mapcount;
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
|
ptent = *pte;
|
|
|
|
if (is_swap_pte(ptent)) {
|
|
mss->swap += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
if (!pte_present(ptent))
|
|
continue;
|
|
|
|
mss->resident += PAGE_SIZE;
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* Accumulate the size in pages that have been accessed. */
|
|
if (pte_young(ptent) || PageReferenced(page))
|
|
mss->referenced += PAGE_SIZE;
|
|
mapcount = page_mapcount(page);
|
|
if (mapcount >= 2) {
|
|
if (pte_dirty(ptent))
|
|
mss->shared_dirty += PAGE_SIZE;
|
|
else
|
|
mss->shared_clean += PAGE_SIZE;
|
|
mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
|
|
} else {
|
|
if (pte_dirty(ptent))
|
|
mss->private_dirty += PAGE_SIZE;
|
|
else
|
|
mss->private_clean += PAGE_SIZE;
|
|
mss->pss += (PAGE_SIZE << PSS_SHIFT);
|
|
}
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static int show_smap(struct seq_file *m, void *v)
|
|
{
|
|
struct vm_area_struct *vma = v;
|
|
struct mem_size_stats mss;
|
|
int ret;
|
|
struct mm_walk smaps_walk = {
|
|
.pmd_entry = smaps_pte_range,
|
|
.mm = vma->vm_mm,
|
|
.private = &mss,
|
|
};
|
|
|
|
memset(&mss, 0, sizeof mss);
|
|
mss.vma = vma;
|
|
if (vma->vm_mm && !is_vm_hugetlb_page(vma))
|
|
walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
|
|
|
|
ret = show_map(m, v);
|
|
if (ret)
|
|
return ret;
|
|
|
|
seq_printf(m,
|
|
"Size: %8lu kB\n"
|
|
"Rss: %8lu kB\n"
|
|
"Pss: %8lu kB\n"
|
|
"Shared_Clean: %8lu kB\n"
|
|
"Shared_Dirty: %8lu kB\n"
|
|
"Private_Clean: %8lu kB\n"
|
|
"Private_Dirty: %8lu kB\n"
|
|
"Referenced: %8lu kB\n"
|
|
"Swap: %8lu kB\n",
|
|
(vma->vm_end - vma->vm_start) >> 10,
|
|
mss.resident >> 10,
|
|
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
|
|
mss.shared_clean >> 10,
|
|
mss.shared_dirty >> 10,
|
|
mss.private_clean >> 10,
|
|
mss.private_dirty >> 10,
|
|
mss.referenced >> 10,
|
|
mss.swap >> 10);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_smaps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_smap
|
|
};
|
|
|
|
static int smaps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_smaps_op);
|
|
}
|
|
|
|
const struct file_operations proc_smaps_operations = {
|
|
.open = smaps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->private;
|
|
pte_t *pte, ptent;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
|
ptent = *pte;
|
|
if (!pte_present(ptent))
|
|
continue;
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* Clear accessed and referenced bits. */
|
|
ptep_test_and_clear_young(vma, addr, pte);
|
|
ClearPageReferenced(page);
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct task_struct *task;
|
|
char buffer[PROC_NUMBUF], *end;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
if (count > sizeof(buffer) - 1)
|
|
count = sizeof(buffer) - 1;
|
|
if (copy_from_user(buffer, buf, count))
|
|
return -EFAULT;
|
|
if (!simple_strtol(buffer, &end, 0))
|
|
return -EINVAL;
|
|
if (*end == '\n')
|
|
end++;
|
|
task = get_proc_task(file->f_path.dentry->d_inode);
|
|
if (!task)
|
|
return -ESRCH;
|
|
mm = get_task_mm(task);
|
|
if (mm) {
|
|
static struct mm_walk clear_refs_walk;
|
|
memset(&clear_refs_walk, 0, sizeof(clear_refs_walk));
|
|
clear_refs_walk.pmd_entry = clear_refs_pte_range;
|
|
clear_refs_walk.mm = mm;
|
|
down_read(&mm->mmap_sem);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
clear_refs_walk.private = vma;
|
|
if (!is_vm_hugetlb_page(vma))
|
|
walk_page_range(vma->vm_start, vma->vm_end,
|
|
&clear_refs_walk);
|
|
}
|
|
flush_tlb_mm(mm);
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
put_task_struct(task);
|
|
if (end - buffer == 0)
|
|
return -EIO;
|
|
return end - buffer;
|
|
}
|
|
|
|
const struct file_operations proc_clear_refs_operations = {
|
|
.write = clear_refs_write,
|
|
};
|
|
|
|
struct pagemapread {
|
|
u64 __user *out, *end;
|
|
};
|
|
|
|
#define PM_ENTRY_BYTES sizeof(u64)
|
|
#define PM_STATUS_BITS 3
|
|
#define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
|
|
#define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
|
|
#define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
|
|
#define PM_PSHIFT_BITS 6
|
|
#define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
|
|
#define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
|
|
#define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
|
|
#define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
|
|
#define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
|
|
|
|
#define PM_PRESENT PM_STATUS(4LL)
|
|
#define PM_SWAP PM_STATUS(2LL)
|
|
#define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
|
|
#define PM_END_OF_BUFFER 1
|
|
|
|
static int add_to_pagemap(unsigned long addr, u64 pfn,
|
|
struct pagemapread *pm)
|
|
{
|
|
if (put_user(pfn, pm->out))
|
|
return -EFAULT;
|
|
pm->out++;
|
|
if (pm->out >= pm->end)
|
|
return PM_END_OF_BUFFER;
|
|
return 0;
|
|
}
|
|
|
|
static int pagemap_pte_hole(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct pagemapread *pm = walk->private;
|
|
unsigned long addr;
|
|
int err = 0;
|
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
|
err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static u64 swap_pte_to_pagemap_entry(pte_t pte)
|
|
{
|
|
swp_entry_t e = pte_to_swp_entry(pte);
|
|
return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
|
|
}
|
|
|
|
static unsigned long pte_to_pagemap_entry(pte_t pte)
|
|
{
|
|
unsigned long pme = 0;
|
|
if (is_swap_pte(pte))
|
|
pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
|
|
| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
|
|
else if (pte_present(pte))
|
|
pme = PM_PFRAME(pte_pfn(pte))
|
|
| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
|
|
return pme;
|
|
}
|
|
|
|
static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct pagemapread *pm = walk->private;
|
|
pte_t *pte;
|
|
int err = 0;
|
|
|
|
/* find the first VMA at or above 'addr' */
|
|
vma = find_vma(walk->mm, addr);
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
u64 pfn = PM_NOT_PRESENT;
|
|
|
|
/* check to see if we've left 'vma' behind
|
|
* and need a new, higher one */
|
|
if (vma && (addr >= vma->vm_end))
|
|
vma = find_vma(walk->mm, addr);
|
|
|
|
/* check that 'vma' actually covers this address,
|
|
* and that it isn't a huge page vma */
|
|
if (vma && (vma->vm_start <= addr) &&
|
|
!is_vm_hugetlb_page(vma)) {
|
|
pte = pte_offset_map(pmd, addr);
|
|
pfn = pte_to_pagemap_entry(*pte);
|
|
/* unmap before userspace copy */
|
|
pte_unmap(pte);
|
|
}
|
|
err = add_to_pagemap(addr, pfn, pm);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct mm_walk pagemap_walk = {
|
|
.pmd_entry = pagemap_pte_range,
|
|
.pte_hole = pagemap_pte_hole
|
|
};
|
|
|
|
/*
|
|
* /proc/pid/pagemap - an array mapping virtual pages to pfns
|
|
*
|
|
* For each page in the address space, this file contains one 64-bit entry
|
|
* consisting of the following:
|
|
*
|
|
* Bits 0-55 page frame number (PFN) if present
|
|
* Bits 0-4 swap type if swapped
|
|
* Bits 5-55 swap offset if swapped
|
|
* Bits 55-60 page shift (page size = 1<<page shift)
|
|
* Bit 61 reserved for future use
|
|
* Bit 62 page swapped
|
|
* Bit 63 page present
|
|
*
|
|
* If the page is not present but in swap, then the PFN contains an
|
|
* encoding of the swap file number and the page's offset into the
|
|
* swap. Unmapped pages return a null PFN. This allows determining
|
|
* precisely which pages are mapped (or in swap) and comparing mapped
|
|
* pages between processes.
|
|
*
|
|
* Efficient users of this interface will use /proc/pid/maps to
|
|
* determine which areas of memory are actually mapped and llseek to
|
|
* skip over unmapped regions.
|
|
*/
|
|
static ssize_t pagemap_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
|
|
struct page **pages, *page;
|
|
unsigned long uaddr, uend;
|
|
struct mm_struct *mm;
|
|
struct pagemapread pm;
|
|
int pagecount;
|
|
int ret = -ESRCH;
|
|
|
|
if (!task)
|
|
goto out;
|
|
|
|
ret = -EACCES;
|
|
if (!ptrace_may_attach(task))
|
|
goto out_task;
|
|
|
|
ret = -EINVAL;
|
|
/* file position must be aligned */
|
|
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
|
|
goto out_task;
|
|
|
|
ret = 0;
|
|
mm = get_task_mm(task);
|
|
if (!mm)
|
|
goto out_task;
|
|
|
|
ret = -ENOMEM;
|
|
uaddr = (unsigned long)buf & PAGE_MASK;
|
|
uend = (unsigned long)(buf + count);
|
|
pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
|
|
pages = kmalloc(pagecount * sizeof(struct page *), GFP_KERNEL);
|
|
if (!pages)
|
|
goto out_mm;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
ret = get_user_pages(current, current->mm, uaddr, pagecount,
|
|
1, 0, pages, NULL);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (ret < 0)
|
|
goto out_free;
|
|
|
|
if (ret != pagecount) {
|
|
pagecount = ret;
|
|
ret = -EFAULT;
|
|
goto out_pages;
|
|
}
|
|
|
|
pm.out = (u64 *)buf;
|
|
pm.end = (u64 *)(buf + count);
|
|
|
|
if (!ptrace_may_attach(task)) {
|
|
ret = -EIO;
|
|
} else {
|
|
unsigned long src = *ppos;
|
|
unsigned long svpfn = src / PM_ENTRY_BYTES;
|
|
unsigned long start_vaddr = svpfn << PAGE_SHIFT;
|
|
unsigned long end_vaddr = TASK_SIZE_OF(task);
|
|
|
|
/* watch out for wraparound */
|
|
if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
|
|
start_vaddr = end_vaddr;
|
|
|
|
/*
|
|
* The odds are that this will stop walking way
|
|
* before end_vaddr, because the length of the
|
|
* user buffer is tracked in "pm", and the walk
|
|
* will stop when we hit the end of the buffer.
|
|
*/
|
|
ret = walk_page_range(start_vaddr, end_vaddr,
|
|
&pagemap_walk);
|
|
if (ret == PM_END_OF_BUFFER)
|
|
ret = 0;
|
|
/* don't need mmap_sem for these, but this looks cleaner */
|
|
*ppos += (char *)pm.out - buf;
|
|
if (!ret)
|
|
ret = (char *)pm.out - buf;
|
|
}
|
|
|
|
out_pages:
|
|
for (; pagecount; pagecount--) {
|
|
page = pages[pagecount-1];
|
|
if (!PageReserved(page))
|
|
SetPageDirty(page);
|
|
page_cache_release(page);
|
|
}
|
|
out_free:
|
|
kfree(pages);
|
|
out_mm:
|
|
mmput(mm);
|
|
out_task:
|
|
put_task_struct(task);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
const struct file_operations proc_pagemap_operations = {
|
|
.llseek = mem_lseek, /* borrow this */
|
|
.read = pagemap_read,
|
|
};
|
|
#endif /* CONFIG_PROC_PAGE_MONITOR */
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern int show_numa_map(struct seq_file *m, void *v);
|
|
|
|
static int show_numa_map_checked(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct task_struct *task = priv->task;
|
|
|
|
if (maps_protect && !ptrace_may_attach(task))
|
|
return -EACCES;
|
|
|
|
return show_numa_map(m, v);
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_numa_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_numa_map_checked
|
|
};
|
|
|
|
static int numa_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_numa_maps_op);
|
|
}
|
|
|
|
const struct file_operations proc_numa_maps_operations = {
|
|
.open = numa_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
#endif
|