linux/drivers/crypto/marvell/cesa.c
Kees Cook a86854d0c5 treewide: devm_kzalloc() -> devm_kcalloc()
The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc().
This patch replaces cases of:

        devm_kzalloc(handle, a * b, gfp)

with:
        devm_kcalloc(handle, a * b, gfp)

as well as handling cases of:

        devm_kzalloc(handle, a * b * c, gfp)

with:

        devm_kzalloc(handle, array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        devm_kcalloc(handle, array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        devm_kzalloc(handle, 4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

Some manual whitespace fixes were needed in this patch, as Coccinelle
really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...".

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
expression HANDLE;
type TYPE;
expression THING, E;
@@

(
  devm_kzalloc(HANDLE,
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  devm_kzalloc(HANDLE,
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression HANDLE;
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
expression HANDLE;
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
expression HANDLE;
identifier SIZE, COUNT;
@@

- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression HANDLE;
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression HANDLE;
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  devm_kzalloc(HANDLE,
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
expression HANDLE;
identifier STRIDE, SIZE, COUNT;
@@

(
  devm_kzalloc(HANDLE,
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  devm_kzalloc(HANDLE,
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression HANDLE;
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  devm_kzalloc(HANDLE, C1 * C2 * C3, ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  devm_kzalloc(HANDLE,
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression HANDLE;
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  devm_kzalloc(HANDLE, sizeof(THING) * C2, ...)
|
  devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...)
|
  devm_kzalloc(HANDLE, C1 * C2 * C3, ...)
|
  devm_kzalloc(HANDLE, C1 * C2, ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	(E1) * E2
+	E1, E2
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- devm_kzalloc
+ devm_kcalloc
  (HANDLE,
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

619 lines
15 KiB
C

/*
* Support for Marvell's Cryptographic Engine and Security Accelerator (CESA)
* that can be found on the following platform: Orion, Kirkwood, Armada. This
* driver supports the TDMA engine on platforms on which it is available.
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
* Author: Arnaud Ebalard <arno@natisbad.org>
*
* This work is based on an initial version written by
* Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/genalloc.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/mbus.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include "cesa.h"
/* Limit of the crypto queue before reaching the backlog */
#define CESA_CRYPTO_DEFAULT_MAX_QLEN 128
struct mv_cesa_dev *cesa_dev;
struct crypto_async_request *
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
struct crypto_async_request **backlog)
{
struct crypto_async_request *req;
*backlog = crypto_get_backlog(&engine->queue);
req = crypto_dequeue_request(&engine->queue);
if (!req)
return NULL;
return req;
}
static void mv_cesa_rearm_engine(struct mv_cesa_engine *engine)
{
struct crypto_async_request *req = NULL, *backlog = NULL;
struct mv_cesa_ctx *ctx;
spin_lock_bh(&engine->lock);
if (!engine->req) {
req = mv_cesa_dequeue_req_locked(engine, &backlog);
engine->req = req;
}
spin_unlock_bh(&engine->lock);
if (!req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(req->tfm);
ctx->ops->step(req);
}
static int mv_cesa_std_process(struct mv_cesa_engine *engine, u32 status)
{
struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
int res;
req = engine->req;
ctx = crypto_tfm_ctx(req->tfm);
res = ctx->ops->process(req, status);
if (res == 0) {
ctx->ops->complete(req);
mv_cesa_engine_enqueue_complete_request(engine, req);
} else if (res == -EINPROGRESS) {
ctx->ops->step(req);
}
return res;
}
static int mv_cesa_int_process(struct mv_cesa_engine *engine, u32 status)
{
if (engine->chain.first && engine->chain.last)
return mv_cesa_tdma_process(engine, status);
return mv_cesa_std_process(engine, status);
}
static inline void
mv_cesa_complete_req(struct mv_cesa_ctx *ctx, struct crypto_async_request *req,
int res)
{
ctx->ops->cleanup(req);
local_bh_disable();
req->complete(req, res);
local_bh_enable();
}
static irqreturn_t mv_cesa_int(int irq, void *priv)
{
struct mv_cesa_engine *engine = priv;
struct crypto_async_request *req;
struct mv_cesa_ctx *ctx;
u32 status, mask;
irqreturn_t ret = IRQ_NONE;
while (true) {
int res;
mask = mv_cesa_get_int_mask(engine);
status = readl(engine->regs + CESA_SA_INT_STATUS);
if (!(status & mask))
break;
/*
* TODO: avoid clearing the FPGA_INT_STATUS if this not
* relevant on some platforms.
*/
writel(~status, engine->regs + CESA_SA_FPGA_INT_STATUS);
writel(~status, engine->regs + CESA_SA_INT_STATUS);
/* Process fetched requests */
res = mv_cesa_int_process(engine, status & mask);
ret = IRQ_HANDLED;
spin_lock_bh(&engine->lock);
req = engine->req;
if (res != -EINPROGRESS)
engine->req = NULL;
spin_unlock_bh(&engine->lock);
ctx = crypto_tfm_ctx(req->tfm);
if (res && res != -EINPROGRESS)
mv_cesa_complete_req(ctx, req, res);
/* Launch the next pending request */
mv_cesa_rearm_engine(engine);
/* Iterate over the complete queue */
while (true) {
req = mv_cesa_engine_dequeue_complete_request(engine);
if (!req)
break;
ctx = crypto_tfm_ctx(req->tfm);
mv_cesa_complete_req(ctx, req, 0);
}
}
return ret;
}
int mv_cesa_queue_req(struct crypto_async_request *req,
struct mv_cesa_req *creq)
{
int ret;
struct mv_cesa_engine *engine = creq->engine;
spin_lock_bh(&engine->lock);
ret = crypto_enqueue_request(&engine->queue, req);
if ((mv_cesa_req_get_type(creq) == CESA_DMA_REQ) &&
(ret == -EINPROGRESS || ret == -EBUSY))
mv_cesa_tdma_chain(engine, creq);
spin_unlock_bh(&engine->lock);
if (ret != -EINPROGRESS)
return ret;
mv_cesa_rearm_engine(engine);
return -EINPROGRESS;
}
static int mv_cesa_add_algs(struct mv_cesa_dev *cesa)
{
int ret;
int i, j;
for (i = 0; i < cesa->caps->ncipher_algs; i++) {
ret = crypto_register_skcipher(cesa->caps->cipher_algs[i]);
if (ret)
goto err_unregister_crypto;
}
for (i = 0; i < cesa->caps->nahash_algs; i++) {
ret = crypto_register_ahash(cesa->caps->ahash_algs[i]);
if (ret)
goto err_unregister_ahash;
}
return 0;
err_unregister_ahash:
for (j = 0; j < i; j++)
crypto_unregister_ahash(cesa->caps->ahash_algs[j]);
i = cesa->caps->ncipher_algs;
err_unregister_crypto:
for (j = 0; j < i; j++)
crypto_unregister_skcipher(cesa->caps->cipher_algs[j]);
return ret;
}
static void mv_cesa_remove_algs(struct mv_cesa_dev *cesa)
{
int i;
for (i = 0; i < cesa->caps->nahash_algs; i++)
crypto_unregister_ahash(cesa->caps->ahash_algs[i]);
for (i = 0; i < cesa->caps->ncipher_algs; i++)
crypto_unregister_skcipher(cesa->caps->cipher_algs[i]);
}
static struct skcipher_alg *orion_cipher_algs[] = {
&mv_cesa_ecb_des_alg,
&mv_cesa_cbc_des_alg,
&mv_cesa_ecb_des3_ede_alg,
&mv_cesa_cbc_des3_ede_alg,
&mv_cesa_ecb_aes_alg,
&mv_cesa_cbc_aes_alg,
};
static struct ahash_alg *orion_ahash_algs[] = {
&mv_md5_alg,
&mv_sha1_alg,
&mv_ahmac_md5_alg,
&mv_ahmac_sha1_alg,
};
static struct skcipher_alg *armada_370_cipher_algs[] = {
&mv_cesa_ecb_des_alg,
&mv_cesa_cbc_des_alg,
&mv_cesa_ecb_des3_ede_alg,
&mv_cesa_cbc_des3_ede_alg,
&mv_cesa_ecb_aes_alg,
&mv_cesa_cbc_aes_alg,
};
static struct ahash_alg *armada_370_ahash_algs[] = {
&mv_md5_alg,
&mv_sha1_alg,
&mv_sha256_alg,
&mv_ahmac_md5_alg,
&mv_ahmac_sha1_alg,
&mv_ahmac_sha256_alg,
};
static const struct mv_cesa_caps orion_caps = {
.nengines = 1,
.cipher_algs = orion_cipher_algs,
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
.ahash_algs = orion_ahash_algs,
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
.has_tdma = false,
};
static const struct mv_cesa_caps kirkwood_caps = {
.nengines = 1,
.cipher_algs = orion_cipher_algs,
.ncipher_algs = ARRAY_SIZE(orion_cipher_algs),
.ahash_algs = orion_ahash_algs,
.nahash_algs = ARRAY_SIZE(orion_ahash_algs),
.has_tdma = true,
};
static const struct mv_cesa_caps armada_370_caps = {
.nengines = 1,
.cipher_algs = armada_370_cipher_algs,
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
.ahash_algs = armada_370_ahash_algs,
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
.has_tdma = true,
};
static const struct mv_cesa_caps armada_xp_caps = {
.nengines = 2,
.cipher_algs = armada_370_cipher_algs,
.ncipher_algs = ARRAY_SIZE(armada_370_cipher_algs),
.ahash_algs = armada_370_ahash_algs,
.nahash_algs = ARRAY_SIZE(armada_370_ahash_algs),
.has_tdma = true,
};
static const struct of_device_id mv_cesa_of_match_table[] = {
{ .compatible = "marvell,orion-crypto", .data = &orion_caps },
{ .compatible = "marvell,kirkwood-crypto", .data = &kirkwood_caps },
{ .compatible = "marvell,dove-crypto", .data = &kirkwood_caps },
{ .compatible = "marvell,armada-370-crypto", .data = &armada_370_caps },
{ .compatible = "marvell,armada-xp-crypto", .data = &armada_xp_caps },
{ .compatible = "marvell,armada-375-crypto", .data = &armada_xp_caps },
{ .compatible = "marvell,armada-38x-crypto", .data = &armada_xp_caps },
{}
};
MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
static void
mv_cesa_conf_mbus_windows(struct mv_cesa_engine *engine,
const struct mbus_dram_target_info *dram)
{
void __iomem *iobase = engine->regs;
int i;
for (i = 0; i < 4; i++) {
writel(0, iobase + CESA_TDMA_WINDOW_CTRL(i));
writel(0, iobase + CESA_TDMA_WINDOW_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
iobase + CESA_TDMA_WINDOW_CTRL(i));
writel(cs->base, iobase + CESA_TDMA_WINDOW_BASE(i));
}
}
static int mv_cesa_dev_dma_init(struct mv_cesa_dev *cesa)
{
struct device *dev = cesa->dev;
struct mv_cesa_dev_dma *dma;
if (!cesa->caps->has_tdma)
return 0;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->tdma_desc_pool = dmam_pool_create("tdma_desc", dev,
sizeof(struct mv_cesa_tdma_desc),
16, 0);
if (!dma->tdma_desc_pool)
return -ENOMEM;
dma->op_pool = dmam_pool_create("cesa_op", dev,
sizeof(struct mv_cesa_op_ctx), 16, 0);
if (!dma->op_pool)
return -ENOMEM;
dma->cache_pool = dmam_pool_create("cesa_cache", dev,
CESA_MAX_HASH_BLOCK_SIZE, 1, 0);
if (!dma->cache_pool)
return -ENOMEM;
dma->padding_pool = dmam_pool_create("cesa_padding", dev, 72, 1, 0);
if (!dma->padding_pool)
return -ENOMEM;
cesa->dma = dma;
return 0;
}
static int mv_cesa_get_sram(struct platform_device *pdev, int idx)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
struct mv_cesa_engine *engine = &cesa->engines[idx];
const char *res_name = "sram";
struct resource *res;
engine->pool = of_gen_pool_get(cesa->dev->of_node,
"marvell,crypto-srams", idx);
if (engine->pool) {
engine->sram = gen_pool_dma_alloc(engine->pool,
cesa->sram_size,
&engine->sram_dma);
if (engine->sram)
return 0;
engine->pool = NULL;
return -ENOMEM;
}
if (cesa->caps->nengines > 1) {
if (!idx)
res_name = "sram0";
else
res_name = "sram1";
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
res_name);
if (!res || resource_size(res) < cesa->sram_size)
return -EINVAL;
engine->sram = devm_ioremap_resource(cesa->dev, res);
if (IS_ERR(engine->sram))
return PTR_ERR(engine->sram);
engine->sram_dma = dma_map_resource(cesa->dev, res->start,
cesa->sram_size,
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(cesa->dev, engine->sram_dma))
return -ENOMEM;
return 0;
}
static void mv_cesa_put_sram(struct platform_device *pdev, int idx)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
struct mv_cesa_engine *engine = &cesa->engines[idx];
if (engine->pool)
gen_pool_free(engine->pool, (unsigned long)engine->sram,
cesa->sram_size);
else
dma_unmap_resource(cesa->dev, engine->sram_dma,
cesa->sram_size, DMA_BIDIRECTIONAL, 0);
}
static int mv_cesa_probe(struct platform_device *pdev)
{
const struct mv_cesa_caps *caps = &orion_caps;
const struct mbus_dram_target_info *dram;
const struct of_device_id *match;
struct device *dev = &pdev->dev;
struct mv_cesa_dev *cesa;
struct mv_cesa_engine *engines;
struct resource *res;
int irq, ret, i;
u32 sram_size;
if (cesa_dev) {
dev_err(&pdev->dev, "Only one CESA device authorized\n");
return -EEXIST;
}
if (dev->of_node) {
match = of_match_node(mv_cesa_of_match_table, dev->of_node);
if (!match || !match->data)
return -ENOTSUPP;
caps = match->data;
}
cesa = devm_kzalloc(dev, sizeof(*cesa), GFP_KERNEL);
if (!cesa)
return -ENOMEM;
cesa->caps = caps;
cesa->dev = dev;
sram_size = CESA_SA_DEFAULT_SRAM_SIZE;
of_property_read_u32(cesa->dev->of_node, "marvell,crypto-sram-size",
&sram_size);
if (sram_size < CESA_SA_MIN_SRAM_SIZE)
sram_size = CESA_SA_MIN_SRAM_SIZE;
cesa->sram_size = sram_size;
cesa->engines = devm_kcalloc(dev, caps->nengines, sizeof(*engines),
GFP_KERNEL);
if (!cesa->engines)
return -ENOMEM;
spin_lock_init(&cesa->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
cesa->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(cesa->regs))
return PTR_ERR(cesa->regs);
ret = mv_cesa_dev_dma_init(cesa);
if (ret)
return ret;
dram = mv_mbus_dram_info_nooverlap();
platform_set_drvdata(pdev, cesa);
for (i = 0; i < caps->nengines; i++) {
struct mv_cesa_engine *engine = &cesa->engines[i];
char res_name[7];
engine->id = i;
spin_lock_init(&engine->lock);
ret = mv_cesa_get_sram(pdev, i);
if (ret)
goto err_cleanup;
irq = platform_get_irq(pdev, i);
if (irq < 0) {
ret = irq;
goto err_cleanup;
}
/*
* Not all platforms can gate the CESA clocks: do not complain
* if the clock does not exist.
*/
snprintf(res_name, sizeof(res_name), "cesa%d", i);
engine->clk = devm_clk_get(dev, res_name);
if (IS_ERR(engine->clk)) {
engine->clk = devm_clk_get(dev, NULL);
if (IS_ERR(engine->clk))
engine->clk = NULL;
}
snprintf(res_name, sizeof(res_name), "cesaz%d", i);
engine->zclk = devm_clk_get(dev, res_name);
if (IS_ERR(engine->zclk))
engine->zclk = NULL;
ret = clk_prepare_enable(engine->clk);
if (ret)
goto err_cleanup;
ret = clk_prepare_enable(engine->zclk);
if (ret)
goto err_cleanup;
engine->regs = cesa->regs + CESA_ENGINE_OFF(i);
if (dram && cesa->caps->has_tdma)
mv_cesa_conf_mbus_windows(engine, dram);
writel(0, engine->regs + CESA_SA_INT_STATUS);
writel(CESA_SA_CFG_STOP_DIG_ERR,
engine->regs + CESA_SA_CFG);
writel(engine->sram_dma & CESA_SA_SRAM_MSK,
engine->regs + CESA_SA_DESC_P0);
ret = devm_request_threaded_irq(dev, irq, NULL, mv_cesa_int,
IRQF_ONESHOT,
dev_name(&pdev->dev),
engine);
if (ret)
goto err_cleanup;
crypto_init_queue(&engine->queue, CESA_CRYPTO_DEFAULT_MAX_QLEN);
atomic_set(&engine->load, 0);
INIT_LIST_HEAD(&engine->complete_queue);
}
cesa_dev = cesa;
ret = mv_cesa_add_algs(cesa);
if (ret) {
cesa_dev = NULL;
goto err_cleanup;
}
dev_info(dev, "CESA device successfully registered\n");
return 0;
err_cleanup:
for (i = 0; i < caps->nengines; i++) {
clk_disable_unprepare(cesa->engines[i].zclk);
clk_disable_unprepare(cesa->engines[i].clk);
mv_cesa_put_sram(pdev, i);
}
return ret;
}
static int mv_cesa_remove(struct platform_device *pdev)
{
struct mv_cesa_dev *cesa = platform_get_drvdata(pdev);
int i;
mv_cesa_remove_algs(cesa);
for (i = 0; i < cesa->caps->nengines; i++) {
clk_disable_unprepare(cesa->engines[i].zclk);
clk_disable_unprepare(cesa->engines[i].clk);
mv_cesa_put_sram(pdev, i);
}
return 0;
}
static const struct platform_device_id mv_cesa_plat_id_table[] = {
{ .name = "mv_crypto" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(platform, mv_cesa_plat_id_table);
static struct platform_driver marvell_cesa = {
.probe = mv_cesa_probe,
.remove = mv_cesa_remove,
.id_table = mv_cesa_plat_id_table,
.driver = {
.name = "marvell-cesa",
.of_match_table = mv_cesa_of_match_table,
},
};
module_platform_driver(marvell_cesa);
MODULE_ALIAS("platform:mv_crypto");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_AUTHOR("Arnaud Ebalard <arno@natisbad.org>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL v2");