mainlining shenanigans
So here's my atomic series, finally all debugged&reviewed. Sean Paul has done a full detailed pass over it all, and a lot of other people have commented and provided feedback on some parts. Rob Clark also converted msm over the w/e and seems happy. The only small thing is that Rob wants to export the wait_for_vblank, which imo makes sense. Since there's other stuff still to do I think we should apply Rob's patch (once it has grown appropriate kerneldoc) later on top of this. This is just the core<->driver interface plus a big pile of helpers. Short recap of the main ideas: - There are essentially three helper libraries in this patch set: * Transitional helpers to use the new plane callbacks for legacy plane updates and in the crtc helper's ->mode_set callback. These helpers are only temporarily used to convert drivers to atomic, but they allow a nice separation between changing the driver backend and switching to the atomic commit logic. * Legacy helpers to implement all the legacy driver entry points (page_flip, set_config, plane vfuncs) on top of the new atomic driver interface. These are completely driver agnostic. The reason for having the legacy support as helpers is that drivers can switch step-by-step. And they could e.g. even keep the legacy page_flip code around for some old platforms where converting to full-blown atomic isn't worth it. * Atomic helpers which implement the various new ->atomic_* driver interfaces in terms of the revised crtc helper and new plane helper hooks. - The revised crtc helper implemenation essentially implements all the lessons learned in the i915 modeset rework (when using the atomic helpers only): * Enable/disable sequence for a given config are always the same and callbacks are always called in the same order. This contrast starkly with the crtc helpers, where the sequence of operations is heavily dependent on the previous config. One corollary of this is that if the configuration of a crtc only partially changes (e.g. a connector moves in a cloned config) the helper code will still disable/enable the full display pipeline. This is the only way to ensure that the enable/disable sequence is always the same. * It won't call disable or enable hooks more than once any more because it lost track of state, thanks to the atomic state tracking. And if drivers implement the ->reset hook properly (by either resetting the hw or reading out the hw state into the atomic structures) this even extends to the hardware state. So no more disable-me-harder kind of nonsense. * The only thing missing is the hw state readout/cross-check support, but if drivers have hw state readout support in their ->reset handlers it's simple to extend that to cross-check the hw state. * The crtc->mode_set callback is gone and its replacement only sets crtc timings and no longer updates the primary plane state. This way we can finally implement primary planes properly. - The new plane helpers should be suitable enough for pretty much everything, and a perfect fit for hardware with GO bits. Even if they don't fit the atomic helper library is rather flexible and exports all the functions for the individual steps to drivers. So drivers can pick what matches and implement their own magic for everything else. - A big difference compared to all previous atomic series is that this one doesn't implement async commit in a generic way. Imo driver requirements for that are too diverse to create anything reasonable sane which would actually work on a reasonable amount of different drivers. Also, we've never had a helper library for page_flips even, so it's really hard to know what might work and what's stupid without a bit of experience in the form of a few driver implementations. I think with the current flexibility for drivers to pick individual stages and existing helpers like drm_flip_queue it's rather easy though to implement proper async commit. - There's a few other differences of minor importance to earlier atomic series: * Common/generic properties are parsed in the callers/core and not in drivers, and passed to drivers by directly setting the right members in atomic state structures. That greatly simplifies all the transitional and legacy helpers an removes a lot of boilerplate code. * There's no crazy trylock mode used for the async commit since these helpers don't do async commit. A simple ordered flip queue of atomic state updates should be sufficient for preventing concurrent hw access anyway, as long as synchronous updates stall correctly with e.g. flush_work_queue or similar function. Abusing locks to enforce ordering isn't a good idea imo anyway. * These helpers reuse the existing ->mode_fixup hooks in the atomic_check callback. Which means that drivers need to adapat and move a lot less code into their atomic_check callbacks. Now this isn't everything needed in the drm core and helpers for full atomic support. But it's enough to start with converting drivers, and except for actually testing multiplane and multicrtc updates also enough to implement full atomic updates. Still missing are: - Per-plane locking. Since these helpers here encapsulate the locking completely this should be fairly easy to implement. - fbdev support for atomic_check/commit, so that multi-pipe finally works sanely in fbcon. - Adding and decoding shared/core properties. That just needs to be rebased from Rob's latest patch series, with minor adjustments so that the decoding happens in the core instead of in drivers. - Actually adding the atomic ioctl. Again just rebasing Rob's latest patch should be all that's needed. - Resolving how to deal with DPMS in atomic. Atomic is a good excuse to fix up the crazy semantics dpms currently has. I'm floating an RFC about this topic already. - Finally I couldn't test connector/encoder stealing properly since my test vehicle here doesn't allow a connector on different crtcs. So drivers which support this might see some surprises in that area. There is no semantic change though in how encoder stealing and assignment works (or at least no intended one), so I think the risk is minimal. As just mentioned I've done a fake conversion of an existing driver using crtc helpers to debug the helper code and validate the smooth transition approach. And that smooth transition was the really big motivation for this. It seems to actually work and consists of 3 phases: Phase 1: Rework driver backend for crtc/plane helpers The requirement here is that universal plane support is already implement. If universal plane support isn't implement yet it might be better though to just do it as part of this phase, directly using the new plane helpers. There are two big things to do: - Split up the existing ->update/disable_plane hooks into check/commit hooks and extract the crtc-wide prep/flush parts (like setting/clearing GO bits). - The other big change is to split the crtc->mode_set hook into the plane update (done using the plane helpers) and the crtc setup in a new ->mode_set_nofb hook. When phase 1 is complete the driver implements all the new callbacks which push the software state into hardware, but still using all the legacy entry points and crtc helpers. The transitional helpers serve as impendance mismatch here. Phase 2: Rework state handling This consists of rolling out the state handling helpers for planes, crtcs and connectors and reviewing all ->mode_fixup and similar hooks to make sure they don't depend upon implicit global state which might change in the atomic world. Any such code must be moved into ->atomic_check functions which just rely on the free-standing atomic state update structures. This phase also adds a few small pieces of fixup code to make sure the atomic state doesn't get out of sync in the legacy driver callbacks. Phase 3: Roll out atomic support Now it's just about replacing vfuncs with the ones provided by the helper and filling out the small missing pieces (like atomic_check logic or async commit support needed for page_flips). Due to the prep work in phase 1 no changes to the driver backend functions should be required, and because of the prep work in phase 2 atomic implementations can be rolled out step-by-step. So if async commit ins't implemented yet page_flip can be implemented with the legacy functions without wreaking havoc in the other operations. * tag 'topic/atomic-helpers-2014-11-09' of git://anongit.freedesktop.org/drm-intel: drm/atomic: Refcounting for plane_state->fb drm: Docbook integration and over sections for all the new helpers drm/atomic-helpers: functions for state duplicate/destroy/reset drm/atomic-helper: implement ->page_flip drm/atomic-helpers: document how to implement async commit drm/atomic: Integrate fence support drm/atomic-helper: implementatations for legacy interfaces drm: Atomic crtc/connector updates using crtc/plane helper interfaces drm/crtc-helper: Transitional functions using atomic plane helpers drm/plane-helper: transitional atomic plane helpers drm: Add atomic/plane helpers drm: Global atomic state handling drm: Add atomic driver interface definitions for objects drm/modeset_lock: document trylock_only in kerneldoc drm: fixup kerneldoc in drm_crtc.h drm: Pull drm_crtc.h into the kerneldoc template drm: Move drm_crtc_init from drm_crtc.h to drm_plane_helper.h |
||
---|---|---|
arch | ||
block | ||
crypto | ||
Documentation | ||
drivers | ||
firmware | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt/kvm | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README | ||
REPORTING-BUGS |
Linux kernel release 3.x <http://kernel.org/> These are the release notes for Linux version 3. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a clone of the operating system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX and Single UNIX Specification compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management, and multistack networking including IPv4 and IPv6. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Although originally developed first for 32-bit x86-based PCs (386 or higher), today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, Xtensa, Tilera TILE, AVR32 and Renesas M32R architectures. Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory management unit (PMMU) and a port of the GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has also been ported to a number of architectures without a PMMU, although functionality is then obviously somewhat limited. Linux has also been ported to itself. You can now run the kernel as a userspace application - this is called UserMode Linux (UML). DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, HTML, & man-pages, among others. After installation, "make psdocs", "make pdfdocs", "make htmldocs", or "make mandocs" will render the documentation in the requested format. INSTALLING the kernel source: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: gzip -cd linux-3.X.tar.gz | tar xvf - or bzip2 -dc linux-3.X.tar.bz2 | tar xvf - Replace "X" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 3.x releases by patching. Patches are distributed in the traditional gzip and the newer bzip2 format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-3.X) and execute: gzip -cd ../patch-3.x.gz | patch -p1 or bzip2 -dc ../patch-3.x.bz2 | patch -p1 Replace "x" for all versions bigger than the version "X" of your current source tree, _in_order_, and you should be ok. You may want to remove the backup files (some-file-name~ or some-file-name.orig), and make sure that there are no failed patches (some-file-name# or some-file-name.rej). If there are, either you or I have made a mistake. Unlike patches for the 3.x kernels, patches for the 3.x.y kernels (also known as the -stable kernels) are not incremental but instead apply directly to the base 3.x kernel. For example, if your base kernel is 3.0 and you want to apply the 3.0.3 patch, you must not first apply the 3.0.1 and 3.0.2 patches. Similarly, if you are running kernel version 3.0.2 and want to jump to 3.0.3, you must first reverse the 3.0.2 patch (that is, patch -R) _before_ applying the 3.0.3 patch. You can read more on this in Documentation/applying-patches.txt Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 3.x kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel, all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-3.X build directory: /home/name/build/kernel To configure and build the kernel, use: cd /usr/src/linux-3.X make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used, then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternative configuration commands are: "make config" Plain text interface. "make menuconfig" Text based color menus, radiolists & dialogs. "make nconfig" Enhanced text based color menus. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (Gtk) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file and asking about new config symbols. "make silentoldconfig" Like above, but avoids cluttering the screen with questions already answered. Additionally updates the dependencies. "make olddefconfig" Like above, but sets new symbols to their default values without prompting. "make defconfig" Create a ./.config file by using the default symbol values from either arch/$ARCH/defconfig or arch/$ARCH/configs/${PLATFORM}_defconfig, depending on the architecture. "make ${PLATFORM}_defconfig" Create a ./.config file by using the default symbol values from arch/$ARCH/configs/${PLATFORM}_defconfig. Use "make help" to get a list of all available platforms of your architecture. "make allyesconfig" Create a ./.config file by setting symbol values to 'y' as much as possible. "make allmodconfig" Create a ./.config file by setting symbol values to 'm' as much as possible. "make allnoconfig" Create a ./.config file by setting symbol values to 'n' as much as possible. "make randconfig" Create a ./.config file by setting symbol values to random values. "make localmodconfig" Create a config based on current config and loaded modules (lsmod). Disables any module option that is not needed for the loaded modules. To create a localmodconfig for another machine, store the lsmod of that machine into a file and pass it in as a LSMOD parameter. target$ lsmod > /tmp/mylsmod target$ scp /tmp/mylsmod host:/tmp host$ make LSMOD=/tmp/mylsmod localmodconfig The above also works when cross compiling. "make localyesconfig" Similar to localmodconfig, except it will convert all module options to built in (=y) options. You can find more information on using the Linux kernel config tools in Documentation/kbuild/kconfig.txt. - NOTES on "make config": - Having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - Compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - The "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. COMPILING the kernel: - Make sure you have at least gcc 3.2 available. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install, you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Verbose kernel compile/build output: Normally, the kernel build system runs in a fairly quiet mode (but not totally silent). However, sometimes you or other kernel developers need to see compile, link, or other commands exactly as they are executed. For this, use "verbose" build mode. This is done by inserting "V=1" in the "make" command. E.g.: make V=1 all To have the build system also tell the reason for the rebuild of each target, use "V=2". The default is "V=0". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". Alternatively, before compiling, use the kernel config option "LOCALVERSION" to append a unique suffix to the regular kernel version. LOCALVERSION can be set in the "General Setup" menu. - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO, which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@linux-foundation.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example, it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump (but compiling with CONFIG_KALLSYMS is usually preferred). This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops/ . Alternatively, you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. Please read the REPORTING-BUGS document for details. - Alternatively, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.