While userspace enables single-step, if the Software Step state at the
last guest exit was "Active-pending", clear PSTATE.SS on guest entry
to restore the state.
Currently, KVM sets PSTATE.SS to 1 on every guest entry while userspace
enables single-step for the vCPU (with KVM_GUESTDBG_SINGLESTEP).
It means KVM always makes the vCPU's Software Step state
"Active-not-pending" on the guest entry, which lets the VCPU perform
single-step (then Software Step exception is taken). This could cause
extra single-step (without returning to userspace) if the Software Step
state at the last guest exit was "Active-pending" (i.e. the last
exit was triggered by an asynchronous exception after the single-step
is performed, but before the Software Step exception is taken.
See "Figure D2-3 Software step state machine" and "D2.12.7 Behavior
in the active-pending state" in ARM DDI 0487I.a for more info about
this behavior).
Fix this by clearing PSTATE.SS on guest entry if the Software Step state
at the last exit was "Active-pending" so that KVM restore the state (and
the exception is taken before further single-step is performed).
Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-3-reijiw@google.com
953 lines
29 KiB
C
953 lines
29 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/include/asm/kvm_host.h:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_HOST_H__
|
|
#define __ARM64_KVM_HOST_H__
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/kvm_types.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/psci.h>
|
|
#include <asm/arch_gicv3.h>
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/kvm.h>
|
|
#include <asm/kvm_asm.h>
|
|
|
|
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
|
|
|
|
#define KVM_HALT_POLL_NS_DEFAULT 500000
|
|
|
|
#include <kvm/arm_vgic.h>
|
|
#include <kvm/arm_arch_timer.h>
|
|
#include <kvm/arm_pmu.h>
|
|
|
|
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
|
|
|
|
#define KVM_VCPU_MAX_FEATURES 7
|
|
|
|
#define KVM_REQ_SLEEP \
|
|
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
|
|
#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
|
|
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
|
|
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
|
|
#define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
|
|
#define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
|
|
|
|
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
|
|
KVM_DIRTY_LOG_INITIALLY_SET)
|
|
|
|
#define KVM_HAVE_MMU_RWLOCK
|
|
|
|
/*
|
|
* Mode of operation configurable with kvm-arm.mode early param.
|
|
* See Documentation/admin-guide/kernel-parameters.txt for more information.
|
|
*/
|
|
enum kvm_mode {
|
|
KVM_MODE_DEFAULT,
|
|
KVM_MODE_PROTECTED,
|
|
KVM_MODE_NONE,
|
|
};
|
|
enum kvm_mode kvm_get_mode(void);
|
|
|
|
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
|
|
|
|
extern unsigned int kvm_sve_max_vl;
|
|
int kvm_arm_init_sve(void);
|
|
|
|
u32 __attribute_const__ kvm_target_cpu(void);
|
|
int kvm_reset_vcpu(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
|
|
|
|
struct kvm_vmid {
|
|
atomic64_t id;
|
|
};
|
|
|
|
struct kvm_s2_mmu {
|
|
struct kvm_vmid vmid;
|
|
|
|
/*
|
|
* stage2 entry level table
|
|
*
|
|
* Two kvm_s2_mmu structures in the same VM can point to the same
|
|
* pgd here. This happens when running a guest using a
|
|
* translation regime that isn't affected by its own stage-2
|
|
* translation, such as a non-VHE hypervisor running at vEL2, or
|
|
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
|
|
* canonical stage-2 page tables.
|
|
*/
|
|
phys_addr_t pgd_phys;
|
|
struct kvm_pgtable *pgt;
|
|
|
|
/* The last vcpu id that ran on each physical CPU */
|
|
int __percpu *last_vcpu_ran;
|
|
|
|
struct kvm_arch *arch;
|
|
};
|
|
|
|
struct kvm_arch_memory_slot {
|
|
};
|
|
|
|
/**
|
|
* struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
|
|
*
|
|
* @std_bmap: Bitmap of standard secure service calls
|
|
* @std_hyp_bmap: Bitmap of standard hypervisor service calls
|
|
* @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
|
|
*/
|
|
struct kvm_smccc_features {
|
|
unsigned long std_bmap;
|
|
unsigned long std_hyp_bmap;
|
|
unsigned long vendor_hyp_bmap;
|
|
};
|
|
|
|
struct kvm_arch {
|
|
struct kvm_s2_mmu mmu;
|
|
|
|
/* VTCR_EL2 value for this VM */
|
|
u64 vtcr;
|
|
|
|
/* Interrupt controller */
|
|
struct vgic_dist vgic;
|
|
|
|
/* Mandated version of PSCI */
|
|
u32 psci_version;
|
|
|
|
/*
|
|
* If we encounter a data abort without valid instruction syndrome
|
|
* information, report this to user space. User space can (and
|
|
* should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
|
|
* supported.
|
|
*/
|
|
#define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0
|
|
/* Memory Tagging Extension enabled for the guest */
|
|
#define KVM_ARCH_FLAG_MTE_ENABLED 1
|
|
/* At least one vCPU has ran in the VM */
|
|
#define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
|
|
/*
|
|
* The following two bits are used to indicate the guest's EL1
|
|
* register width configuration. A value of KVM_ARCH_FLAG_EL1_32BIT
|
|
* bit is valid only when KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED is set.
|
|
* Otherwise, the guest's EL1 register width has not yet been
|
|
* determined yet.
|
|
*/
|
|
#define KVM_ARCH_FLAG_REG_WIDTH_CONFIGURED 3
|
|
#define KVM_ARCH_FLAG_EL1_32BIT 4
|
|
/* PSCI SYSTEM_SUSPEND enabled for the guest */
|
|
#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 5
|
|
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* VM-wide PMU filter, implemented as a bitmap and big enough for
|
|
* up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
|
|
*/
|
|
unsigned long *pmu_filter;
|
|
struct arm_pmu *arm_pmu;
|
|
|
|
cpumask_var_t supported_cpus;
|
|
|
|
u8 pfr0_csv2;
|
|
u8 pfr0_csv3;
|
|
|
|
/* Hypercall features firmware registers' descriptor */
|
|
struct kvm_smccc_features smccc_feat;
|
|
};
|
|
|
|
struct kvm_vcpu_fault_info {
|
|
u64 esr_el2; /* Hyp Syndrom Register */
|
|
u64 far_el2; /* Hyp Fault Address Register */
|
|
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
|
|
u64 disr_el1; /* Deferred [SError] Status Register */
|
|
};
|
|
|
|
enum vcpu_sysreg {
|
|
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
|
|
MPIDR_EL1, /* MultiProcessor Affinity Register */
|
|
CSSELR_EL1, /* Cache Size Selection Register */
|
|
SCTLR_EL1, /* System Control Register */
|
|
ACTLR_EL1, /* Auxiliary Control Register */
|
|
CPACR_EL1, /* Coprocessor Access Control */
|
|
ZCR_EL1, /* SVE Control */
|
|
TTBR0_EL1, /* Translation Table Base Register 0 */
|
|
TTBR1_EL1, /* Translation Table Base Register 1 */
|
|
TCR_EL1, /* Translation Control Register */
|
|
ESR_EL1, /* Exception Syndrome Register */
|
|
AFSR0_EL1, /* Auxiliary Fault Status Register 0 */
|
|
AFSR1_EL1, /* Auxiliary Fault Status Register 1 */
|
|
FAR_EL1, /* Fault Address Register */
|
|
MAIR_EL1, /* Memory Attribute Indirection Register */
|
|
VBAR_EL1, /* Vector Base Address Register */
|
|
CONTEXTIDR_EL1, /* Context ID Register */
|
|
TPIDR_EL0, /* Thread ID, User R/W */
|
|
TPIDRRO_EL0, /* Thread ID, User R/O */
|
|
TPIDR_EL1, /* Thread ID, Privileged */
|
|
AMAIR_EL1, /* Aux Memory Attribute Indirection Register */
|
|
CNTKCTL_EL1, /* Timer Control Register (EL1) */
|
|
PAR_EL1, /* Physical Address Register */
|
|
MDSCR_EL1, /* Monitor Debug System Control Register */
|
|
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
|
|
OSLSR_EL1, /* OS Lock Status Register */
|
|
DISR_EL1, /* Deferred Interrupt Status Register */
|
|
|
|
/* Performance Monitors Registers */
|
|
PMCR_EL0, /* Control Register */
|
|
PMSELR_EL0, /* Event Counter Selection Register */
|
|
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
|
|
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
|
|
PMCCNTR_EL0, /* Cycle Counter Register */
|
|
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
|
|
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
|
|
PMCCFILTR_EL0, /* Cycle Count Filter Register */
|
|
PMCNTENSET_EL0, /* Count Enable Set Register */
|
|
PMINTENSET_EL1, /* Interrupt Enable Set Register */
|
|
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
|
|
PMUSERENR_EL0, /* User Enable Register */
|
|
|
|
/* Pointer Authentication Registers in a strict increasing order. */
|
|
APIAKEYLO_EL1,
|
|
APIAKEYHI_EL1,
|
|
APIBKEYLO_EL1,
|
|
APIBKEYHI_EL1,
|
|
APDAKEYLO_EL1,
|
|
APDAKEYHI_EL1,
|
|
APDBKEYLO_EL1,
|
|
APDBKEYHI_EL1,
|
|
APGAKEYLO_EL1,
|
|
APGAKEYHI_EL1,
|
|
|
|
ELR_EL1,
|
|
SP_EL1,
|
|
SPSR_EL1,
|
|
|
|
CNTVOFF_EL2,
|
|
CNTV_CVAL_EL0,
|
|
CNTV_CTL_EL0,
|
|
CNTP_CVAL_EL0,
|
|
CNTP_CTL_EL0,
|
|
|
|
/* Memory Tagging Extension registers */
|
|
RGSR_EL1, /* Random Allocation Tag Seed Register */
|
|
GCR_EL1, /* Tag Control Register */
|
|
TFSR_EL1, /* Tag Fault Status Register (EL1) */
|
|
TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
|
|
|
|
/* 32bit specific registers. Keep them at the end of the range */
|
|
DACR32_EL2, /* Domain Access Control Register */
|
|
IFSR32_EL2, /* Instruction Fault Status Register */
|
|
FPEXC32_EL2, /* Floating-Point Exception Control Register */
|
|
DBGVCR32_EL2, /* Debug Vector Catch Register */
|
|
|
|
NR_SYS_REGS /* Nothing after this line! */
|
|
};
|
|
|
|
struct kvm_cpu_context {
|
|
struct user_pt_regs regs; /* sp = sp_el0 */
|
|
|
|
u64 spsr_abt;
|
|
u64 spsr_und;
|
|
u64 spsr_irq;
|
|
u64 spsr_fiq;
|
|
|
|
struct user_fpsimd_state fp_regs;
|
|
|
|
u64 sys_regs[NR_SYS_REGS];
|
|
|
|
struct kvm_vcpu *__hyp_running_vcpu;
|
|
};
|
|
|
|
struct kvm_host_data {
|
|
struct kvm_cpu_context host_ctxt;
|
|
};
|
|
|
|
struct kvm_host_psci_config {
|
|
/* PSCI version used by host. */
|
|
u32 version;
|
|
|
|
/* Function IDs used by host if version is v0.1. */
|
|
struct psci_0_1_function_ids function_ids_0_1;
|
|
|
|
bool psci_0_1_cpu_suspend_implemented;
|
|
bool psci_0_1_cpu_on_implemented;
|
|
bool psci_0_1_cpu_off_implemented;
|
|
bool psci_0_1_migrate_implemented;
|
|
};
|
|
|
|
extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
|
|
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
|
|
|
|
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
|
|
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
|
|
|
|
extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
|
|
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
|
|
|
|
struct vcpu_reset_state {
|
|
unsigned long pc;
|
|
unsigned long r0;
|
|
bool be;
|
|
bool reset;
|
|
};
|
|
|
|
struct kvm_vcpu_arch {
|
|
struct kvm_cpu_context ctxt;
|
|
|
|
/* Guest floating point state */
|
|
void *sve_state;
|
|
unsigned int sve_max_vl;
|
|
u64 svcr;
|
|
|
|
/* Stage 2 paging state used by the hardware on next switch */
|
|
struct kvm_s2_mmu *hw_mmu;
|
|
|
|
/* Values of trap registers for the guest. */
|
|
u64 hcr_el2;
|
|
u64 mdcr_el2;
|
|
u64 cptr_el2;
|
|
|
|
/* Values of trap registers for the host before guest entry. */
|
|
u64 mdcr_el2_host;
|
|
|
|
/* Exception Information */
|
|
struct kvm_vcpu_fault_info fault;
|
|
|
|
/* Ownership of the FP regs */
|
|
enum {
|
|
FP_STATE_FREE,
|
|
FP_STATE_HOST_OWNED,
|
|
FP_STATE_GUEST_OWNED,
|
|
} fp_state;
|
|
|
|
/* Configuration flags, set once and for all before the vcpu can run */
|
|
u8 cflags;
|
|
|
|
/* Input flags to the hypervisor code, potentially cleared after use */
|
|
u8 iflags;
|
|
|
|
/* State flags for kernel bookkeeping, unused by the hypervisor code */
|
|
u8 sflags;
|
|
|
|
/*
|
|
* Don't run the guest (internal implementation need).
|
|
*
|
|
* Contrary to the flags above, this is set/cleared outside of
|
|
* a vcpu context, and thus cannot be mixed with the flags
|
|
* themselves (or the flag accesses need to be made atomic).
|
|
*/
|
|
bool pause;
|
|
|
|
/*
|
|
* We maintain more than a single set of debug registers to support
|
|
* debugging the guest from the host and to maintain separate host and
|
|
* guest state during world switches. vcpu_debug_state are the debug
|
|
* registers of the vcpu as the guest sees them. host_debug_state are
|
|
* the host registers which are saved and restored during
|
|
* world switches. external_debug_state contains the debug
|
|
* values we want to debug the guest. This is set via the
|
|
* KVM_SET_GUEST_DEBUG ioctl.
|
|
*
|
|
* debug_ptr points to the set of debug registers that should be loaded
|
|
* onto the hardware when running the guest.
|
|
*/
|
|
struct kvm_guest_debug_arch *debug_ptr;
|
|
struct kvm_guest_debug_arch vcpu_debug_state;
|
|
struct kvm_guest_debug_arch external_debug_state;
|
|
|
|
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
|
|
struct task_struct *parent_task;
|
|
|
|
struct {
|
|
/* {Break,watch}point registers */
|
|
struct kvm_guest_debug_arch regs;
|
|
/* Statistical profiling extension */
|
|
u64 pmscr_el1;
|
|
/* Self-hosted trace */
|
|
u64 trfcr_el1;
|
|
} host_debug_state;
|
|
|
|
/* VGIC state */
|
|
struct vgic_cpu vgic_cpu;
|
|
struct arch_timer_cpu timer_cpu;
|
|
struct kvm_pmu pmu;
|
|
|
|
/*
|
|
* Guest registers we preserve during guest debugging.
|
|
*
|
|
* These shadow registers are updated by the kvm_handle_sys_reg
|
|
* trap handler if the guest accesses or updates them while we
|
|
* are using guest debug.
|
|
*/
|
|
struct {
|
|
u32 mdscr_el1;
|
|
bool pstate_ss;
|
|
} guest_debug_preserved;
|
|
|
|
/* vcpu power state */
|
|
struct kvm_mp_state mp_state;
|
|
|
|
/* Cache some mmu pages needed inside spinlock regions */
|
|
struct kvm_mmu_memory_cache mmu_page_cache;
|
|
|
|
/* Target CPU and feature flags */
|
|
int target;
|
|
DECLARE_BITMAP(features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
|
|
u64 vsesr_el2;
|
|
|
|
/* Additional reset state */
|
|
struct vcpu_reset_state reset_state;
|
|
|
|
/* Guest PV state */
|
|
struct {
|
|
u64 last_steal;
|
|
gpa_t base;
|
|
} steal;
|
|
};
|
|
|
|
/*
|
|
* Each 'flag' is composed of a comma-separated triplet:
|
|
*
|
|
* - the flag-set it belongs to in the vcpu->arch structure
|
|
* - the value for that flag
|
|
* - the mask for that flag
|
|
*
|
|
* __vcpu_single_flag() builds such a triplet for a single-bit flag.
|
|
* unpack_vcpu_flag() extract the flag value from the triplet for
|
|
* direct use outside of the flag accessors.
|
|
*/
|
|
#define __vcpu_single_flag(_set, _f) _set, (_f), (_f)
|
|
|
|
#define __unpack_flag(_set, _f, _m) _f
|
|
#define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__)
|
|
|
|
#define __build_check_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *_fset; \
|
|
\
|
|
/* Check that the flags fit in the mask */ \
|
|
BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
|
|
/* Check that the flags fit in the type */ \
|
|
BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
|
|
} while (0)
|
|
|
|
#define __vcpu_get_flag(v, flagset, f, m) \
|
|
({ \
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
v->arch.flagset & (m); \
|
|
})
|
|
|
|
#define __vcpu_set_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *fset; \
|
|
\
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
fset = &v->arch.flagset; \
|
|
if (HWEIGHT(m) > 1) \
|
|
*fset &= ~(m); \
|
|
*fset |= (f); \
|
|
} while (0)
|
|
|
|
#define __vcpu_clear_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *fset; \
|
|
\
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
fset = &v->arch.flagset; \
|
|
*fset &= ~(m); \
|
|
} while (0)
|
|
|
|
#define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__)
|
|
#define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__)
|
|
#define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
|
|
|
|
/* SVE exposed to guest */
|
|
#define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0))
|
|
/* SVE config completed */
|
|
#define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1))
|
|
/* PTRAUTH exposed to guest */
|
|
#define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2))
|
|
|
|
/* Exception pending */
|
|
#define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0))
|
|
/*
|
|
* PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
|
|
* be set together with an exception...
|
|
*/
|
|
#define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1))
|
|
/* Target EL/MODE (not a single flag, but let's abuse the macro) */
|
|
#define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1))
|
|
|
|
/* Helpers to encode exceptions with minimum fuss */
|
|
#define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK)
|
|
#define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL)
|
|
#define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
|
|
|
|
/*
|
|
* When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
|
|
* values:
|
|
*
|
|
* For AArch32 EL1:
|
|
*/
|
|
#define EXCEPT_AA32_UND __vcpu_except_flags(0)
|
|
#define EXCEPT_AA32_IABT __vcpu_except_flags(1)
|
|
#define EXCEPT_AA32_DABT __vcpu_except_flags(2)
|
|
/* For AArch64: */
|
|
#define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0)
|
|
#define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
|
|
#define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
|
|
#define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3)
|
|
/* For AArch64 with NV (one day): */
|
|
#define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4)
|
|
#define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
|
|
#define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
|
|
#define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7)
|
|
/* Guest debug is live */
|
|
#define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4))
|
|
/* Save SPE context if active */
|
|
#define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5))
|
|
/* Save TRBE context if active */
|
|
#define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6))
|
|
|
|
/* SVE enabled for host EL0 */
|
|
#define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0))
|
|
/* SME enabled for EL0 */
|
|
#define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1))
|
|
/* Physical CPU not in supported_cpus */
|
|
#define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2))
|
|
/* WFIT instruction trapped */
|
|
#define IN_WFIT __vcpu_single_flag(sflags, BIT(3))
|
|
/* vcpu system registers loaded on physical CPU */
|
|
#define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4))
|
|
/* Software step state is Active-pending */
|
|
#define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5))
|
|
|
|
|
|
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
|
|
#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
|
|
sve_ffr_offset((vcpu)->arch.sve_max_vl))
|
|
|
|
#define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
|
|
|
|
#define vcpu_sve_state_size(vcpu) ({ \
|
|
size_t __size_ret; \
|
|
unsigned int __vcpu_vq; \
|
|
\
|
|
if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
|
|
__size_ret = 0; \
|
|
} else { \
|
|
__vcpu_vq = vcpu_sve_max_vq(vcpu); \
|
|
__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
|
|
} \
|
|
\
|
|
__size_ret; \
|
|
})
|
|
|
|
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
|
|
KVM_GUESTDBG_USE_SW_BP | \
|
|
KVM_GUESTDBG_USE_HW | \
|
|
KVM_GUESTDBG_SINGLESTEP)
|
|
|
|
#define vcpu_has_sve(vcpu) (system_supports_sve() && \
|
|
vcpu_get_flag(vcpu, GUEST_HAS_SVE))
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
#define vcpu_has_ptrauth(vcpu) \
|
|
((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
|
|
cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
|
|
vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
|
|
#else
|
|
#define vcpu_has_ptrauth(vcpu) false
|
|
#endif
|
|
|
|
#define vcpu_on_unsupported_cpu(vcpu) \
|
|
vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_set_on_unsupported_cpu(vcpu) \
|
|
vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_clear_on_unsupported_cpu(vcpu) \
|
|
vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
|
|
|
|
/*
|
|
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
|
|
* memory backed version of a register, and not the one most recently
|
|
* accessed by a running VCPU. For example, for userspace access or
|
|
* for system registers that are never context switched, but only
|
|
* emulated.
|
|
*/
|
|
#define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
|
|
|
|
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
|
|
|
|
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
|
|
|
|
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
|
|
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
|
|
|
|
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
|
|
{
|
|
/*
|
|
* *** VHE ONLY ***
|
|
*
|
|
* System registers listed in the switch are not saved on every
|
|
* exit from the guest but are only saved on vcpu_put.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the guest cannot modify its
|
|
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
|
|
* thread when emulating cross-VCPU communication.
|
|
*/
|
|
if (!has_vhe())
|
|
return false;
|
|
|
|
switch (reg) {
|
|
case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
|
|
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
|
|
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
|
|
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
|
|
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
|
|
case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
|
|
case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
|
|
case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
|
|
case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
|
|
case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
|
|
case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
|
|
case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
|
|
case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
|
|
case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
|
|
case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
|
|
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
|
|
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
|
|
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
|
|
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
|
|
case PAR_EL1: *val = read_sysreg_par(); break;
|
|
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
|
|
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
|
|
case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
|
|
default: return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
|
|
{
|
|
/*
|
|
* *** VHE ONLY ***
|
|
*
|
|
* System registers listed in the switch are not restored on every
|
|
* entry to the guest but are only restored on vcpu_load.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the MPIDR should only be set
|
|
* once, before running the VCPU, and never changed later.
|
|
*/
|
|
if (!has_vhe())
|
|
return false;
|
|
|
|
switch (reg) {
|
|
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
|
|
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
|
|
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
|
|
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
|
|
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
|
|
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
|
|
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
|
|
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
|
|
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
|
|
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
|
|
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
|
|
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
|
|
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
|
|
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
|
|
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
|
|
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
|
|
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
|
|
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
|
|
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
|
|
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
|
|
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
|
|
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
|
|
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
|
|
default: return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct kvm_vm_stat {
|
|
struct kvm_vm_stat_generic generic;
|
|
};
|
|
|
|
struct kvm_vcpu_stat {
|
|
struct kvm_vcpu_stat_generic generic;
|
|
u64 hvc_exit_stat;
|
|
u64 wfe_exit_stat;
|
|
u64 wfi_exit_stat;
|
|
u64 mmio_exit_user;
|
|
u64 mmio_exit_kernel;
|
|
u64 signal_exits;
|
|
u64 exits;
|
|
};
|
|
|
|
void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init);
|
|
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
|
|
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
|
|
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
|
|
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
|
|
|
|
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
|
|
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
|
|
|
|
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events);
|
|
|
|
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events);
|
|
|
|
#define KVM_ARCH_WANT_MMU_NOTIFIER
|
|
|
|
void kvm_arm_halt_guest(struct kvm *kvm);
|
|
void kvm_arm_resume_guest(struct kvm *kvm);
|
|
|
|
#define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
|
|
|
|
#ifndef __KVM_NVHE_HYPERVISOR__
|
|
#define kvm_call_hyp_nvhe(f, ...) \
|
|
({ \
|
|
struct arm_smccc_res res; \
|
|
\
|
|
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
|
|
##__VA_ARGS__, &res); \
|
|
WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
|
|
\
|
|
res.a1; \
|
|
})
|
|
|
|
/*
|
|
* The couple of isb() below are there to guarantee the same behaviour
|
|
* on VHE as on !VHE, where the eret to EL1 acts as a context
|
|
* synchronization event.
|
|
*/
|
|
#define kvm_call_hyp(f, ...) \
|
|
do { \
|
|
if (has_vhe()) { \
|
|
f(__VA_ARGS__); \
|
|
isb(); \
|
|
} else { \
|
|
kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define kvm_call_hyp_ret(f, ...) \
|
|
({ \
|
|
typeof(f(__VA_ARGS__)) ret; \
|
|
\
|
|
if (has_vhe()) { \
|
|
ret = f(__VA_ARGS__); \
|
|
isb(); \
|
|
} else { \
|
|
ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
|
|
} \
|
|
\
|
|
ret; \
|
|
})
|
|
#else /* __KVM_NVHE_HYPERVISOR__ */
|
|
#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
|
|
#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
|
|
#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
|
|
#endif /* __KVM_NVHE_HYPERVISOR__ */
|
|
|
|
void force_vm_exit(const cpumask_t *mask);
|
|
|
|
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
|
|
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_sys_reg_table_init(void);
|
|
|
|
/* MMIO helpers */
|
|
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
|
|
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
|
|
|
|
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
|
|
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
|
|
|
|
/*
|
|
* Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
|
|
* arrived in guest context. For arm64, any event that arrives while a vCPU is
|
|
* loaded is considered to be "in guest".
|
|
*/
|
|
static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
|
|
}
|
|
|
|
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
|
|
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
|
|
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
|
|
|
|
bool kvm_arm_pvtime_supported(void);
|
|
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
|
|
extern unsigned int kvm_arm_vmid_bits;
|
|
int kvm_arm_vmid_alloc_init(void);
|
|
void kvm_arm_vmid_alloc_free(void);
|
|
void kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
|
|
void kvm_arm_vmid_clear_active(void);
|
|
|
|
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
|
|
{
|
|
vcpu_arch->steal.base = GPA_INVALID;
|
|
}
|
|
|
|
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
|
|
{
|
|
return (vcpu_arch->steal.base != GPA_INVALID);
|
|
}
|
|
|
|
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
|
|
|
|
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
|
|
|
|
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
|
|
{
|
|
/* The host's MPIDR is immutable, so let's set it up at boot time */
|
|
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
|
|
}
|
|
|
|
static inline bool kvm_system_needs_idmapped_vectors(void)
|
|
{
|
|
return cpus_have_const_cap(ARM64_SPECTRE_V3A);
|
|
}
|
|
|
|
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu);
|
|
|
|
static inline void kvm_arch_hardware_unsetup(void) {}
|
|
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
|
|
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
|
|
|
|
void kvm_arm_init_debug(void);
|
|
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
|
|
|
|
#define kvm_vcpu_os_lock_enabled(vcpu) \
|
|
(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & SYS_OSLSR_OSLK))
|
|
|
|
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
|
|
long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
|
|
struct kvm_arm_copy_mte_tags *copy_tags);
|
|
|
|
/* Guest/host FPSIMD coordination helpers */
|
|
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
|
|
|
|
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
|
|
{
|
|
return (!has_vhe() && attr->exclude_host);
|
|
}
|
|
|
|
/* Flags for host debug state */
|
|
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
|
|
|
|
#ifdef CONFIG_KVM
|
|
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
|
|
void kvm_clr_pmu_events(u32 clr);
|
|
#else
|
|
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
|
|
static inline void kvm_clr_pmu_events(u32 clr) {}
|
|
#endif
|
|
|
|
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
|
|
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_set_ipa_limit(void);
|
|
|
|
#define __KVM_HAVE_ARCH_VM_ALLOC
|
|
struct kvm *kvm_arch_alloc_vm(void);
|
|
|
|
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type);
|
|
|
|
static inline bool kvm_vm_is_protected(struct kvm *kvm)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void kvm_init_protected_traps(struct kvm_vcpu *vcpu);
|
|
|
|
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
|
|
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
|
|
|
|
#define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
|
|
|
|
#define kvm_has_mte(kvm) \
|
|
(system_supports_mte() && \
|
|
test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
|
|
|
|
#define kvm_supports_32bit_el0() \
|
|
(system_supports_32bit_el0() && \
|
|
!static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
|
|
|
int kvm_trng_call(struct kvm_vcpu *vcpu);
|
|
#ifdef CONFIG_KVM
|
|
extern phys_addr_t hyp_mem_base;
|
|
extern phys_addr_t hyp_mem_size;
|
|
void __init kvm_hyp_reserve(void);
|
|
#else
|
|
static inline void kvm_hyp_reserve(void) { }
|
|
#endif
|
|
|
|
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
|
|
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
|
|
|
|
#endif /* __ARM64_KVM_HOST_H__ */
|