linux/drivers/usb/class/usbtmc.c
Gergely Imreh d0a38365d9 USB: fix USBTMC get_capabilities success handling
In order:
Add reference to relevant section of USBTMC usb488 subclass specs.
Print debug output of capabilities only when it was retrieved successfully.
Clear return value on success, otherwise driver always reports failure.

Signed-off-by: Gergely Imreh <imrehg@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2009-09-23 06:46:39 -07:00

1150 lines
27 KiB
C

/**
* drivers/usb/class/usbtmc.c - USB Test & Measurment class driver
*
* Copyright (C) 2007 Stefan Kopp, Gechingen, Germany
* Copyright (C) 2008 Novell, Inc.
* Copyright (C) 2008 Greg Kroah-Hartman <gregkh@suse.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* The GNU General Public License is available at
* http://www.gnu.org/copyleft/gpl.html.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/kref.h>
#include <linux/mutex.h>
#include <linux/usb.h>
#include <linux/usb/tmc.h>
#define USBTMC_MINOR_BASE 176
/*
* Size of driver internal IO buffer. Must be multiple of 4 and at least as
* large as wMaxPacketSize (which is usually 512 bytes).
*/
#define USBTMC_SIZE_IOBUFFER 2048
/* Default USB timeout (in milliseconds) */
#define USBTMC_TIMEOUT 10
/*
* Maximum number of read cycles to empty bulk in endpoint during CLEAR and
* ABORT_BULK_IN requests. Ends the loop if (for whatever reason) a short
* packet is never read.
*/
#define USBTMC_MAX_READS_TO_CLEAR_BULK_IN 100
static struct usb_device_id usbtmc_devices[] = {
{ USB_INTERFACE_INFO(USB_CLASS_APP_SPEC, 3, 0), },
{ USB_INTERFACE_INFO(USB_CLASS_APP_SPEC, 3, 1), },
{ 0, } /* terminating entry */
};
MODULE_DEVICE_TABLE(usb, usbtmc_devices);
/*
* This structure is the capabilities for the device
* See section 4.2.1.8 of the USBTMC specification,
* and section 4.2.2 of the USBTMC usb488 subclass
* specification for details.
*/
struct usbtmc_dev_capabilities {
__u8 interface_capabilities;
__u8 device_capabilities;
__u8 usb488_interface_capabilities;
__u8 usb488_device_capabilities;
};
/* This structure holds private data for each USBTMC device. One copy is
* allocated for each USBTMC device in the driver's probe function.
*/
struct usbtmc_device_data {
const struct usb_device_id *id;
struct usb_device *usb_dev;
struct usb_interface *intf;
unsigned int bulk_in;
unsigned int bulk_out;
u8 bTag;
u8 bTag_last_write; /* needed for abort */
u8 bTag_last_read; /* needed for abort */
/* attributes from the USB TMC spec for this device */
u8 TermChar;
bool TermCharEnabled;
bool auto_abort;
bool zombie; /* fd of disconnected device */
struct usbtmc_dev_capabilities capabilities;
struct kref kref;
struct mutex io_mutex; /* only one i/o function running at a time */
};
#define to_usbtmc_data(d) container_of(d, struct usbtmc_device_data, kref)
/* Forward declarations */
static struct usb_driver usbtmc_driver;
static void usbtmc_delete(struct kref *kref)
{
struct usbtmc_device_data *data = to_usbtmc_data(kref);
usb_put_dev(data->usb_dev);
kfree(data);
}
static int usbtmc_open(struct inode *inode, struct file *filp)
{
struct usb_interface *intf;
struct usbtmc_device_data *data;
int retval = 0;
intf = usb_find_interface(&usbtmc_driver, iminor(inode));
if (!intf) {
printk(KERN_ERR KBUILD_MODNAME
": can not find device for minor %d", iminor(inode));
retval = -ENODEV;
goto exit;
}
data = usb_get_intfdata(intf);
kref_get(&data->kref);
/* Store pointer in file structure's private data field */
filp->private_data = data;
exit:
return retval;
}
static int usbtmc_release(struct inode *inode, struct file *file)
{
struct usbtmc_device_data *data = file->private_data;
kref_put(&data->kref, usbtmc_delete);
return 0;
}
static int usbtmc_ioctl_abort_bulk_in(struct usbtmc_device_data *data)
{
u8 *buffer;
struct device *dev;
int rv;
int n;
int actual;
struct usb_host_interface *current_setting;
int max_size;
dev = &data->intf->dev;
buffer = kmalloc(USBTMC_SIZE_IOBUFFER, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_INITIATE_ABORT_BULK_IN,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT,
data->bTag_last_read, data->bulk_in,
buffer, 2, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "INITIATE_ABORT_BULK_IN returned %x\n", buffer[0]);
if (buffer[0] == USBTMC_STATUS_FAILED) {
rv = 0;
goto exit;
}
if (buffer[0] != USBTMC_STATUS_SUCCESS) {
dev_err(dev, "INITIATE_ABORT_BULK_IN returned %x\n",
buffer[0]);
rv = -EPERM;
goto exit;
}
max_size = 0;
current_setting = data->intf->cur_altsetting;
for (n = 0; n < current_setting->desc.bNumEndpoints; n++)
if (current_setting->endpoint[n].desc.bEndpointAddress ==
data->bulk_in)
max_size = le16_to_cpu(current_setting->endpoint[n].
desc.wMaxPacketSize);
if (max_size == 0) {
dev_err(dev, "Couldn't get wMaxPacketSize\n");
rv = -EPERM;
goto exit;
}
dev_dbg(&data->intf->dev, "wMaxPacketSize is %d\n", max_size);
n = 0;
do {
dev_dbg(dev, "Reading from bulk in EP\n");
rv = usb_bulk_msg(data->usb_dev,
usb_rcvbulkpipe(data->usb_dev,
data->bulk_in),
buffer, USBTMC_SIZE_IOBUFFER,
&actual, USBTMC_TIMEOUT);
n++;
if (rv < 0) {
dev_err(dev, "usb_bulk_msg returned %d\n", rv);
goto exit;
}
} while ((actual == max_size) &&
(n < USBTMC_MAX_READS_TO_CLEAR_BULK_IN));
if (actual == max_size) {
dev_err(dev, "Couldn't clear device buffer within %d cycles\n",
USBTMC_MAX_READS_TO_CLEAR_BULK_IN);
rv = -EPERM;
goto exit;
}
n = 0;
usbtmc_abort_bulk_in_status:
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_CHECK_ABORT_BULK_IN_STATUS,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT,
0, data->bulk_in, buffer, 0x08,
USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "INITIATE_ABORT_BULK_IN returned %x\n", buffer[0]);
if (buffer[0] == USBTMC_STATUS_SUCCESS) {
rv = 0;
goto exit;
}
if (buffer[0] != USBTMC_STATUS_PENDING) {
dev_err(dev, "INITIATE_ABORT_BULK_IN returned %x\n", buffer[0]);
rv = -EPERM;
goto exit;
}
if (buffer[1] == 1)
do {
dev_dbg(dev, "Reading from bulk in EP\n");
rv = usb_bulk_msg(data->usb_dev,
usb_rcvbulkpipe(data->usb_dev,
data->bulk_in),
buffer, USBTMC_SIZE_IOBUFFER,
&actual, USBTMC_TIMEOUT);
n++;
if (rv < 0) {
dev_err(dev, "usb_bulk_msg returned %d\n", rv);
goto exit;
}
} while ((actual = max_size) &&
(n < USBTMC_MAX_READS_TO_CLEAR_BULK_IN));
if (actual == max_size) {
dev_err(dev, "Couldn't clear device buffer within %d cycles\n",
USBTMC_MAX_READS_TO_CLEAR_BULK_IN);
rv = -EPERM;
goto exit;
}
goto usbtmc_abort_bulk_in_status;
exit:
kfree(buffer);
return rv;
}
static int usbtmc_ioctl_abort_bulk_out(struct usbtmc_device_data *data)
{
struct device *dev;
u8 *buffer;
int rv;
int n;
dev = &data->intf->dev;
buffer = kmalloc(8, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_INITIATE_ABORT_BULK_OUT,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT,
data->bTag_last_write, data->bulk_out,
buffer, 2, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "INITIATE_ABORT_BULK_OUT returned %x\n", buffer[0]);
if (buffer[0] != USBTMC_STATUS_SUCCESS) {
dev_err(dev, "INITIATE_ABORT_BULK_OUT returned %x\n",
buffer[0]);
rv = -EPERM;
goto exit;
}
n = 0;
usbtmc_abort_bulk_out_check_status:
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_CHECK_ABORT_BULK_OUT_STATUS,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT,
0, data->bulk_out, buffer, 0x08,
USBTMC_TIMEOUT);
n++;
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "CHECK_ABORT_BULK_OUT returned %x\n", buffer[0]);
if (buffer[0] == USBTMC_STATUS_SUCCESS)
goto usbtmc_abort_bulk_out_clear_halt;
if ((buffer[0] == USBTMC_STATUS_PENDING) &&
(n < USBTMC_MAX_READS_TO_CLEAR_BULK_IN))
goto usbtmc_abort_bulk_out_check_status;
rv = -EPERM;
goto exit;
usbtmc_abort_bulk_out_clear_halt:
rv = usb_control_msg(data->usb_dev,
usb_sndctrlpipe(data->usb_dev, 0),
USB_REQ_CLEAR_FEATURE,
USB_DIR_OUT | USB_TYPE_STANDARD |
USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT, data->bulk_out, buffer,
0, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
rv = 0;
exit:
kfree(buffer);
return rv;
}
static ssize_t usbtmc_read(struct file *filp, char __user *buf,
size_t count, loff_t *f_pos)
{
struct usbtmc_device_data *data;
struct device *dev;
u32 n_characters;
u8 *buffer;
int actual;
size_t done;
size_t remaining;
int retval;
size_t this_part;
/* Get pointer to private data structure */
data = filp->private_data;
dev = &data->intf->dev;
buffer = kmalloc(USBTMC_SIZE_IOBUFFER, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
mutex_lock(&data->io_mutex);
if (data->zombie) {
retval = -ENODEV;
goto exit;
}
remaining = count;
done = 0;
while (remaining > 0) {
if (remaining > USBTMC_SIZE_IOBUFFER - 12 - 3)
this_part = USBTMC_SIZE_IOBUFFER - 12 - 3;
else
this_part = remaining;
/* Setup IO buffer for DEV_DEP_MSG_IN message
* Refer to class specs for details
*/
buffer[0] = 2;
buffer[1] = data->bTag;
buffer[2] = ~(data->bTag);
buffer[3] = 0; /* Reserved */
buffer[4] = (this_part) & 255;
buffer[5] = ((this_part) >> 8) & 255;
buffer[6] = ((this_part) >> 16) & 255;
buffer[7] = ((this_part) >> 24) & 255;
buffer[8] = data->TermCharEnabled * 2;
/* Use term character? */
buffer[9] = data->TermChar;
buffer[10] = 0; /* Reserved */
buffer[11] = 0; /* Reserved */
/* Send bulk URB */
retval = usb_bulk_msg(data->usb_dev,
usb_sndbulkpipe(data->usb_dev,
data->bulk_out),
buffer, 12, &actual, USBTMC_TIMEOUT);
/* Store bTag (in case we need to abort) */
data->bTag_last_write = data->bTag;
/* Increment bTag -- and increment again if zero */
data->bTag++;
if (!data->bTag)
(data->bTag)++;
if (retval < 0) {
dev_err(dev, "usb_bulk_msg returned %d\n", retval);
if (data->auto_abort)
usbtmc_ioctl_abort_bulk_out(data);
goto exit;
}
/* Send bulk URB */
retval = usb_bulk_msg(data->usb_dev,
usb_rcvbulkpipe(data->usb_dev,
data->bulk_in),
buffer, USBTMC_SIZE_IOBUFFER, &actual,
USBTMC_TIMEOUT);
/* Store bTag (in case we need to abort) */
data->bTag_last_read = data->bTag;
if (retval < 0) {
dev_err(dev, "Unable to read data, error %d\n", retval);
if (data->auto_abort)
usbtmc_ioctl_abort_bulk_in(data);
goto exit;
}
/* How many characters did the instrument send? */
n_characters = buffer[4] +
(buffer[5] << 8) +
(buffer[6] << 16) +
(buffer[7] << 24);
/* Ensure the instrument doesn't lie about it */
if(n_characters > actual - 12) {
dev_err(dev, "Device lies about message size: %u > %d\n", n_characters, actual - 12);
n_characters = actual - 12;
}
/* Ensure the instrument doesn't send more back than requested */
if(n_characters > this_part) {
dev_err(dev, "Device returns more than requested: %zu > %zu\n", done + n_characters, done + this_part);
n_characters = this_part;
}
/* Bound amount of data received by amount of data requested */
if (n_characters > this_part)
n_characters = this_part;
/* Copy buffer to user space */
if (copy_to_user(buf + done, &buffer[12], n_characters)) {
/* There must have been an addressing problem */
retval = -EFAULT;
goto exit;
}
done += n_characters;
/* Terminate if end-of-message bit recieved from device */
if ((buffer[8] & 0x01) && (actual >= n_characters + 12))
remaining = 0;
else
remaining -= n_characters;
}
/* Update file position value */
*f_pos = *f_pos + done;
retval = done;
exit:
mutex_unlock(&data->io_mutex);
kfree(buffer);
return retval;
}
static ssize_t usbtmc_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct usbtmc_device_data *data;
u8 *buffer;
int retval;
int actual;
unsigned long int n_bytes;
int remaining;
int done;
int this_part;
data = filp->private_data;
buffer = kmalloc(USBTMC_SIZE_IOBUFFER, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
mutex_lock(&data->io_mutex);
if (data->zombie) {
retval = -ENODEV;
goto exit;
}
remaining = count;
done = 0;
while (remaining > 0) {
if (remaining > USBTMC_SIZE_IOBUFFER - 12) {
this_part = USBTMC_SIZE_IOBUFFER - 12;
buffer[8] = 0;
} else {
this_part = remaining;
buffer[8] = 1;
}
/* Setup IO buffer for DEV_DEP_MSG_OUT message */
buffer[0] = 1;
buffer[1] = data->bTag;
buffer[2] = ~(data->bTag);
buffer[3] = 0; /* Reserved */
buffer[4] = this_part & 255;
buffer[5] = (this_part >> 8) & 255;
buffer[6] = (this_part >> 16) & 255;
buffer[7] = (this_part >> 24) & 255;
/* buffer[8] is set above... */
buffer[9] = 0; /* Reserved */
buffer[10] = 0; /* Reserved */
buffer[11] = 0; /* Reserved */
if (copy_from_user(&buffer[12], buf + done, this_part)) {
retval = -EFAULT;
goto exit;
}
n_bytes = roundup(12 + this_part, 4);
memset(buffer + 12 + this_part, 0, n_bytes - (12 + this_part));
retval = usb_bulk_msg(data->usb_dev,
usb_sndbulkpipe(data->usb_dev,
data->bulk_out),
buffer, n_bytes, &actual, USBTMC_TIMEOUT);
data->bTag_last_write = data->bTag;
data->bTag++;
if (!data->bTag)
data->bTag++;
if (retval < 0) {
dev_err(&data->intf->dev,
"Unable to send data, error %d\n", retval);
if (data->auto_abort)
usbtmc_ioctl_abort_bulk_out(data);
goto exit;
}
remaining -= this_part;
done += this_part;
}
retval = count;
exit:
mutex_unlock(&data->io_mutex);
kfree(buffer);
return retval;
}
static int usbtmc_ioctl_clear(struct usbtmc_device_data *data)
{
struct usb_host_interface *current_setting;
struct usb_endpoint_descriptor *desc;
struct device *dev;
u8 *buffer;
int rv;
int n;
int actual;
int max_size;
dev = &data->intf->dev;
dev_dbg(dev, "Sending INITIATE_CLEAR request\n");
buffer = kmalloc(USBTMC_SIZE_IOBUFFER, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_INITIATE_CLEAR,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0, 0, buffer, 1, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "INITIATE_CLEAR returned %x\n", buffer[0]);
if (buffer[0] != USBTMC_STATUS_SUCCESS) {
dev_err(dev, "INITIATE_CLEAR returned %x\n", buffer[0]);
rv = -EPERM;
goto exit;
}
max_size = 0;
current_setting = data->intf->cur_altsetting;
for (n = 0; n < current_setting->desc.bNumEndpoints; n++) {
desc = &current_setting->endpoint[n].desc;
if (desc->bEndpointAddress == data->bulk_in)
max_size = le16_to_cpu(desc->wMaxPacketSize);
}
if (max_size == 0) {
dev_err(dev, "Couldn't get wMaxPacketSize\n");
rv = -EPERM;
goto exit;
}
dev_dbg(dev, "wMaxPacketSize is %d\n", max_size);
n = 0;
usbtmc_clear_check_status:
dev_dbg(dev, "Sending CHECK_CLEAR_STATUS request\n");
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_CHECK_CLEAR_STATUS,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0, 0, buffer, 2, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "CHECK_CLEAR_STATUS returned %x\n", buffer[0]);
if (buffer[0] == USBTMC_STATUS_SUCCESS)
goto usbtmc_clear_bulk_out_halt;
if (buffer[0] != USBTMC_STATUS_PENDING) {
dev_err(dev, "CHECK_CLEAR_STATUS returned %x\n", buffer[0]);
rv = -EPERM;
goto exit;
}
if (buffer[1] == 1)
do {
dev_dbg(dev, "Reading from bulk in EP\n");
rv = usb_bulk_msg(data->usb_dev,
usb_rcvbulkpipe(data->usb_dev,
data->bulk_in),
buffer, USBTMC_SIZE_IOBUFFER,
&actual, USBTMC_TIMEOUT);
n++;
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n",
rv);
goto exit;
}
} while ((actual == max_size) &&
(n < USBTMC_MAX_READS_TO_CLEAR_BULK_IN));
if (actual == max_size) {
dev_err(dev, "Couldn't clear device buffer within %d cycles\n",
USBTMC_MAX_READS_TO_CLEAR_BULK_IN);
rv = -EPERM;
goto exit;
}
goto usbtmc_clear_check_status;
usbtmc_clear_bulk_out_halt:
rv = usb_control_msg(data->usb_dev,
usb_sndctrlpipe(data->usb_dev, 0),
USB_REQ_CLEAR_FEATURE,
USB_DIR_OUT | USB_TYPE_STANDARD |
USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT,
data->bulk_out, buffer, 0,
USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
rv = 0;
exit:
kfree(buffer);
return rv;
}
static int usbtmc_ioctl_clear_out_halt(struct usbtmc_device_data *data)
{
u8 *buffer;
int rv;
buffer = kmalloc(2, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev,
usb_sndctrlpipe(data->usb_dev, 0),
USB_REQ_CLEAR_FEATURE,
USB_DIR_OUT | USB_TYPE_STANDARD |
USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT, data->bulk_out,
buffer, 0, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(&data->usb_dev->dev, "usb_control_msg returned %d\n",
rv);
goto exit;
}
rv = 0;
exit:
kfree(buffer);
return rv;
}
static int usbtmc_ioctl_clear_in_halt(struct usbtmc_device_data *data)
{
u8 *buffer;
int rv;
buffer = kmalloc(2, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev, usb_sndctrlpipe(data->usb_dev, 0),
USB_REQ_CLEAR_FEATURE,
USB_DIR_OUT | USB_TYPE_STANDARD |
USB_RECIP_ENDPOINT,
USB_ENDPOINT_HALT, data->bulk_in, buffer, 0,
USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(&data->usb_dev->dev, "usb_control_msg returned %d\n",
rv);
goto exit;
}
rv = 0;
exit:
kfree(buffer);
return rv;
}
static int get_capabilities(struct usbtmc_device_data *data)
{
struct device *dev = &data->usb_dev->dev;
char *buffer;
int rv = 0;
buffer = kmalloc(0x18, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev, usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_GET_CAPABILITIES,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0, 0, buffer, 0x18, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto err_out;
}
dev_dbg(dev, "GET_CAPABILITIES returned %x\n", buffer[0]);
if (buffer[0] != USBTMC_STATUS_SUCCESS) {
dev_err(dev, "GET_CAPABILITIES returned %x\n", buffer[0]);
rv = -EPERM;
goto err_out;
}
dev_dbg(dev, "Interface capabilities are %x\n", buffer[4]);
dev_dbg(dev, "Device capabilities are %x\n", buffer[5]);
dev_dbg(dev, "USB488 interface capabilities are %x\n", buffer[14]);
dev_dbg(dev, "USB488 device capabilities are %x\n", buffer[15]);
data->capabilities.interface_capabilities = buffer[4];
data->capabilities.device_capabilities = buffer[5];
data->capabilities.usb488_interface_capabilities = buffer[14];
data->capabilities.usb488_device_capabilities = buffer[15];
rv = 0;
err_out:
kfree(buffer);
return rv;
}
#define capability_attribute(name) \
static ssize_t show_##name(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct usb_interface *intf = to_usb_interface(dev); \
struct usbtmc_device_data *data = usb_get_intfdata(intf); \
\
return sprintf(buf, "%d\n", data->capabilities.name); \
} \
static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
capability_attribute(interface_capabilities);
capability_attribute(device_capabilities);
capability_attribute(usb488_interface_capabilities);
capability_attribute(usb488_device_capabilities);
static struct attribute *capability_attrs[] = {
&dev_attr_interface_capabilities.attr,
&dev_attr_device_capabilities.attr,
&dev_attr_usb488_interface_capabilities.attr,
&dev_attr_usb488_device_capabilities.attr,
NULL,
};
static struct attribute_group capability_attr_grp = {
.attrs = capability_attrs,
};
static ssize_t show_TermChar(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct usb_interface *intf = to_usb_interface(dev);
struct usbtmc_device_data *data = usb_get_intfdata(intf);
return sprintf(buf, "%c\n", data->TermChar);
}
static ssize_t store_TermChar(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct usb_interface *intf = to_usb_interface(dev);
struct usbtmc_device_data *data = usb_get_intfdata(intf);
if (count < 1)
return -EINVAL;
data->TermChar = buf[0];
return count;
}
static DEVICE_ATTR(TermChar, S_IRUGO, show_TermChar, store_TermChar);
#define data_attribute(name) \
static ssize_t show_##name(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct usb_interface *intf = to_usb_interface(dev); \
struct usbtmc_device_data *data = usb_get_intfdata(intf); \
\
return sprintf(buf, "%d\n", data->name); \
} \
static ssize_t store_##name(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct usb_interface *intf = to_usb_interface(dev); \
struct usbtmc_device_data *data = usb_get_intfdata(intf); \
ssize_t result; \
unsigned val; \
\
result = sscanf(buf, "%u\n", &val); \
if (result != 1) \
result = -EINVAL; \
data->name = val; \
if (result < 0) \
return result; \
else \
return count; \
} \
static DEVICE_ATTR(name, S_IRUGO, show_##name, store_##name)
data_attribute(TermCharEnabled);
data_attribute(auto_abort);
static struct attribute *data_attrs[] = {
&dev_attr_TermChar.attr,
&dev_attr_TermCharEnabled.attr,
&dev_attr_auto_abort.attr,
NULL,
};
static struct attribute_group data_attr_grp = {
.attrs = data_attrs,
};
static int usbtmc_ioctl_indicator_pulse(struct usbtmc_device_data *data)
{
struct device *dev;
u8 *buffer;
int rv;
dev = &data->intf->dev;
buffer = kmalloc(2, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
rv = usb_control_msg(data->usb_dev,
usb_rcvctrlpipe(data->usb_dev, 0),
USBTMC_REQUEST_INDICATOR_PULSE,
USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE,
0, 0, buffer, 0x01, USBTMC_TIMEOUT);
if (rv < 0) {
dev_err(dev, "usb_control_msg returned %d\n", rv);
goto exit;
}
dev_dbg(dev, "INDICATOR_PULSE returned %x\n", buffer[0]);
if (buffer[0] != USBTMC_STATUS_SUCCESS) {
dev_err(dev, "INDICATOR_PULSE returned %x\n", buffer[0]);
rv = -EPERM;
goto exit;
}
rv = 0;
exit:
kfree(buffer);
return rv;
}
static long usbtmc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct usbtmc_device_data *data;
int retval = -EBADRQC;
data = file->private_data;
mutex_lock(&data->io_mutex);
if (data->zombie) {
retval = -ENODEV;
goto skip_io_on_zombie;
}
switch (cmd) {
case USBTMC_IOCTL_CLEAR_OUT_HALT:
retval = usbtmc_ioctl_clear_out_halt(data);
break;
case USBTMC_IOCTL_CLEAR_IN_HALT:
retval = usbtmc_ioctl_clear_in_halt(data);
break;
case USBTMC_IOCTL_INDICATOR_PULSE:
retval = usbtmc_ioctl_indicator_pulse(data);
break;
case USBTMC_IOCTL_CLEAR:
retval = usbtmc_ioctl_clear(data);
break;
case USBTMC_IOCTL_ABORT_BULK_OUT:
retval = usbtmc_ioctl_abort_bulk_out(data);
break;
case USBTMC_IOCTL_ABORT_BULK_IN:
retval = usbtmc_ioctl_abort_bulk_in(data);
break;
}
skip_io_on_zombie:
mutex_unlock(&data->io_mutex);
return retval;
}
static struct file_operations fops = {
.owner = THIS_MODULE,
.read = usbtmc_read,
.write = usbtmc_write,
.open = usbtmc_open,
.release = usbtmc_release,
.unlocked_ioctl = usbtmc_ioctl,
};
static struct usb_class_driver usbtmc_class = {
.name = "usbtmc%d",
.fops = &fops,
.minor_base = USBTMC_MINOR_BASE,
};
static int usbtmc_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usbtmc_device_data *data;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
int n;
int retcode;
dev_dbg(&intf->dev, "%s called\n", __func__);
data = kmalloc(sizeof(struct usbtmc_device_data), GFP_KERNEL);
if (!data) {
dev_err(&intf->dev, "Unable to allocate kernel memory\n");
return -ENOMEM;
}
data->intf = intf;
data->id = id;
data->usb_dev = usb_get_dev(interface_to_usbdev(intf));
usb_set_intfdata(intf, data);
kref_init(&data->kref);
mutex_init(&data->io_mutex);
data->zombie = 0;
/* Initialize USBTMC bTag and other fields */
data->bTag = 1;
data->TermCharEnabled = 0;
data->TermChar = '\n';
/* USBTMC devices have only one setting, so use that */
iface_desc = data->intf->cur_altsetting;
/* Find bulk in endpoint */
for (n = 0; n < iface_desc->desc.bNumEndpoints; n++) {
endpoint = &iface_desc->endpoint[n].desc;
if (usb_endpoint_is_bulk_in(endpoint)) {
data->bulk_in = endpoint->bEndpointAddress;
dev_dbg(&intf->dev, "Found bulk in endpoint at %u\n",
data->bulk_in);
break;
}
}
/* Find bulk out endpoint */
for (n = 0; n < iface_desc->desc.bNumEndpoints; n++) {
endpoint = &iface_desc->endpoint[n].desc;
if (usb_endpoint_is_bulk_out(endpoint)) {
data->bulk_out = endpoint->bEndpointAddress;
dev_dbg(&intf->dev, "Found Bulk out endpoint at %u\n",
data->bulk_out);
break;
}
}
retcode = get_capabilities(data);
if (retcode)
dev_err(&intf->dev, "can't read capabilities\n");
else
retcode = sysfs_create_group(&intf->dev.kobj,
&capability_attr_grp);
retcode = sysfs_create_group(&intf->dev.kobj, &data_attr_grp);
retcode = usb_register_dev(intf, &usbtmc_class);
if (retcode) {
dev_err(&intf->dev, "Not able to get a minor"
" (base %u, slice default): %d\n", USBTMC_MINOR_BASE,
retcode);
goto error_register;
}
dev_dbg(&intf->dev, "Using minor number %d\n", intf->minor);
return 0;
error_register:
sysfs_remove_group(&intf->dev.kobj, &capability_attr_grp);
sysfs_remove_group(&intf->dev.kobj, &data_attr_grp);
kref_put(&data->kref, usbtmc_delete);
return retcode;
}
static void usbtmc_disconnect(struct usb_interface *intf)
{
struct usbtmc_device_data *data;
dev_dbg(&intf->dev, "usbtmc_disconnect called\n");
data = usb_get_intfdata(intf);
usb_deregister_dev(intf, &usbtmc_class);
sysfs_remove_group(&intf->dev.kobj, &capability_attr_grp);
sysfs_remove_group(&intf->dev.kobj, &data_attr_grp);
mutex_lock(&data->io_mutex);
data->zombie = 1;
mutex_unlock(&data->io_mutex);
kref_put(&data->kref, usbtmc_delete);
}
static int usbtmc_suspend (struct usb_interface *intf, pm_message_t message)
{
/* this driver does not have pending URBs */
return 0;
}
static int usbtmc_resume (struct usb_interface *intf)
{
return 0;
}
static struct usb_driver usbtmc_driver = {
.name = "usbtmc",
.id_table = usbtmc_devices,
.probe = usbtmc_probe,
.disconnect = usbtmc_disconnect,
.suspend = usbtmc_suspend,
.resume = usbtmc_resume,
};
static int __init usbtmc_init(void)
{
int retcode;
retcode = usb_register(&usbtmc_driver);
if (retcode)
printk(KERN_ERR KBUILD_MODNAME": Unable to register driver\n");
return retcode;
}
module_init(usbtmc_init);
static void __exit usbtmc_exit(void)
{
usb_deregister(&usbtmc_driver);
}
module_exit(usbtmc_exit);
MODULE_LICENSE("GPL");