forked from Minki/linux
9eb07a7fb8
In order to avoid loosing error events, it is desirable to group error events together and generate a single trace for several identical errors. The trace API already allows reporting multiple errors. Change the handle_error function to also allow that. The changes at the drivers were made by this small script: $file .=$_ while (<>); $file =~ s/(edac_mc_handle_error)\s*\(([^\,]+)\,([^\,]+)\,/$1($2,$3, 1,/g; print $file; Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
534 lines
12 KiB
C
534 lines
12 KiB
C
/*
|
|
* Intel X38 Memory Controller kernel module
|
|
* Copyright (C) 2008 Cluster Computing, Inc.
|
|
*
|
|
* This file may be distributed under the terms of the
|
|
* GNU General Public License.
|
|
*
|
|
* This file is based on i3200_edac.c
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/edac.h>
|
|
#include "edac_core.h"
|
|
|
|
#define X38_REVISION "1.1"
|
|
|
|
#define EDAC_MOD_STR "x38_edac"
|
|
|
|
#define PCI_DEVICE_ID_INTEL_X38_HB 0x29e0
|
|
|
|
#define X38_RANKS 8
|
|
#define X38_RANKS_PER_CHANNEL 4
|
|
#define X38_CHANNELS 2
|
|
|
|
/* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
|
|
|
|
#define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
|
|
#define X38_MCHBAR_HIGH 0x4c
|
|
#define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
|
|
#define X38_MMR_WINDOW_SIZE 16384
|
|
|
|
#define X38_TOM 0xa0 /* Top of Memory (16b)
|
|
*
|
|
* 15:10 reserved
|
|
* 9:0 total populated physical memory
|
|
*/
|
|
#define X38_TOM_MASK 0x3ff /* bits 9:0 */
|
|
#define X38_TOM_SHIFT 26 /* 64MiB grain */
|
|
|
|
#define X38_ERRSTS 0xc8 /* Error Status Register (16b)
|
|
*
|
|
* 15 reserved
|
|
* 14 Isochronous TBWRR Run Behind FIFO Full
|
|
* (ITCV)
|
|
* 13 Isochronous TBWRR Run Behind FIFO Put
|
|
* (ITSTV)
|
|
* 12 reserved
|
|
* 11 MCH Thermal Sensor Event
|
|
* for SMI/SCI/SERR (GTSE)
|
|
* 10 reserved
|
|
* 9 LOCK to non-DRAM Memory Flag (LCKF)
|
|
* 8 reserved
|
|
* 7 DRAM Throttle Flag (DTF)
|
|
* 6:2 reserved
|
|
* 1 Multi-bit DRAM ECC Error Flag (DMERR)
|
|
* 0 Single-bit DRAM ECC Error Flag (DSERR)
|
|
*/
|
|
#define X38_ERRSTS_UE 0x0002
|
|
#define X38_ERRSTS_CE 0x0001
|
|
#define X38_ERRSTS_BITS (X38_ERRSTS_UE | X38_ERRSTS_CE)
|
|
|
|
|
|
/* Intel MMIO register space - device 0 function 0 - MMR space */
|
|
|
|
#define X38_C0DRB 0x200 /* Channel 0 DRAM Rank Boundary (16b x 4)
|
|
*
|
|
* 15:10 reserved
|
|
* 9:0 Channel 0 DRAM Rank Boundary Address
|
|
*/
|
|
#define X38_C1DRB 0x600 /* Channel 1 DRAM Rank Boundary (16b x 4) */
|
|
#define X38_DRB_MASK 0x3ff /* bits 9:0 */
|
|
#define X38_DRB_SHIFT 26 /* 64MiB grain */
|
|
|
|
#define X38_C0ECCERRLOG 0x280 /* Channel 0 ECC Error Log (64b)
|
|
*
|
|
* 63:48 Error Column Address (ERRCOL)
|
|
* 47:32 Error Row Address (ERRROW)
|
|
* 31:29 Error Bank Address (ERRBANK)
|
|
* 28:27 Error Rank Address (ERRRANK)
|
|
* 26:24 reserved
|
|
* 23:16 Error Syndrome (ERRSYND)
|
|
* 15: 2 reserved
|
|
* 1 Multiple Bit Error Status (MERRSTS)
|
|
* 0 Correctable Error Status (CERRSTS)
|
|
*/
|
|
#define X38_C1ECCERRLOG 0x680 /* Channel 1 ECC Error Log (64b) */
|
|
#define X38_ECCERRLOG_CE 0x1
|
|
#define X38_ECCERRLOG_UE 0x2
|
|
#define X38_ECCERRLOG_RANK_BITS 0x18000000
|
|
#define X38_ECCERRLOG_SYNDROME_BITS 0xff0000
|
|
|
|
#define X38_CAPID0 0xe0 /* see P.94 of spec for details */
|
|
|
|
static int x38_channel_num;
|
|
|
|
static int how_many_channel(struct pci_dev *pdev)
|
|
{
|
|
unsigned char capid0_8b; /* 8th byte of CAPID0 */
|
|
|
|
pci_read_config_byte(pdev, X38_CAPID0 + 8, &capid0_8b);
|
|
if (capid0_8b & 0x20) { /* check DCD: Dual Channel Disable */
|
|
edac_dbg(0, "In single channel mode\n");
|
|
x38_channel_num = 1;
|
|
} else {
|
|
edac_dbg(0, "In dual channel mode\n");
|
|
x38_channel_num = 2;
|
|
}
|
|
|
|
return x38_channel_num;
|
|
}
|
|
|
|
static unsigned long eccerrlog_syndrome(u64 log)
|
|
{
|
|
return (log & X38_ECCERRLOG_SYNDROME_BITS) >> 16;
|
|
}
|
|
|
|
static int eccerrlog_row(int channel, u64 log)
|
|
{
|
|
return ((log & X38_ECCERRLOG_RANK_BITS) >> 27) |
|
|
(channel * X38_RANKS_PER_CHANNEL);
|
|
}
|
|
|
|
enum x38_chips {
|
|
X38 = 0,
|
|
};
|
|
|
|
struct x38_dev_info {
|
|
const char *ctl_name;
|
|
};
|
|
|
|
struct x38_error_info {
|
|
u16 errsts;
|
|
u16 errsts2;
|
|
u64 eccerrlog[X38_CHANNELS];
|
|
};
|
|
|
|
static const struct x38_dev_info x38_devs[] = {
|
|
[X38] = {
|
|
.ctl_name = "x38"},
|
|
};
|
|
|
|
static struct pci_dev *mci_pdev;
|
|
static int x38_registered = 1;
|
|
|
|
|
|
static void x38_clear_error_info(struct mem_ctl_info *mci)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
pdev = to_pci_dev(mci->pdev);
|
|
|
|
/*
|
|
* Clear any error bits.
|
|
* (Yes, we really clear bits by writing 1 to them.)
|
|
*/
|
|
pci_write_bits16(pdev, X38_ERRSTS, X38_ERRSTS_BITS,
|
|
X38_ERRSTS_BITS);
|
|
}
|
|
|
|
static u64 x38_readq(const void __iomem *addr)
|
|
{
|
|
return readl(addr) | (((u64)readl(addr + 4)) << 32);
|
|
}
|
|
|
|
static void x38_get_and_clear_error_info(struct mem_ctl_info *mci,
|
|
struct x38_error_info *info)
|
|
{
|
|
struct pci_dev *pdev;
|
|
void __iomem *window = mci->pvt_info;
|
|
|
|
pdev = to_pci_dev(mci->pdev);
|
|
|
|
/*
|
|
* This is a mess because there is no atomic way to read all the
|
|
* registers at once and the registers can transition from CE being
|
|
* overwritten by UE.
|
|
*/
|
|
pci_read_config_word(pdev, X38_ERRSTS, &info->errsts);
|
|
if (!(info->errsts & X38_ERRSTS_BITS))
|
|
return;
|
|
|
|
info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
|
|
if (x38_channel_num == 2)
|
|
info->eccerrlog[1] = x38_readq(window + X38_C1ECCERRLOG);
|
|
|
|
pci_read_config_word(pdev, X38_ERRSTS, &info->errsts2);
|
|
|
|
/*
|
|
* If the error is the same for both reads then the first set
|
|
* of reads is valid. If there is a change then there is a CE
|
|
* with no info and the second set of reads is valid and
|
|
* should be UE info.
|
|
*/
|
|
if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
|
|
info->eccerrlog[0] = x38_readq(window + X38_C0ECCERRLOG);
|
|
if (x38_channel_num == 2)
|
|
info->eccerrlog[1] =
|
|
x38_readq(window + X38_C1ECCERRLOG);
|
|
}
|
|
|
|
x38_clear_error_info(mci);
|
|
}
|
|
|
|
static void x38_process_error_info(struct mem_ctl_info *mci,
|
|
struct x38_error_info *info)
|
|
{
|
|
int channel;
|
|
u64 log;
|
|
|
|
if (!(info->errsts & X38_ERRSTS_BITS))
|
|
return;
|
|
|
|
if ((info->errsts ^ info->errsts2) & X38_ERRSTS_BITS) {
|
|
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
|
|
-1, -1, -1,
|
|
"UE overwrote CE", "");
|
|
info->errsts = info->errsts2;
|
|
}
|
|
|
|
for (channel = 0; channel < x38_channel_num; channel++) {
|
|
log = info->eccerrlog[channel];
|
|
if (log & X38_ECCERRLOG_UE) {
|
|
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
|
|
0, 0, 0,
|
|
eccerrlog_row(channel, log),
|
|
-1, -1,
|
|
"x38 UE", "");
|
|
} else if (log & X38_ECCERRLOG_CE) {
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
|
|
0, 0, eccerrlog_syndrome(log),
|
|
eccerrlog_row(channel, log),
|
|
-1, -1,
|
|
"x38 CE", "");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void x38_check(struct mem_ctl_info *mci)
|
|
{
|
|
struct x38_error_info info;
|
|
|
|
edac_dbg(1, "MC%d\n", mci->mc_idx);
|
|
x38_get_and_clear_error_info(mci, &info);
|
|
x38_process_error_info(mci, &info);
|
|
}
|
|
|
|
|
|
void __iomem *x38_map_mchbar(struct pci_dev *pdev)
|
|
{
|
|
union {
|
|
u64 mchbar;
|
|
struct {
|
|
u32 mchbar_low;
|
|
u32 mchbar_high;
|
|
};
|
|
} u;
|
|
void __iomem *window;
|
|
|
|
pci_read_config_dword(pdev, X38_MCHBAR_LOW, &u.mchbar_low);
|
|
pci_write_config_dword(pdev, X38_MCHBAR_LOW, u.mchbar_low | 0x1);
|
|
pci_read_config_dword(pdev, X38_MCHBAR_HIGH, &u.mchbar_high);
|
|
u.mchbar &= X38_MCHBAR_MASK;
|
|
|
|
if (u.mchbar != (resource_size_t)u.mchbar) {
|
|
printk(KERN_ERR
|
|
"x38: mmio space beyond accessible range (0x%llx)\n",
|
|
(unsigned long long)u.mchbar);
|
|
return NULL;
|
|
}
|
|
|
|
window = ioremap_nocache(u.mchbar, X38_MMR_WINDOW_SIZE);
|
|
if (!window)
|
|
printk(KERN_ERR "x38: cannot map mmio space at 0x%llx\n",
|
|
(unsigned long long)u.mchbar);
|
|
|
|
return window;
|
|
}
|
|
|
|
|
|
static void x38_get_drbs(void __iomem *window,
|
|
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < X38_RANKS_PER_CHANNEL; i++) {
|
|
drbs[0][i] = readw(window + X38_C0DRB + 2*i) & X38_DRB_MASK;
|
|
drbs[1][i] = readw(window + X38_C1DRB + 2*i) & X38_DRB_MASK;
|
|
}
|
|
}
|
|
|
|
static bool x38_is_stacked(struct pci_dev *pdev,
|
|
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL])
|
|
{
|
|
u16 tom;
|
|
|
|
pci_read_config_word(pdev, X38_TOM, &tom);
|
|
tom &= X38_TOM_MASK;
|
|
|
|
return drbs[X38_CHANNELS - 1][X38_RANKS_PER_CHANNEL - 1] == tom;
|
|
}
|
|
|
|
static unsigned long drb_to_nr_pages(
|
|
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL],
|
|
bool stacked, int channel, int rank)
|
|
{
|
|
int n;
|
|
|
|
n = drbs[channel][rank];
|
|
if (rank > 0)
|
|
n -= drbs[channel][rank - 1];
|
|
if (stacked && (channel == 1) && drbs[channel][rank] ==
|
|
drbs[channel][X38_RANKS_PER_CHANNEL - 1]) {
|
|
n -= drbs[0][X38_RANKS_PER_CHANNEL - 1];
|
|
}
|
|
|
|
n <<= (X38_DRB_SHIFT - PAGE_SHIFT);
|
|
return n;
|
|
}
|
|
|
|
static int x38_probe1(struct pci_dev *pdev, int dev_idx)
|
|
{
|
|
int rc;
|
|
int i, j;
|
|
struct mem_ctl_info *mci = NULL;
|
|
struct edac_mc_layer layers[2];
|
|
u16 drbs[X38_CHANNELS][X38_RANKS_PER_CHANNEL];
|
|
bool stacked;
|
|
void __iomem *window;
|
|
|
|
edac_dbg(0, "MC:\n");
|
|
|
|
window = x38_map_mchbar(pdev);
|
|
if (!window)
|
|
return -ENODEV;
|
|
|
|
x38_get_drbs(window, drbs);
|
|
|
|
how_many_channel(pdev);
|
|
|
|
/* FIXME: unconventional pvt_info usage */
|
|
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
|
|
layers[0].size = X38_RANKS;
|
|
layers[0].is_virt_csrow = true;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = x38_channel_num;
|
|
layers[1].is_virt_csrow = false;
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
|
|
if (!mci)
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(3, "MC: init mci\n");
|
|
|
|
mci->pdev = &pdev->dev;
|
|
mci->mtype_cap = MEM_FLAG_DDR2;
|
|
|
|
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
|
|
mci->edac_cap = EDAC_FLAG_SECDED;
|
|
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->mod_ver = X38_REVISION;
|
|
mci->ctl_name = x38_devs[dev_idx].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->edac_check = x38_check;
|
|
mci->ctl_page_to_phys = NULL;
|
|
mci->pvt_info = window;
|
|
|
|
stacked = x38_is_stacked(pdev, drbs);
|
|
|
|
/*
|
|
* The dram rank boundary (DRB) reg values are boundary addresses
|
|
* for each DRAM rank with a granularity of 64MB. DRB regs are
|
|
* cumulative; the last one will contain the total memory
|
|
* contained in all ranks.
|
|
*/
|
|
for (i = 0; i < mci->nr_csrows; i++) {
|
|
unsigned long nr_pages;
|
|
struct csrow_info *csrow = mci->csrows[i];
|
|
|
|
nr_pages = drb_to_nr_pages(drbs, stacked,
|
|
i / X38_RANKS_PER_CHANNEL,
|
|
i % X38_RANKS_PER_CHANNEL);
|
|
|
|
if (nr_pages == 0)
|
|
continue;
|
|
|
|
for (j = 0; j < x38_channel_num; j++) {
|
|
struct dimm_info *dimm = csrow->channels[j]->dimm;
|
|
|
|
dimm->nr_pages = nr_pages / x38_channel_num;
|
|
dimm->grain = nr_pages << PAGE_SHIFT;
|
|
dimm->mtype = MEM_DDR2;
|
|
dimm->dtype = DEV_UNKNOWN;
|
|
dimm->edac_mode = EDAC_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
x38_clear_error_info(mci);
|
|
|
|
rc = -ENODEV;
|
|
if (edac_mc_add_mc(mci)) {
|
|
edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* get this far and it's successful */
|
|
edac_dbg(3, "MC: success\n");
|
|
return 0;
|
|
|
|
fail:
|
|
iounmap(window);
|
|
if (mci)
|
|
edac_mc_free(mci);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int __devinit x38_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int rc;
|
|
|
|
edac_dbg(0, "MC:\n");
|
|
|
|
if (pci_enable_device(pdev) < 0)
|
|
return -EIO;
|
|
|
|
rc = x38_probe1(pdev, ent->driver_data);
|
|
if (!mci_pdev)
|
|
mci_pdev = pci_dev_get(pdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __devexit x38_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
iounmap(mci->pvt_info);
|
|
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(x38_pci_tbl) = {
|
|
{
|
|
PCI_VEND_DEV(INTEL, X38_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
|
|
X38},
|
|
{
|
|
0,
|
|
} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, x38_pci_tbl);
|
|
|
|
static struct pci_driver x38_driver = {
|
|
.name = EDAC_MOD_STR,
|
|
.probe = x38_init_one,
|
|
.remove = __devexit_p(x38_remove_one),
|
|
.id_table = x38_pci_tbl,
|
|
};
|
|
|
|
static int __init x38_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(3, "MC:\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&x38_driver);
|
|
if (pci_rc < 0)
|
|
goto fail0;
|
|
|
|
if (!mci_pdev) {
|
|
x38_registered = 0;
|
|
mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_X38_HB, NULL);
|
|
if (!mci_pdev) {
|
|
edac_dbg(0, "x38 pci_get_device fail\n");
|
|
pci_rc = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
|
|
pci_rc = x38_init_one(mci_pdev, x38_pci_tbl);
|
|
if (pci_rc < 0) {
|
|
edac_dbg(0, "x38 init fail\n");
|
|
pci_rc = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail1:
|
|
pci_unregister_driver(&x38_driver);
|
|
|
|
fail0:
|
|
if (mci_pdev)
|
|
pci_dev_put(mci_pdev);
|
|
|
|
return pci_rc;
|
|
}
|
|
|
|
static void __exit x38_exit(void)
|
|
{
|
|
edac_dbg(3, "MC:\n");
|
|
|
|
pci_unregister_driver(&x38_driver);
|
|
if (!x38_registered) {
|
|
x38_remove_one(mci_pdev);
|
|
pci_dev_put(mci_pdev);
|
|
}
|
|
}
|
|
|
|
module_init(x38_init);
|
|
module_exit(x38_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Cluster Computing, Inc. Hitoshi Mitake");
|
|
MODULE_DESCRIPTION("MC support for Intel X38 memory hub controllers");
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|