linux/arch/mips/kernel/perf_event.c
Deng-Cheng Zhu 3a9ab99e03 MIPS: Add support for hardware performance events (mipsxx)
This patch adds the mipsxx Perf-events support based on the skeleton.
Generic hardware events and cache events are now fully implemented for
the 24K/34K/74K/1004K cores. To support other cores in mipsxx (such as
R10000/SB1), the generic hardware event tables and cache event tables
need to be filled out. To support other CPUs which have different PMU
than mipsxx, such as RM9000 and LOONGSON2, the additional files
perf_event_$cpu.c need to be created.

Raw event is an important part of Perf-events. It helps the user collect
performance data for events that are not listed as the generic hardware
events and cache events but ARE supported by the CPU's PMU.

This patch also adds this feature for mipsxx 24K/34K/74K/1004K. For how to
use it, please refer to processor core software user's manual and the
comments for mipsxx_pmu_map_raw_event() for more details.

Please note that this is a "precise" implementation, which means the
kernel will check whether the requested raw events are supported by this
CPU and which hardware counters can be assigned for them.

To test the functionality of Perf-event, you may want to compile the tool
"perf" for your MIPS platform. You can refer to the following URL:
http://www.linux-mips.org/archives/linux-mips/2010-10/msg00126.html

You also need to customize the CFLAGS and LDFLAGS in tools/perf/Makefile
for your libs, includes, etc.

In case you encounter the boot failure in SMVP kernel on multi-threading
CPUs, you may take a look at:
http://www.linux-mips.org/git?p=linux-mti.git;a=commitdiff;h=5460815027d802697b879644c74f0e8365254020

Signed-off-by: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
To: linux-mips@linux-mips.org
Cc: a.p.zijlstra@chello.nl
Cc: paulus@samba.org
Cc: mingo@elte.hu
Cc: acme@redhat.com
Cc: jamie.iles@picochip.com
Cc: ddaney@caviumnetworks.com
Cc: matt@console-pimps.org
Patchwork: https://patchwork.linux-mips.org/patch/1689/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>

 create mode 100644 arch/mips/kernel/perf_event_mipsxx.c
2010-10-29 19:08:49 +01:00

602 lines
14 KiB
C

/*
* Linux performance counter support for MIPS.
*
* Copyright (C) 2010 MIPS Technologies, Inc.
* Author: Deng-Cheng Zhu
*
* This code is based on the implementation for ARM, which is in turn
* based on the sparc64 perf event code and the x86 code. Performance
* counter access is based on the MIPS Oprofile code. And the callchain
* support references the code of MIPS stacktrace.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cpumask.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/kernel.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/irq_regs.h>
#include <asm/stacktrace.h>
#include <asm/time.h> /* For perf_irq */
/* These are for 32bit counters. For 64bit ones, define them accordingly. */
#define MAX_PERIOD ((1ULL << 32) - 1)
#define VALID_COUNT 0x7fffffff
#define TOTAL_BITS 32
#define HIGHEST_BIT 31
#define MIPS_MAX_HWEVENTS 4
struct cpu_hw_events {
/* Array of events on this cpu. */
struct perf_event *events[MIPS_MAX_HWEVENTS];
/*
* Set the bit (indexed by the counter number) when the counter
* is used for an event.
*/
unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* The borrowed MSB for the performance counter. A MIPS performance
* counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit
* counters) as a factor of determining whether a counter overflow
* should be signaled. So here we use a separate MSB for each
* counter to make things easy.
*/
unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
/*
* Software copy of the control register for each performance counter.
* MIPS CPUs vary in performance counters. They use this differently,
* and even may not use it.
*/
unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
};
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
.saved_ctrl = {0},
};
/* The description of MIPS performance events. */
struct mips_perf_event {
unsigned int event_id;
/*
* MIPS performance counters are indexed starting from 0.
* CNTR_EVEN indicates the indexes of the counters to be used are
* even numbers.
*/
unsigned int cntr_mask;
#define CNTR_EVEN 0x55555555
#define CNTR_ODD 0xaaaaaaaa
#ifdef CONFIG_MIPS_MT_SMP
enum {
T = 0,
V = 1,
P = 2,
} range;
#else
#define T
#define V
#define P
#endif
};
static struct mips_perf_event raw_event;
static DEFINE_MUTEX(raw_event_mutex);
#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
#define C(x) PERF_COUNT_HW_CACHE_##x
struct mips_pmu {
const char *name;
int irq;
irqreturn_t (*handle_irq)(int irq, void *dev);
int (*handle_shared_irq)(void);
void (*start)(void);
void (*stop)(void);
int (*alloc_counter)(struct cpu_hw_events *cpuc,
struct hw_perf_event *hwc);
u64 (*read_counter)(unsigned int idx);
void (*write_counter)(unsigned int idx, u64 val);
void (*enable_event)(struct hw_perf_event *evt, int idx);
void (*disable_event)(int idx);
const struct mips_perf_event *(*map_raw_event)(u64 config);
const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
const struct mips_perf_event (*cache_event_map)
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
unsigned int num_counters;
};
static const struct mips_pmu *mipspmu;
static int
mipspmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0;
u64 uleft;
unsigned long flags;
if (unlikely(left <= -period)) {
left = period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
local64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (left > (s64)MAX_PERIOD)
left = MAX_PERIOD;
local64_set(&hwc->prev_count, (u64)-left);
local_irq_save(flags);
uleft = (u64)(-left) & MAX_PERIOD;
uleft > VALID_COUNT ?
set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs);
mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT);
local_irq_restore(flags);
perf_event_update_userpage(event);
return ret;
}
static int mipspmu_enable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx;
int err = 0;
/* To look for a free counter for this event. */
idx = mipspmu->alloc_counter(cpuc, hwc);
if (idx < 0) {
err = idx;
goto out;
}
/*
* If there is an event in the counter we are going to use then
* make sure it is disabled.
*/
event->hw.idx = idx;
mipspmu->disable_event(idx);
cpuc->events[idx] = event;
/* Set the period for the event. */
mipspmu_event_set_period(event, hwc, idx);
/* Enable the event. */
mipspmu->enable_event(hwc, idx);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
out:
return err;
}
static void mipspmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
unsigned long flags;
int shift = 64 - TOTAL_BITS;
s64 prev_raw_count, new_raw_count;
s64 delta;
again:
prev_raw_count = local64_read(&hwc->prev_count);
local_irq_save(flags);
/* Make the counter value be a "real" one. */
new_raw_count = mipspmu->read_counter(idx);
if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) {
new_raw_count &= VALID_COUNT;
clear_bit(idx, cpuc->msbs);
} else
new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT);
local_irq_restore(flags);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
delta = (new_raw_count << shift) - (prev_raw_count << shift);
delta >>= shift;
local64_add(delta, &event->count);
local64_sub(delta, &hwc->period_left);
return;
}
static void mipspmu_disable(struct perf_event *event)
{
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
/* We are working on a local event. */
mipspmu->disable_event(idx);
barrier();
mipspmu_event_update(event, hwc, idx);
cpuc->events[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_event_update_userpage(event);
}
static void mipspmu_unthrottle(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
mipspmu->enable_event(hwc, hwc->idx);
}
static void mipspmu_read(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Don't read disabled counters! */
if (hwc->idx < 0)
return;
mipspmu_event_update(event, hwc, hwc->idx);
}
static struct pmu pmu = {
.enable = mipspmu_enable,
.disable = mipspmu_disable,
.unthrottle = mipspmu_unthrottle,
.read = mipspmu_read,
};
static atomic_t active_events = ATOMIC_INIT(0);
static DEFINE_MUTEX(pmu_reserve_mutex);
static int (*save_perf_irq)(void);
static int mipspmu_get_irq(void)
{
int err;
if (mipspmu->irq >= 0) {
/* Request my own irq handler. */
err = request_irq(mipspmu->irq, mipspmu->handle_irq,
IRQF_DISABLED | IRQF_NOBALANCING,
"mips_perf_pmu", NULL);
if (err) {
pr_warning("Unable to request IRQ%d for MIPS "
"performance counters!\n", mipspmu->irq);
}
} else if (cp0_perfcount_irq < 0) {
/*
* We are sharing the irq number with the timer interrupt.
*/
save_perf_irq = perf_irq;
perf_irq = mipspmu->handle_shared_irq;
err = 0;
} else {
pr_warning("The platform hasn't properly defined its "
"interrupt controller.\n");
err = -ENOENT;
}
return err;
}
static void mipspmu_free_irq(void)
{
if (mipspmu->irq >= 0)
free_irq(mipspmu->irq, NULL);
else if (cp0_perfcount_irq < 0)
perf_irq = save_perf_irq;
}
static inline unsigned int
mipspmu_perf_event_encode(const struct mips_perf_event *pev)
{
/*
* Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
* event_id.
*/
#ifdef CONFIG_MIPS_MT_SMP
return ((unsigned int)pev->range << 24) |
(pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#else
return (pev->cntr_mask & 0xffff00) |
(pev->event_id & 0xff);
#endif
}
static const struct mips_perf_event *
mipspmu_map_general_event(int idx)
{
const struct mips_perf_event *pev;
pev = ((*mipspmu->general_event_map)[idx].event_id ==
UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
&(*mipspmu->general_event_map)[idx]);
return pev;
}
static const struct mips_perf_event *
mipspmu_map_cache_event(u64 config)
{
unsigned int cache_type, cache_op, cache_result;
const struct mips_perf_event *pev;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return ERR_PTR(-EINVAL);
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return ERR_PTR(-EINVAL);
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return ERR_PTR(-EINVAL);
pev = &((*mipspmu->cache_event_map)
[cache_type]
[cache_op]
[cache_result]);
if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
return ERR_PTR(-EOPNOTSUPP);
return pev;
}
static int validate_event(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event fake_hwc = event->hw;
if (event->pmu && event->pmu != &pmu)
return 0;
return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0;
}
static int validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct cpu_hw_events fake_cpuc;
memset(&fake_cpuc, 0, sizeof(fake_cpuc));
if (!validate_event(&fake_cpuc, leader))
return -ENOSPC;
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
if (!validate_event(&fake_cpuc, sibling))
return -ENOSPC;
}
if (!validate_event(&fake_cpuc, event))
return -ENOSPC;
return 0;
}
/*
* mipsxx/rm9000/loongson2 have different performance counters, they have
* specific low-level init routines.
*/
static void reset_counters(void *arg);
static int __hw_perf_event_init(struct perf_event *event);
static void hw_perf_event_destroy(struct perf_event *event)
{
if (atomic_dec_and_mutex_lock(&active_events,
&pmu_reserve_mutex)) {
/*
* We must not call the destroy function with interrupts
* disabled.
*/
on_each_cpu(reset_counters,
(void *)(long)mipspmu->num_counters, 1);
mipspmu_free_irq();
mutex_unlock(&pmu_reserve_mutex);
}
}
const struct pmu *hw_perf_event_init(struct perf_event *event)
{
int err = 0;
if (!mipspmu || event->cpu >= nr_cpumask_bits ||
(event->cpu >= 0 && !cpu_online(event->cpu)))
return ERR_PTR(-ENODEV);
if (!atomic_inc_not_zero(&active_events)) {
if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
atomic_dec(&active_events);
return ERR_PTR(-ENOSPC);
}
mutex_lock(&pmu_reserve_mutex);
if (atomic_read(&active_events) == 0)
err = mipspmu_get_irq();
if (!err)
atomic_inc(&active_events);
mutex_unlock(&pmu_reserve_mutex);
}
if (err)
return ERR_PTR(err);
err = __hw_perf_event_init(event);
if (err)
hw_perf_event_destroy(event);
return err ? ERR_PTR(err) : &pmu;
}
void hw_perf_enable(void)
{
if (mipspmu)
mipspmu->start();
}
void hw_perf_disable(void)
{
if (mipspmu)
mipspmu->stop();
}
/* This is needed by specific irq handlers in perf_event_*.c */
static void
handle_associated_event(struct cpu_hw_events *cpuc,
int idx, struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc = &event->hw;
mipspmu_event_update(event, hwc, idx);
data->period = event->hw.last_period;
if (!mipspmu_event_set_period(event, hwc, idx))
return;
if (perf_event_overflow(event, 0, data, regs))
mipspmu->disable_event(idx);
}
#include "perf_event_mipsxx.c"
/* Callchain handling code. */
static inline void
callchain_store(struct perf_callchain_entry *entry,
u64 ip)
{
if (entry->nr < PERF_MAX_STACK_DEPTH)
entry->ip[entry->nr++] = ip;
}
/*
* Leave userspace callchain empty for now. When we find a way to trace
* the user stack callchains, we add here.
*/
static void
perf_callchain_user(struct pt_regs *regs,
struct perf_callchain_entry *entry)
{
}
static void save_raw_perf_callchain(struct perf_callchain_entry *entry,
unsigned long reg29)
{
unsigned long *sp = (unsigned long *)reg29;
unsigned long addr;
while (!kstack_end(sp)) {
addr = *sp++;
if (__kernel_text_address(addr)) {
callchain_store(entry, addr);
if (entry->nr >= PERF_MAX_STACK_DEPTH)
break;
}
}
}
static void
perf_callchain_kernel(struct pt_regs *regs,
struct perf_callchain_entry *entry)
{
unsigned long sp = regs->regs[29];
#ifdef CONFIG_KALLSYMS
unsigned long ra = regs->regs[31];
unsigned long pc = regs->cp0_epc;
callchain_store(entry, PERF_CONTEXT_KERNEL);
if (raw_show_trace || !__kernel_text_address(pc)) {
unsigned long stack_page =
(unsigned long)task_stack_page(current);
if (stack_page && sp >= stack_page &&
sp <= stack_page + THREAD_SIZE - 32)
save_raw_perf_callchain(entry, sp);
return;
}
do {
callchain_store(entry, pc);
if (entry->nr >= PERF_MAX_STACK_DEPTH)
break;
pc = unwind_stack(current, &sp, pc, &ra);
} while (pc);
#else
callchain_store(entry, PERF_CONTEXT_KERNEL);
save_raw_perf_callchain(entry, sp);
#endif
}
static void
perf_do_callchain(struct pt_regs *regs,
struct perf_callchain_entry *entry)
{
int is_user;
if (!regs)
return;
is_user = user_mode(regs);
if (!current || !current->pid)
return;
if (is_user && current->state != TASK_RUNNING)
return;
if (!is_user) {
perf_callchain_kernel(regs, entry);
if (current->mm)
regs = task_pt_regs(current);
else
regs = NULL;
}
if (regs)
perf_callchain_user(regs, entry);
}
static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
struct perf_callchain_entry *
perf_callchain(struct pt_regs *regs)
{
struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry);
entry->nr = 0;
perf_do_callchain(regs, entry);
return entry;
}