linux/drivers/gpu/drm/radeon/radeon_device.c
Linus Torvalds 73c6c7fbb7 Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6
* 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6:
  drm/radeon/kms: add FireMV 2400 PCI ID.
  drm/radeon/kms: allow R500 regs VAP_ALT_NUM_VERTICES and VAP_INDEX_OFFSET
  drivers/gpu/radeon: Add MSPOS regs to safe list.
  drm/radeon/kms: disable the tv encoder when tv/cv is not in use
  drm/radeon/kms: adjust pll settings for tv
  drm/radeon/kms: fix tv dac conflict resolver
  drm/radeon/kms/evergreen: don't enable hdmi audio stuff
  drm/radeon/kms/atom: fix dual-link DVI on DCE3.2/4.0
  drm/radeon/kms: fix rs600 tlb flush
  drm/radeon/kms: print GPU family and device id when loading
  drm/radeon/kms: fix calculation of mipmapped 3D texture sizes
  drm/radeon/kms: only change mode when coherent value changes.
  drm/radeon/kms: more atom parser fixes (v2)
2010-04-19 07:27:06 -07:00

850 lines
22 KiB
C

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/console.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/radeon_drm.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
#include "radeon_reg.h"
#include "radeon.h"
#include "atom.h"
static const char radeon_family_name[][16] = {
"R100",
"RV100",
"RS100",
"RV200",
"RS200",
"R200",
"RV250",
"RS300",
"RV280",
"R300",
"R350",
"RV350",
"RV380",
"R420",
"R423",
"RV410",
"RS400",
"RS480",
"RS600",
"RS690",
"RS740",
"RV515",
"R520",
"RV530",
"RV560",
"RV570",
"R580",
"R600",
"RV610",
"RV630",
"RV670",
"RV620",
"RV635",
"RS780",
"RS880",
"RV770",
"RV730",
"RV710",
"RV740",
"CEDAR",
"REDWOOD",
"JUNIPER",
"CYPRESS",
"HEMLOCK",
"LAST",
};
/*
* Clear GPU surface registers.
*/
void radeon_surface_init(struct radeon_device *rdev)
{
/* FIXME: check this out */
if (rdev->family < CHIP_R600) {
int i;
for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
if (rdev->surface_regs[i].bo)
radeon_bo_get_surface_reg(rdev->surface_regs[i].bo);
else
radeon_clear_surface_reg(rdev, i);
}
/* enable surfaces */
WREG32(RADEON_SURFACE_CNTL, 0);
}
}
/*
* GPU scratch registers helpers function.
*/
void radeon_scratch_init(struct radeon_device *rdev)
{
int i;
/* FIXME: check this out */
if (rdev->family < CHIP_R300) {
rdev->scratch.num_reg = 5;
} else {
rdev->scratch.num_reg = 7;
}
for (i = 0; i < rdev->scratch.num_reg; i++) {
rdev->scratch.free[i] = true;
rdev->scratch.reg[i] = RADEON_SCRATCH_REG0 + (i * 4);
}
}
int radeon_scratch_get(struct radeon_device *rdev, uint32_t *reg)
{
int i;
for (i = 0; i < rdev->scratch.num_reg; i++) {
if (rdev->scratch.free[i]) {
rdev->scratch.free[i] = false;
*reg = rdev->scratch.reg[i];
return 0;
}
}
return -EINVAL;
}
void radeon_scratch_free(struct radeon_device *rdev, uint32_t reg)
{
int i;
for (i = 0; i < rdev->scratch.num_reg; i++) {
if (rdev->scratch.reg[i] == reg) {
rdev->scratch.free[i] = true;
return;
}
}
}
/**
* radeon_vram_location - try to find VRAM location
* @rdev: radeon device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
* @base: base address at which to put VRAM
*
* Function will place try to place VRAM at base address provided
* as parameter (which is so far either PCI aperture address or
* for IGP TOM base address).
*
* If there is not enough space to fit the unvisible VRAM in the 32bits
* address space then we limit the VRAM size to the aperture.
*
* If we are using AGP and if the AGP aperture doesn't allow us to have
* room for all the VRAM than we restrict the VRAM to the PCI aperture
* size and print a warning.
*
* This function will never fails, worst case are limiting VRAM.
*
* Note: GTT start, end, size should be initialized before calling this
* function on AGP platform.
*
* Note: We don't explictly enforce VRAM start to be aligned on VRAM size,
* this shouldn't be a problem as we are using the PCI aperture as a reference.
* Otherwise this would be needed for rv280, all r3xx, and all r4xx, but
* not IGP.
*
* Note: we use mc_vram_size as on some board we need to program the mc to
* cover the whole aperture even if VRAM size is inferior to aperture size
* Novell bug 204882 + along with lots of ubuntu ones
*
* Note: when limiting vram it's safe to overwritte real_vram_size because
* we are not in case where real_vram_size is inferior to mc_vram_size (ie
* note afected by bogus hw of Novell bug 204882 + along with lots of ubuntu
* ones)
*
* Note: IGP TOM addr should be the same as the aperture addr, we don't
* explicitly check for that thought.
*
* FIXME: when reducing VRAM size align new size on power of 2.
*/
void radeon_vram_location(struct radeon_device *rdev, struct radeon_mc *mc, u64 base)
{
mc->vram_start = base;
if (mc->mc_vram_size > (0xFFFFFFFF - base + 1)) {
dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
mc->real_vram_size = mc->aper_size;
mc->mc_vram_size = mc->aper_size;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
if (rdev->flags & RADEON_IS_AGP && mc->vram_end > mc->gtt_start && mc->vram_end <= mc->gtt_end) {
dev_warn(rdev->dev, "limiting VRAM to PCI aperture size\n");
mc->real_vram_size = mc->aper_size;
mc->mc_vram_size = mc->aper_size;
}
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
dev_info(rdev->dev, "VRAM: %lluM 0x%08llX - 0x%08llX (%lluM used)\n",
mc->mc_vram_size >> 20, mc->vram_start,
mc->vram_end, mc->real_vram_size >> 20);
}
/**
* radeon_gtt_location - try to find GTT location
* @rdev: radeon device structure holding all necessary informations
* @mc: memory controller structure holding memory informations
*
* Function will place try to place GTT before or after VRAM.
*
* If GTT size is bigger than space left then we ajust GTT size.
* Thus function will never fails.
*
* FIXME: when reducing GTT size align new size on power of 2.
*/
void radeon_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc)
{
u64 size_af, size_bf;
size_af = 0xFFFFFFFF - mc->vram_end;
size_bf = mc->vram_start;
if (size_bf > size_af) {
if (mc->gtt_size > size_bf) {
dev_warn(rdev->dev, "limiting GTT\n");
mc->gtt_size = size_bf;
}
mc->gtt_start = mc->vram_start - mc->gtt_size;
} else {
if (mc->gtt_size > size_af) {
dev_warn(rdev->dev, "limiting GTT\n");
mc->gtt_size = size_af;
}
mc->gtt_start = mc->vram_end + 1;
}
mc->gtt_end = mc->gtt_start + mc->gtt_size - 1;
dev_info(rdev->dev, "GTT: %lluM 0x%08llX - 0x%08llX\n",
mc->gtt_size >> 20, mc->gtt_start, mc->gtt_end);
}
/*
* GPU helpers function.
*/
bool radeon_card_posted(struct radeon_device *rdev)
{
uint32_t reg;
/* first check CRTCs */
if (ASIC_IS_DCE4(rdev)) {
reg = RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC0_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC1_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC2_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC3_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC4_REGISTER_OFFSET) |
RREG32(EVERGREEN_CRTC_CONTROL + EVERGREEN_CRTC5_REGISTER_OFFSET);
if (reg & EVERGREEN_CRTC_MASTER_EN)
return true;
} else if (ASIC_IS_AVIVO(rdev)) {
reg = RREG32(AVIVO_D1CRTC_CONTROL) |
RREG32(AVIVO_D2CRTC_CONTROL);
if (reg & AVIVO_CRTC_EN) {
return true;
}
} else {
reg = RREG32(RADEON_CRTC_GEN_CNTL) |
RREG32(RADEON_CRTC2_GEN_CNTL);
if (reg & RADEON_CRTC_EN) {
return true;
}
}
/* then check MEM_SIZE, in case the crtcs are off */
if (rdev->family >= CHIP_R600)
reg = RREG32(R600_CONFIG_MEMSIZE);
else
reg = RREG32(RADEON_CONFIG_MEMSIZE);
if (reg)
return true;
return false;
}
void radeon_update_bandwidth_info(struct radeon_device *rdev)
{
fixed20_12 a;
u32 sclk, mclk;
if (rdev->flags & RADEON_IS_IGP) {
sclk = radeon_get_engine_clock(rdev);
mclk = rdev->clock.default_mclk;
a.full = rfixed_const(100);
rdev->pm.sclk.full = rfixed_const(sclk);
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
rdev->pm.mclk.full = rfixed_const(mclk);
rdev->pm.mclk.full = rfixed_div(rdev->pm.mclk, a);
a.full = rfixed_const(16);
/* core_bandwidth = sclk(Mhz) * 16 */
rdev->pm.core_bandwidth.full = rfixed_div(rdev->pm.sclk, a);
} else {
sclk = radeon_get_engine_clock(rdev);
mclk = radeon_get_memory_clock(rdev);
a.full = rfixed_const(100);
rdev->pm.sclk.full = rfixed_const(sclk);
rdev->pm.sclk.full = rfixed_div(rdev->pm.sclk, a);
rdev->pm.mclk.full = rfixed_const(mclk);
rdev->pm.mclk.full = rfixed_div(rdev->pm.mclk, a);
}
}
bool radeon_boot_test_post_card(struct radeon_device *rdev)
{
if (radeon_card_posted(rdev))
return true;
if (rdev->bios) {
DRM_INFO("GPU not posted. posting now...\n");
if (rdev->is_atom_bios)
atom_asic_init(rdev->mode_info.atom_context);
else
radeon_combios_asic_init(rdev->ddev);
return true;
} else {
dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
return false;
}
}
int radeon_dummy_page_init(struct radeon_device *rdev)
{
if (rdev->dummy_page.page)
return 0;
rdev->dummy_page.page = alloc_page(GFP_DMA32 | GFP_KERNEL | __GFP_ZERO);
if (rdev->dummy_page.page == NULL)
return -ENOMEM;
rdev->dummy_page.addr = pci_map_page(rdev->pdev, rdev->dummy_page.page,
0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
if (!rdev->dummy_page.addr) {
__free_page(rdev->dummy_page.page);
rdev->dummy_page.page = NULL;
return -ENOMEM;
}
return 0;
}
void radeon_dummy_page_fini(struct radeon_device *rdev)
{
if (rdev->dummy_page.page == NULL)
return;
pci_unmap_page(rdev->pdev, rdev->dummy_page.addr,
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
__free_page(rdev->dummy_page.page);
rdev->dummy_page.page = NULL;
}
/* ATOM accessor methods */
static uint32_t cail_pll_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = rdev->pll_rreg(rdev, reg);
return r;
}
static void cail_pll_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
rdev->pll_wreg(rdev, reg, val);
}
static uint32_t cail_mc_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = rdev->mc_rreg(rdev, reg);
return r;
}
static void cail_mc_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
rdev->mc_wreg(rdev, reg, val);
}
static void cail_reg_write(struct card_info *info, uint32_t reg, uint32_t val)
{
struct radeon_device *rdev = info->dev->dev_private;
WREG32(reg*4, val);
}
static uint32_t cail_reg_read(struct card_info *info, uint32_t reg)
{
struct radeon_device *rdev = info->dev->dev_private;
uint32_t r;
r = RREG32(reg*4);
return r;
}
int radeon_atombios_init(struct radeon_device *rdev)
{
struct card_info *atom_card_info =
kzalloc(sizeof(struct card_info), GFP_KERNEL);
if (!atom_card_info)
return -ENOMEM;
rdev->mode_info.atom_card_info = atom_card_info;
atom_card_info->dev = rdev->ddev;
atom_card_info->reg_read = cail_reg_read;
atom_card_info->reg_write = cail_reg_write;
atom_card_info->mc_read = cail_mc_read;
atom_card_info->mc_write = cail_mc_write;
atom_card_info->pll_read = cail_pll_read;
atom_card_info->pll_write = cail_pll_write;
rdev->mode_info.atom_context = atom_parse(atom_card_info, rdev->bios);
mutex_init(&rdev->mode_info.atom_context->mutex);
radeon_atom_initialize_bios_scratch_regs(rdev->ddev);
atom_allocate_fb_scratch(rdev->mode_info.atom_context);
return 0;
}
void radeon_atombios_fini(struct radeon_device *rdev)
{
if (rdev->mode_info.atom_context) {
kfree(rdev->mode_info.atom_context->scratch);
kfree(rdev->mode_info.atom_context);
}
kfree(rdev->mode_info.atom_card_info);
}
int radeon_combios_init(struct radeon_device *rdev)
{
radeon_combios_initialize_bios_scratch_regs(rdev->ddev);
return 0;
}
void radeon_combios_fini(struct radeon_device *rdev)
{
}
/* if we get transitioned to only one device, tak VGA back */
static unsigned int radeon_vga_set_decode(void *cookie, bool state)
{
struct radeon_device *rdev = cookie;
radeon_vga_set_state(rdev, state);
if (state)
return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
else
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
}
void radeon_check_arguments(struct radeon_device *rdev)
{
/* vramlimit must be a power of two */
switch (radeon_vram_limit) {
case 0:
case 4:
case 8:
case 16:
case 32:
case 64:
case 128:
case 256:
case 512:
case 1024:
case 2048:
case 4096:
break;
default:
dev_warn(rdev->dev, "vram limit (%d) must be a power of 2\n",
radeon_vram_limit);
radeon_vram_limit = 0;
break;
}
radeon_vram_limit = radeon_vram_limit << 20;
/* gtt size must be power of two and greater or equal to 32M */
switch (radeon_gart_size) {
case 4:
case 8:
case 16:
dev_warn(rdev->dev, "gart size (%d) too small forcing to 512M\n",
radeon_gart_size);
radeon_gart_size = 512;
break;
case 32:
case 64:
case 128:
case 256:
case 512:
case 1024:
case 2048:
case 4096:
break;
default:
dev_warn(rdev->dev, "gart size (%d) must be a power of 2\n",
radeon_gart_size);
radeon_gart_size = 512;
break;
}
rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024;
/* AGP mode can only be -1, 1, 2, 4, 8 */
switch (radeon_agpmode) {
case -1:
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
dev_warn(rdev->dev, "invalid AGP mode %d (valid mode: "
"-1, 0, 1, 2, 4, 8)\n", radeon_agpmode);
radeon_agpmode = 0;
break;
}
}
static void radeon_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
{
struct drm_device *dev = pci_get_drvdata(pdev);
struct radeon_device *rdev = dev->dev_private;
pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
if (state == VGA_SWITCHEROO_ON) {
printk(KERN_INFO "radeon: switched on\n");
/* don't suspend or resume card normally */
rdev->powered_down = false;
radeon_resume_kms(dev);
} else {
printk(KERN_INFO "radeon: switched off\n");
radeon_suspend_kms(dev, pmm);
/* don't suspend or resume card normally */
rdev->powered_down = true;
}
}
static bool radeon_switcheroo_can_switch(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
bool can_switch;
spin_lock(&dev->count_lock);
can_switch = (dev->open_count == 0);
spin_unlock(&dev->count_lock);
return can_switch;
}
int radeon_device_init(struct radeon_device *rdev,
struct drm_device *ddev,
struct pci_dev *pdev,
uint32_t flags)
{
int r;
int dma_bits;
rdev->shutdown = false;
rdev->dev = &pdev->dev;
rdev->ddev = ddev;
rdev->pdev = pdev;
rdev->flags = flags;
rdev->family = flags & RADEON_FAMILY_MASK;
rdev->is_atom_bios = false;
rdev->usec_timeout = RADEON_MAX_USEC_TIMEOUT;
rdev->mc.gtt_size = radeon_gart_size * 1024 * 1024;
rdev->gpu_lockup = false;
rdev->accel_working = false;
DRM_INFO("initializing kernel modesetting (%s 0x%04X:0x%04X).\n",
radeon_family_name[rdev->family], pdev->vendor, pdev->device);
/* mutex initialization are all done here so we
* can recall function without having locking issues */
mutex_init(&rdev->cs_mutex);
mutex_init(&rdev->ib_pool.mutex);
mutex_init(&rdev->cp.mutex);
mutex_init(&rdev->dc_hw_i2c_mutex);
if (rdev->family >= CHIP_R600)
spin_lock_init(&rdev->ih.lock);
mutex_init(&rdev->gem.mutex);
mutex_init(&rdev->pm.mutex);
rwlock_init(&rdev->fence_drv.lock);
INIT_LIST_HEAD(&rdev->gem.objects);
init_waitqueue_head(&rdev->irq.vblank_queue);
/* setup workqueue */
rdev->wq = create_workqueue("radeon");
if (rdev->wq == NULL)
return -ENOMEM;
/* Set asic functions */
r = radeon_asic_init(rdev);
if (r)
return r;
radeon_check_arguments(rdev);
/* all of the newer IGP chips have an internal gart
* However some rs4xx report as AGP, so remove that here.
*/
if ((rdev->family >= CHIP_RS400) &&
(rdev->flags & RADEON_IS_IGP)) {
rdev->flags &= ~RADEON_IS_AGP;
}
if (rdev->flags & RADEON_IS_AGP && radeon_agpmode == -1) {
radeon_agp_disable(rdev);
}
/* set DMA mask + need_dma32 flags.
* PCIE - can handle 40-bits.
* IGP - can handle 40-bits (in theory)
* AGP - generally dma32 is safest
* PCI - only dma32
*/
rdev->need_dma32 = false;
if (rdev->flags & RADEON_IS_AGP)
rdev->need_dma32 = true;
if (rdev->flags & RADEON_IS_PCI)
rdev->need_dma32 = true;
dma_bits = rdev->need_dma32 ? 32 : 40;
r = pci_set_dma_mask(rdev->pdev, DMA_BIT_MASK(dma_bits));
if (r) {
printk(KERN_WARNING "radeon: No suitable DMA available.\n");
}
/* Registers mapping */
/* TODO: block userspace mapping of io register */
rdev->rmmio_base = drm_get_resource_start(rdev->ddev, 2);
rdev->rmmio_size = drm_get_resource_len(rdev->ddev, 2);
rdev->rmmio = ioremap(rdev->rmmio_base, rdev->rmmio_size);
if (rdev->rmmio == NULL) {
return -ENOMEM;
}
DRM_INFO("register mmio base: 0x%08X\n", (uint32_t)rdev->rmmio_base);
DRM_INFO("register mmio size: %u\n", (unsigned)rdev->rmmio_size);
/* if we have > 1 VGA cards, then disable the radeon VGA resources */
/* this will fail for cards that aren't VGA class devices, just
* ignore it */
vga_client_register(rdev->pdev, rdev, NULL, radeon_vga_set_decode);
vga_switcheroo_register_client(rdev->pdev,
radeon_switcheroo_set_state,
radeon_switcheroo_can_switch);
r = radeon_init(rdev);
if (r)
return r;
if (rdev->flags & RADEON_IS_AGP && !rdev->accel_working) {
/* Acceleration not working on AGP card try again
* with fallback to PCI or PCIE GART
*/
radeon_gpu_reset(rdev);
radeon_fini(rdev);
radeon_agp_disable(rdev);
r = radeon_init(rdev);
if (r)
return r;
}
if (radeon_testing) {
radeon_test_moves(rdev);
}
if (radeon_benchmarking) {
radeon_benchmark(rdev);
}
return 0;
}
void radeon_device_fini(struct radeon_device *rdev)
{
DRM_INFO("radeon: finishing device.\n");
rdev->shutdown = true;
radeon_fini(rdev);
destroy_workqueue(rdev->wq);
vga_switcheroo_unregister_client(rdev->pdev);
vga_client_register(rdev->pdev, NULL, NULL, NULL);
iounmap(rdev->rmmio);
rdev->rmmio = NULL;
}
/*
* Suspend & resume.
*/
int radeon_suspend_kms(struct drm_device *dev, pm_message_t state)
{
struct radeon_device *rdev;
struct drm_crtc *crtc;
int r;
if (dev == NULL || dev->dev_private == NULL) {
return -ENODEV;
}
if (state.event == PM_EVENT_PRETHAW) {
return 0;
}
rdev = dev->dev_private;
if (rdev->powered_down)
return 0;
/* unpin the front buffers */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct radeon_framebuffer *rfb = to_radeon_framebuffer(crtc->fb);
struct radeon_bo *robj;
if (rfb == NULL || rfb->obj == NULL) {
continue;
}
robj = rfb->obj->driver_private;
if (robj != rdev->fbdev_rbo) {
r = radeon_bo_reserve(robj, false);
if (unlikely(r == 0)) {
radeon_bo_unpin(robj);
radeon_bo_unreserve(robj);
}
}
}
/* evict vram memory */
radeon_bo_evict_vram(rdev);
/* wait for gpu to finish processing current batch */
radeon_fence_wait_last(rdev);
radeon_save_bios_scratch_regs(rdev);
radeon_suspend(rdev);
radeon_hpd_fini(rdev);
/* evict remaining vram memory */
radeon_bo_evict_vram(rdev);
pci_save_state(dev->pdev);
if (state.event == PM_EVENT_SUSPEND) {
/* Shut down the device */
pci_disable_device(dev->pdev);
pci_set_power_state(dev->pdev, PCI_D3hot);
}
acquire_console_sem();
fb_set_suspend(rdev->fbdev_info, 1);
release_console_sem();
return 0;
}
int radeon_resume_kms(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
if (rdev->powered_down)
return 0;
acquire_console_sem();
pci_set_power_state(dev->pdev, PCI_D0);
pci_restore_state(dev->pdev);
if (pci_enable_device(dev->pdev)) {
release_console_sem();
return -1;
}
pci_set_master(dev->pdev);
/* resume AGP if in use */
radeon_agp_resume(rdev);
radeon_resume(rdev);
radeon_restore_bios_scratch_regs(rdev);
fb_set_suspend(rdev->fbdev_info, 0);
release_console_sem();
/* reset hpd state */
radeon_hpd_init(rdev);
/* blat the mode back in */
drm_helper_resume_force_mode(dev);
return 0;
}
/*
* Debugfs
*/
struct radeon_debugfs {
struct drm_info_list *files;
unsigned num_files;
};
static struct radeon_debugfs _radeon_debugfs[RADEON_DEBUGFS_MAX_NUM_FILES];
static unsigned _radeon_debugfs_count = 0;
int radeon_debugfs_add_files(struct radeon_device *rdev,
struct drm_info_list *files,
unsigned nfiles)
{
unsigned i;
for (i = 0; i < _radeon_debugfs_count; i++) {
if (_radeon_debugfs[i].files == files) {
/* Already registered */
return 0;
}
}
if ((_radeon_debugfs_count + nfiles) > RADEON_DEBUGFS_MAX_NUM_FILES) {
DRM_ERROR("Reached maximum number of debugfs files.\n");
DRM_ERROR("Report so we increase RADEON_DEBUGFS_MAX_NUM_FILES.\n");
return -EINVAL;
}
_radeon_debugfs[_radeon_debugfs_count].files = files;
_radeon_debugfs[_radeon_debugfs_count].num_files = nfiles;
_radeon_debugfs_count++;
#if defined(CONFIG_DEBUG_FS)
drm_debugfs_create_files(files, nfiles,
rdev->ddev->control->debugfs_root,
rdev->ddev->control);
drm_debugfs_create_files(files, nfiles,
rdev->ddev->primary->debugfs_root,
rdev->ddev->primary);
#endif
return 0;
}
#if defined(CONFIG_DEBUG_FS)
int radeon_debugfs_init(struct drm_minor *minor)
{
return 0;
}
void radeon_debugfs_cleanup(struct drm_minor *minor)
{
unsigned i;
for (i = 0; i < _radeon_debugfs_count; i++) {
drm_debugfs_remove_files(_radeon_debugfs[i].files,
_radeon_debugfs[i].num_files, minor);
}
}
#endif