linux/include/net/ipv6.h
Mat Martineau 39b1752110 net: Remove unused skb_shared_info member
ip6_frag_id was only used by UFO, which has been removed.
ipv6_proxy_select_ident() only existed to set ip6_frag_id and has no
in-tree callers.

Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-11 22:09:40 +09:00

1098 lines
31 KiB
C

/*
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _NET_IPV6_H
#define _NET_IPV6_H
#include <linux/ipv6.h>
#include <linux/hardirq.h>
#include <linux/jhash.h>
#include <linux/refcount.h>
#include <net/if_inet6.h>
#include <net/ndisc.h>
#include <net/flow.h>
#include <net/flow_dissector.h>
#include <net/snmp.h>
#define SIN6_LEN_RFC2133 24
#define IPV6_MAXPLEN 65535
/*
* NextHeader field of IPv6 header
*/
#define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
#define NEXTHDR_TCP 6 /* TCP segment. */
#define NEXTHDR_UDP 17 /* UDP message. */
#define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
#define NEXTHDR_ROUTING 43 /* Routing header. */
#define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
#define NEXTHDR_GRE 47 /* GRE header. */
#define NEXTHDR_ESP 50 /* Encapsulating security payload. */
#define NEXTHDR_AUTH 51 /* Authentication header. */
#define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
#define NEXTHDR_NONE 59 /* No next header */
#define NEXTHDR_DEST 60 /* Destination options header. */
#define NEXTHDR_SCTP 132 /* SCTP message. */
#define NEXTHDR_MOBILITY 135 /* Mobility header. */
#define NEXTHDR_MAX 255
#define IPV6_DEFAULT_HOPLIMIT 64
#define IPV6_DEFAULT_MCASTHOPS 1
/* Limits on Hop-by-Hop and Destination options.
*
* Per RFC8200 there is no limit on the maximum number or lengths of options in
* Hop-by-Hop or Destination options other then the packet must fit in an MTU.
* We allow configurable limits in order to mitigate potential denial of
* service attacks.
*
* There are three limits that may be set:
* - Limit the number of options in a Hop-by-Hop or Destination options
* extension header
* - Limit the byte length of a Hop-by-Hop or Destination options extension
* header
* - Disallow unknown options
*
* The limits are expressed in corresponding sysctls:
*
* ipv6.sysctl.max_dst_opts_cnt
* ipv6.sysctl.max_hbh_opts_cnt
* ipv6.sysctl.max_dst_opts_len
* ipv6.sysctl.max_hbh_opts_len
*
* max_*_opts_cnt is the number of TLVs that are allowed for Destination
* options or Hop-by-Hop options. If the number is less than zero then unknown
* TLVs are disallowed and the number of known options that are allowed is the
* absolute value. Setting the value to INT_MAX indicates no limit.
*
* max_*_opts_len is the length limit in bytes of a Destination or
* Hop-by-Hop options extension header. Setting the value to INT_MAX
* indicates no length limit.
*
* If a limit is exceeded when processing an extension header the packet is
* silently discarded.
*/
/* Default limits for Hop-by-Hop and Destination options */
#define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
#define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
#define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
#define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
/*
* Addr type
*
* type - unicast | multicast
* scope - local | site | global
* v4 - compat
* v4mapped
* any
* loopback
*/
#define IPV6_ADDR_ANY 0x0000U
#define IPV6_ADDR_UNICAST 0x0001U
#define IPV6_ADDR_MULTICAST 0x0002U
#define IPV6_ADDR_LOOPBACK 0x0010U
#define IPV6_ADDR_LINKLOCAL 0x0020U
#define IPV6_ADDR_SITELOCAL 0x0040U
#define IPV6_ADDR_COMPATv4 0x0080U
#define IPV6_ADDR_SCOPE_MASK 0x00f0U
#define IPV6_ADDR_MAPPED 0x1000U
/*
* Addr scopes
*/
#define IPV6_ADDR_MC_SCOPE(a) \
((a)->s6_addr[1] & 0x0f) /* nonstandard */
#define __IPV6_ADDR_SCOPE_INVALID -1
#define IPV6_ADDR_SCOPE_NODELOCAL 0x01
#define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
#define IPV6_ADDR_SCOPE_SITELOCAL 0x05
#define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
#define IPV6_ADDR_SCOPE_GLOBAL 0x0e
/*
* Addr flags
*/
#define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
((a)->s6_addr[1] & 0x10)
#define IPV6_ADDR_MC_FLAG_PREFIX(a) \
((a)->s6_addr[1] & 0x20)
#define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
((a)->s6_addr[1] & 0x40)
/*
* fragmentation header
*/
struct frag_hdr {
__u8 nexthdr;
__u8 reserved;
__be16 frag_off;
__be32 identification;
};
#define IP6_MF 0x0001
#define IP6_OFFSET 0xFFF8
#define IP6_REPLY_MARK(net, mark) \
((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
#include <net/sock.h>
/* sysctls */
extern int sysctl_mld_max_msf;
extern int sysctl_mld_qrv;
#define _DEVINC(net, statname, mod, idev, field) \
({ \
struct inet6_dev *_idev = (idev); \
if (likely(_idev != NULL)) \
mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
})
/* per device counters are atomic_long_t */
#define _DEVINCATOMIC(net, statname, mod, idev, field) \
({ \
struct inet6_dev *_idev = (idev); \
if (likely(_idev != NULL)) \
SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
})
/* per device and per net counters are atomic_long_t */
#define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
({ \
struct inet6_dev *_idev = (idev); \
if (likely(_idev != NULL)) \
SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
})
#define _DEVADD(net, statname, mod, idev, field, val) \
({ \
struct inet6_dev *_idev = (idev); \
if (likely(_idev != NULL)) \
mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
})
#define _DEVUPD(net, statname, mod, idev, field, val) \
({ \
struct inet6_dev *_idev = (idev); \
if (likely(_idev != NULL)) \
mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
})
/* MIBs */
#define IP6_INC_STATS(net, idev,field) \
_DEVINC(net, ipv6, , idev, field)
#define __IP6_INC_STATS(net, idev,field) \
_DEVINC(net, ipv6, __, idev, field)
#define IP6_ADD_STATS(net, idev,field,val) \
_DEVADD(net, ipv6, , idev, field, val)
#define __IP6_ADD_STATS(net, idev,field,val) \
_DEVADD(net, ipv6, __, idev, field, val)
#define IP6_UPD_PO_STATS(net, idev,field,val) \
_DEVUPD(net, ipv6, , idev, field, val)
#define __IP6_UPD_PO_STATS(net, idev,field,val) \
_DEVUPD(net, ipv6, __, idev, field, val)
#define ICMP6_INC_STATS(net, idev, field) \
_DEVINCATOMIC(net, icmpv6, , idev, field)
#define __ICMP6_INC_STATS(net, idev, field) \
_DEVINCATOMIC(net, icmpv6, __, idev, field)
#define ICMP6MSGOUT_INC_STATS(net, idev, field) \
_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
#define ICMP6MSGIN_INC_STATS(net, idev, field) \
_DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
struct ip6_ra_chain {
struct ip6_ra_chain *next;
struct sock *sk;
int sel;
void (*destructor)(struct sock *);
};
extern struct ip6_ra_chain *ip6_ra_chain;
extern rwlock_t ip6_ra_lock;
/*
This structure is prepared by protocol, when parsing
ancillary data and passed to IPv6.
*/
struct ipv6_txoptions {
refcount_t refcnt;
/* Length of this structure */
int tot_len;
/* length of extension headers */
__u16 opt_flen; /* after fragment hdr */
__u16 opt_nflen; /* before fragment hdr */
struct ipv6_opt_hdr *hopopt;
struct ipv6_opt_hdr *dst0opt;
struct ipv6_rt_hdr *srcrt; /* Routing Header */
struct ipv6_opt_hdr *dst1opt;
struct rcu_head rcu;
/* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
};
struct ip6_flowlabel {
struct ip6_flowlabel __rcu *next;
__be32 label;
atomic_t users;
struct in6_addr dst;
struct ipv6_txoptions *opt;
unsigned long linger;
struct rcu_head rcu;
u8 share;
union {
struct pid *pid;
kuid_t uid;
} owner;
unsigned long lastuse;
unsigned long expires;
struct net *fl_net;
};
#define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
#define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
#define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
#define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
#define IPV6_TCLASS_SHIFT 20
struct ipv6_fl_socklist {
struct ipv6_fl_socklist __rcu *next;
struct ip6_flowlabel *fl;
struct rcu_head rcu;
};
struct ipcm6_cookie {
__s16 hlimit;
__s16 tclass;
__s8 dontfrag;
struct ipv6_txoptions *opt;
};
static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
{
struct ipv6_txoptions *opt;
rcu_read_lock();
opt = rcu_dereference(np->opt);
if (opt) {
if (!refcount_inc_not_zero(&opt->refcnt))
opt = NULL;
else
opt = rcu_pointer_handoff(opt);
}
rcu_read_unlock();
return opt;
}
static inline void txopt_put(struct ipv6_txoptions *opt)
{
if (opt && refcount_dec_and_test(&opt->refcnt))
kfree_rcu(opt, rcu);
}
struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
struct ip6_flowlabel *fl,
struct ipv6_txoptions *fopt);
void fl6_free_socklist(struct sock *sk);
int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
int flags);
int ip6_flowlabel_init(void);
void ip6_flowlabel_cleanup(void);
static inline void fl6_sock_release(struct ip6_flowlabel *fl)
{
if (fl)
atomic_dec(&fl->users);
}
void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
struct icmp6hdr *thdr, int len);
int ip6_ra_control(struct sock *sk, int sel);
int ipv6_parse_hopopts(struct sk_buff *skb);
struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
struct ipv6_txoptions *opt);
struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
struct ipv6_txoptions *opt,
int newtype,
struct ipv6_opt_hdr __user *newopt,
int newoptlen);
struct ipv6_txoptions *
ipv6_renew_options_kern(struct sock *sk,
struct ipv6_txoptions *opt,
int newtype,
struct ipv6_opt_hdr *newopt,
int newoptlen);
struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
struct ipv6_txoptions *opt);
bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
const struct inet6_skb_parm *opt);
struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
struct ipv6_txoptions *opt);
static inline bool ipv6_accept_ra(struct inet6_dev *idev)
{
/* If forwarding is enabled, RA are not accepted unless the special
* hybrid mode (accept_ra=2) is enabled.
*/
return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
idev->cnf.accept_ra;
}
#if IS_ENABLED(CONFIG_IPV6)
static inline int ip6_frag_mem(struct net *net)
{
return sum_frag_mem_limit(&net->ipv6.frags);
}
#endif
#define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
#define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
#define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
int __ipv6_addr_type(const struct in6_addr *addr);
static inline int ipv6_addr_type(const struct in6_addr *addr)
{
return __ipv6_addr_type(addr) & 0xffff;
}
static inline int ipv6_addr_scope(const struct in6_addr *addr)
{
return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
}
static inline int __ipv6_addr_src_scope(int type)
{
return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
}
static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
{
return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
}
static inline bool __ipv6_addr_needs_scope_id(int type)
{
return type & IPV6_ADDR_LINKLOCAL ||
(type & IPV6_ADDR_MULTICAST &&
(type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
}
static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
{
return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
}
static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
{
return memcmp(a1, a2, sizeof(struct in6_addr));
}
static inline bool
ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
const struct in6_addr *a2)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
const unsigned long *ul1 = (const unsigned long *)a1;
const unsigned long *ulm = (const unsigned long *)m;
const unsigned long *ul2 = (const unsigned long *)a2;
return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
((ul1[1] ^ ul2[1]) & ulm[1]));
#else
return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
#endif
}
static inline void ipv6_addr_prefix(struct in6_addr *pfx,
const struct in6_addr *addr,
int plen)
{
/* caller must guarantee 0 <= plen <= 128 */
int o = plen >> 3,
b = plen & 0x7;
memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
memcpy(pfx->s6_addr, addr, o);
if (b != 0)
pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
}
static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
const struct in6_addr *pfx,
int plen)
{
/* caller must guarantee 0 <= plen <= 128 */
int o = plen >> 3,
b = plen & 0x7;
memcpy(addr->s6_addr, pfx, o);
if (b != 0) {
addr->s6_addr[o] &= ~(0xff00 >> b);
addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
}
}
static inline void __ipv6_addr_set_half(__be32 *addr,
__be32 wh, __be32 wl)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
#if defined(__BIG_ENDIAN)
if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
*(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
return;
}
#elif defined(__LITTLE_ENDIAN)
if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
*(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
return;
}
#endif
#endif
addr[0] = wh;
addr[1] = wl;
}
static inline void ipv6_addr_set(struct in6_addr *addr,
__be32 w1, __be32 w2,
__be32 w3, __be32 w4)
{
__ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
__ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
}
static inline bool ipv6_addr_equal(const struct in6_addr *a1,
const struct in6_addr *a2)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
const unsigned long *ul1 = (const unsigned long *)a1;
const unsigned long *ul2 = (const unsigned long *)a2;
return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
#else
return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
(a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
(a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
(a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
#endif
}
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
const __be64 *a2,
unsigned int len)
{
if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
return false;
return true;
}
static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
const struct in6_addr *addr2,
unsigned int prefixlen)
{
const __be64 *a1 = (const __be64 *)addr1;
const __be64 *a2 = (const __be64 *)addr2;
if (prefixlen >= 64) {
if (a1[0] ^ a2[0])
return false;
return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
}
return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
}
#else
static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
const struct in6_addr *addr2,
unsigned int prefixlen)
{
const __be32 *a1 = addr1->s6_addr32;
const __be32 *a2 = addr2->s6_addr32;
unsigned int pdw, pbi;
/* check complete u32 in prefix */
pdw = prefixlen >> 5;
if (pdw && memcmp(a1, a2, pdw << 2))
return false;
/* check incomplete u32 in prefix */
pbi = prefixlen & 0x1f;
if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
return false;
return true;
}
#endif
struct inet_frag_queue;
enum ip6_defrag_users {
IP6_DEFRAG_LOCAL_DELIVER,
IP6_DEFRAG_CONNTRACK_IN,
__IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX,
IP6_DEFRAG_CONNTRACK_OUT,
__IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX,
IP6_DEFRAG_CONNTRACK_BRIDGE_IN,
__IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX,
};
struct ip6_create_arg {
__be32 id;
u32 user;
const struct in6_addr *src;
const struct in6_addr *dst;
int iif;
u8 ecn;
};
void ip6_frag_init(struct inet_frag_queue *q, const void *a);
bool ip6_frag_match(const struct inet_frag_queue *q, const void *a);
/*
* Equivalent of ipv4 struct ip
*/
struct frag_queue {
struct inet_frag_queue q;
__be32 id; /* fragment id */
u32 user;
struct in6_addr saddr;
struct in6_addr daddr;
int iif;
unsigned int csum;
__u16 nhoffset;
u8 ecn;
};
void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
struct inet_frags *frags);
static inline bool ipv6_addr_any(const struct in6_addr *a)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
const unsigned long *ul = (const unsigned long *)a;
return (ul[0] | ul[1]) == 0UL;
#else
return (a->s6_addr32[0] | a->s6_addr32[1] |
a->s6_addr32[2] | a->s6_addr32[3]) == 0;
#endif
}
static inline u32 ipv6_addr_hash(const struct in6_addr *a)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
const unsigned long *ul = (const unsigned long *)a;
unsigned long x = ul[0] ^ ul[1];
return (u32)(x ^ (x >> 32));
#else
return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
a->s6_addr32[2] ^ a->s6_addr32[3]);
#endif
}
/* more secured version of ipv6_addr_hash() */
static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
{
u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
return jhash_3words(v,
(__force u32)a->s6_addr32[2],
(__force u32)a->s6_addr32[3],
initval);
}
static inline bool ipv6_addr_loopback(const struct in6_addr *a)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
const __be64 *be = (const __be64 *)a;
return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
#else
return (a->s6_addr32[0] | a->s6_addr32[1] |
a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
#endif
}
/*
* Note that we must __force cast these to unsigned long to make sparse happy,
* since all of the endian-annotated types are fixed size regardless of arch.
*/
static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
{
return (
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
*(unsigned long *)a |
#else
(__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
#endif
(__force unsigned long)(a->s6_addr32[2] ^
cpu_to_be32(0x0000ffff))) == 0UL;
}
/*
* Check for a RFC 4843 ORCHID address
* (Overlay Routable Cryptographic Hash Identifiers)
*/
static inline bool ipv6_addr_orchid(const struct in6_addr *a)
{
return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
}
static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
{
return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
}
static inline void ipv6_addr_set_v4mapped(const __be32 addr,
struct in6_addr *v4mapped)
{
ipv6_addr_set(v4mapped,
0, 0,
htonl(0x0000FFFF),
addr);
}
/*
* find the first different bit between two addresses
* length of address must be a multiple of 32bits
*/
static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
{
const __be32 *a1 = token1, *a2 = token2;
int i;
addrlen >>= 2;
for (i = 0; i < addrlen; i++) {
__be32 xb = a1[i] ^ a2[i];
if (xb)
return i * 32 + 31 - __fls(ntohl(xb));
}
/*
* we should *never* get to this point since that
* would mean the addrs are equal
*
* However, we do get to it 8) And exacly, when
* addresses are equal 8)
*
* ip route add 1111::/128 via ...
* ip route add 1111::/64 via ...
* and we are here.
*
* Ideally, this function should stop comparison
* at prefix length. It does not, but it is still OK,
* if returned value is greater than prefix length.
* --ANK (980803)
*/
return addrlen << 5;
}
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
{
const __be64 *a1 = token1, *a2 = token2;
int i;
addrlen >>= 3;
for (i = 0; i < addrlen; i++) {
__be64 xb = a1[i] ^ a2[i];
if (xb)
return i * 64 + 63 - __fls(be64_to_cpu(xb));
}
return addrlen << 6;
}
#endif
static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
if (__builtin_constant_p(addrlen) && !(addrlen & 7))
return __ipv6_addr_diff64(token1, token2, addrlen);
#endif
return __ipv6_addr_diff32(token1, token2, addrlen);
}
static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
{
return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
}
__be32 ipv6_select_ident(struct net *net,
const struct in6_addr *daddr,
const struct in6_addr *saddr);
int ip6_dst_hoplimit(struct dst_entry *dst);
static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
struct dst_entry *dst)
{
int hlimit;
if (ipv6_addr_is_multicast(&fl6->daddr))
hlimit = np->mcast_hops;
else
hlimit = np->hop_limit;
if (hlimit < 0)
hlimit = ip6_dst_hoplimit(dst);
return hlimit;
}
/* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
* Equivalent to : flow->v6addrs.src = iph->saddr;
* flow->v6addrs.dst = iph->daddr;
*/
static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
const struct ipv6hdr *iph)
{
BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
offsetof(typeof(flow->addrs), v6addrs.src) +
sizeof(flow->addrs.v6addrs.src));
memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
#if IS_ENABLED(CONFIG_IPV6)
/* Sysctl settings for net ipv6.auto_flowlabels */
#define IP6_AUTO_FLOW_LABEL_OFF 0
#define IP6_AUTO_FLOW_LABEL_OPTOUT 1
#define IP6_AUTO_FLOW_LABEL_OPTIN 2
#define IP6_AUTO_FLOW_LABEL_FORCED 3
#define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
#define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
__be32 flowlabel, bool autolabel,
struct flowi6 *fl6)
{
u32 hash;
/* @flowlabel may include more than a flow label, eg, the traffic class.
* Here we want only the flow label value.
*/
flowlabel &= IPV6_FLOWLABEL_MASK;
if (flowlabel ||
net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
(!autolabel &&
net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
return flowlabel;
hash = skb_get_hash_flowi6(skb, fl6);
/* Since this is being sent on the wire obfuscate hash a bit
* to minimize possbility that any useful information to an
* attacker is leaked. Only lower 20 bits are relevant.
*/
rol32(hash, 16);
flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
if (net->ipv6.sysctl.flowlabel_state_ranges)
flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
return flowlabel;
}
static inline int ip6_default_np_autolabel(struct net *net)
{
switch (net->ipv6.sysctl.auto_flowlabels) {
case IP6_AUTO_FLOW_LABEL_OFF:
case IP6_AUTO_FLOW_LABEL_OPTIN:
default:
return 0;
case IP6_AUTO_FLOW_LABEL_OPTOUT:
case IP6_AUTO_FLOW_LABEL_FORCED:
return 1;
}
}
#else
static inline void ip6_set_txhash(struct sock *sk) { }
static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
__be32 flowlabel, bool autolabel,
struct flowi6 *fl6)
{
return flowlabel;
}
static inline int ip6_default_np_autolabel(struct net *net)
{
return 0;
}
#endif
/*
* Header manipulation
*/
static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
__be32 flowlabel)
{
*(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
}
static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
{
return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
}
static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
{
return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
}
static inline u8 ip6_tclass(__be32 flowinfo)
{
return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
}
static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
{
return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
}
/*
* Prototypes exported by ipv6
*/
/*
* rcv function (called from netdevice level)
*/
int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev);
int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
/*
* upper-layer output functions
*/
int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
__u32 mark, struct ipv6_txoptions *opt, int tclass);
int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
int ip6_append_data(struct sock *sk,
int getfrag(void *from, char *to, int offset, int len,
int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
struct rt6_info *rt, unsigned int flags,
const struct sockcm_cookie *sockc);
int ip6_push_pending_frames(struct sock *sk);
void ip6_flush_pending_frames(struct sock *sk);
int ip6_send_skb(struct sk_buff *skb);
struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
struct inet_cork_full *cork,
struct inet6_cork *v6_cork);
struct sk_buff *ip6_make_skb(struct sock *sk,
int getfrag(void *from, char *to, int offset,
int len, int odd, struct sk_buff *skb),
void *from, int length, int transhdrlen,
struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
struct rt6_info *rt, unsigned int flags,
const struct sockcm_cookie *sockc);
static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
{
return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
&inet6_sk(sk)->cork);
}
int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
struct flowi6 *fl6);
struct dst_entry *ip6_dst_lookup_flow(const struct sock *sk, struct flowi6 *fl6,
const struct in6_addr *final_dst);
struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
const struct in6_addr *final_dst);
struct dst_entry *ip6_blackhole_route(struct net *net,
struct dst_entry *orig_dst);
/*
* skb processing functions
*/
int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
int ip6_forward(struct sk_buff *skb);
int ip6_input(struct sk_buff *skb);
int ip6_mc_input(struct sk_buff *skb);
int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
/*
* Extension header (options) processing
*/
void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
u8 *proto, struct in6_addr **daddr_p,
struct in6_addr *saddr);
void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
u8 *proto);
int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
__be16 *frag_offp);
bool ipv6_ext_hdr(u8 nexthdr);
enum {
IP6_FH_F_FRAG = (1 << 0),
IP6_FH_F_AUTH = (1 << 1),
IP6_FH_F_SKIP_RH = (1 << 2),
};
/* find specified header and get offset to it */
int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
unsigned short *fragoff, int *fragflg);
int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
const struct ipv6_txoptions *opt,
struct in6_addr *orig);
/*
* socket options (ipv6_sockglue.c)
*/
int ipv6_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, unsigned int optlen);
int ipv6_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen);
int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
char __user *optval, unsigned int optlen);
int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen);
int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
int addr_len);
int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
int addr_len);
int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
void ip6_datagram_release_cb(struct sock *sk);
int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
int *addr_len);
int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
int *addr_len);
void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
u32 info, u8 *payload);
void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
int inet6_release(struct socket *sock);
int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
int peer);
int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
int inet6_hash_connect(struct inet_timewait_death_row *death_row,
struct sock *sk);
/*
* reassembly.c
*/
extern const struct proto_ops inet6_stream_ops;
extern const struct proto_ops inet6_dgram_ops;
extern const struct proto_ops inet6_sockraw_ops;
struct group_source_req;
struct group_filter;
int ip6_mc_source(int add, int omode, struct sock *sk,
struct group_source_req *pgsr);
int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
struct group_filter __user *optval, int __user *optlen);
#ifdef CONFIG_PROC_FS
int ac6_proc_init(struct net *net);
void ac6_proc_exit(struct net *net);
int raw6_proc_init(void);
void raw6_proc_exit(void);
int tcp6_proc_init(struct net *net);
void tcp6_proc_exit(struct net *net);
int udp6_proc_init(struct net *net);
void udp6_proc_exit(struct net *net);
int udplite6_proc_init(void);
void udplite6_proc_exit(void);
int ipv6_misc_proc_init(void);
void ipv6_misc_proc_exit(void);
int snmp6_register_dev(struct inet6_dev *idev);
int snmp6_unregister_dev(struct inet6_dev *idev);
#else
static inline int ac6_proc_init(struct net *net) { return 0; }
static inline void ac6_proc_exit(struct net *net) { }
static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
#endif
#ifdef CONFIG_SYSCTL
extern struct ctl_table ipv6_route_table_template[];
struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
struct ctl_table *ipv6_route_sysctl_init(struct net *net);
int ipv6_sysctl_register(void);
void ipv6_sysctl_unregister(void);
#endif
int ipv6_sock_mc_join(struct sock *sk, int ifindex,
const struct in6_addr *addr);
int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
const struct in6_addr *addr);
#endif /* _NET_IPV6_H */