forked from Minki/linux
230671533d
This patch aims to address an issue in current memory.low semantics, which makes it hard to use it in a hierarchy, where some leaf memory cgroups are more valuable than others. For example, there are memcgs A, A/B, A/C, A/D and A/E: A A/memory.low = 2G, A/memory.current = 6G //\\ BC DE B/memory.low = 3G B/memory.current = 2G C/memory.low = 1G C/memory.current = 2G D/memory.low = 0 D/memory.current = 2G E/memory.low = 10G E/memory.current = 0 If we apply memory pressure, B, C and D are reclaimed at the same pace while A's usage exceeds 2G. This is obviously wrong, as B's usage is fully below B's memory.low, and C has 1G of protection as well. Also, A is pushed to the size, which is less than A's 2G memory.low, which is also wrong. A simple bash script (provided below) can be used to reproduce the problem. Current results are: A: 1430097920 A/B: 711929856 A/C: 717426688 A/D: 741376 A/E: 0 To address the issue a concept of effective memory.low is introduced. Effective memory.low is always equal or less than original memory.low. In a case, when there is no memory.low overcommittment (and also for top-level cgroups), these two values are equal. Otherwise it's a part of parent's effective memory.low, calculated as a cgroup's memory.low usage divided by sum of sibling's memory.low usages (under memory.low usage I mean the size of actually protected memory: memory.current if memory.current < memory.low, 0 otherwise). It's necessary to track the actual usage, because otherwise an empty cgroup with memory.low set (A/E in my example) will affect actual memory distribution, which makes no sense. To avoid traversing the cgroup tree twice, page_counters code is reused. Calculating effective memory.low can be done in the reclaim path, as we conveniently traversing the cgroup tree from top to bottom and check memory.low on each level. So, it's a perfect place to calculate effective memory low and save it to use it for children cgroups. This also eliminates a need to traverse the cgroup tree from bottom to top each time to check if parent's guarantee is not exceeded. Setting/resetting effective memory.low is intentionally racy, but it's fine and shouldn't lead to any significant differences in actual memory distribution. With this patch applied results are matching the expectations: A: 2147930112 A/B: 1428721664 A/C: 718393344 A/D: 815104 A/E: 0 Test script: #!/bin/bash CGPATH="/sys/fs/cgroup" truncate /file1 --size 2G truncate /file2 --size 2G truncate /file3 --size 2G truncate /file4 --size 50G mkdir "${CGPATH}/A" echo "+memory" > "${CGPATH}/A/cgroup.subtree_control" mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E" echo 2G > "${CGPATH}/A/memory.low" echo 3G > "${CGPATH}/A/B/memory.low" echo 1G > "${CGPATH}/A/C/memory.low" echo 0 > "${CGPATH}/A/D/memory.low" echo 10G > "${CGPATH}/A/E/memory.low" echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1 echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2 echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3 echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4 echo "A: " `cat "${CGPATH}/A/memory.current"` echo "A/B: " `cat "${CGPATH}/A/B/memory.current"` echo "A/C: " `cat "${CGPATH}/A/C/memory.current"` echo "A/D: " `cat "${CGPATH}/A/D/memory.current"` echo "A/E: " `cat "${CGPATH}/A/E/memory.current"` rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E" rmdir "${CGPATH}/A" rm /file1 /file2 /file3 /file4 Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
238 lines
5.8 KiB
C
238 lines
5.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Lockless hierarchical page accounting & limiting
|
|
*
|
|
* Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
|
|
*/
|
|
|
|
#include <linux/page_counter.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bug.h>
|
|
#include <asm/page.h>
|
|
|
|
static void propagate_low_usage(struct page_counter *c, unsigned long usage)
|
|
{
|
|
unsigned long low_usage, old;
|
|
long delta;
|
|
|
|
if (!c->parent)
|
|
return;
|
|
|
|
if (!c->low && !atomic_long_read(&c->low_usage))
|
|
return;
|
|
|
|
if (usage <= c->low)
|
|
low_usage = usage;
|
|
else
|
|
low_usage = 0;
|
|
|
|
old = atomic_long_xchg(&c->low_usage, low_usage);
|
|
delta = low_usage - old;
|
|
if (delta)
|
|
atomic_long_add(delta, &c->parent->children_low_usage);
|
|
}
|
|
|
|
/**
|
|
* page_counter_cancel - take pages out of the local counter
|
|
* @counter: counter
|
|
* @nr_pages: number of pages to cancel
|
|
*/
|
|
void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
|
|
{
|
|
long new;
|
|
|
|
new = atomic_long_sub_return(nr_pages, &counter->usage);
|
|
propagate_low_usage(counter, new);
|
|
/* More uncharges than charges? */
|
|
WARN_ON_ONCE(new < 0);
|
|
}
|
|
|
|
/**
|
|
* page_counter_charge - hierarchically charge pages
|
|
* @counter: counter
|
|
* @nr_pages: number of pages to charge
|
|
*
|
|
* NOTE: This does not consider any configured counter limits.
|
|
*/
|
|
void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
|
|
{
|
|
struct page_counter *c;
|
|
|
|
for (c = counter; c; c = c->parent) {
|
|
long new;
|
|
|
|
new = atomic_long_add_return(nr_pages, &c->usage);
|
|
propagate_low_usage(counter, new);
|
|
/*
|
|
* This is indeed racy, but we can live with some
|
|
* inaccuracy in the watermark.
|
|
*/
|
|
if (new > c->watermark)
|
|
c->watermark = new;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* page_counter_try_charge - try to hierarchically charge pages
|
|
* @counter: counter
|
|
* @nr_pages: number of pages to charge
|
|
* @fail: points first counter to hit its limit, if any
|
|
*
|
|
* Returns %true on success, or %false and @fail if the counter or one
|
|
* of its ancestors has hit its configured limit.
|
|
*/
|
|
bool page_counter_try_charge(struct page_counter *counter,
|
|
unsigned long nr_pages,
|
|
struct page_counter **fail)
|
|
{
|
|
struct page_counter *c;
|
|
|
|
for (c = counter; c; c = c->parent) {
|
|
long new;
|
|
/*
|
|
* Charge speculatively to avoid an expensive CAS. If
|
|
* a bigger charge fails, it might falsely lock out a
|
|
* racing smaller charge and send it into reclaim
|
|
* early, but the error is limited to the difference
|
|
* between the two sizes, which is less than 2M/4M in
|
|
* case of a THP locking out a regular page charge.
|
|
*
|
|
* The atomic_long_add_return() implies a full memory
|
|
* barrier between incrementing the count and reading
|
|
* the limit. When racing with page_counter_limit(),
|
|
* we either see the new limit or the setter sees the
|
|
* counter has changed and retries.
|
|
*/
|
|
new = atomic_long_add_return(nr_pages, &c->usage);
|
|
if (new > c->max) {
|
|
atomic_long_sub(nr_pages, &c->usage);
|
|
propagate_low_usage(counter, new);
|
|
/*
|
|
* This is racy, but we can live with some
|
|
* inaccuracy in the failcnt.
|
|
*/
|
|
c->failcnt++;
|
|
*fail = c;
|
|
goto failed;
|
|
}
|
|
propagate_low_usage(counter, new);
|
|
/*
|
|
* Just like with failcnt, we can live with some
|
|
* inaccuracy in the watermark.
|
|
*/
|
|
if (new > c->watermark)
|
|
c->watermark = new;
|
|
}
|
|
return true;
|
|
|
|
failed:
|
|
for (c = counter; c != *fail; c = c->parent)
|
|
page_counter_cancel(c, nr_pages);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* page_counter_uncharge - hierarchically uncharge pages
|
|
* @counter: counter
|
|
* @nr_pages: number of pages to uncharge
|
|
*/
|
|
void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
|
|
{
|
|
struct page_counter *c;
|
|
|
|
for (c = counter; c; c = c->parent)
|
|
page_counter_cancel(c, nr_pages);
|
|
}
|
|
|
|
/**
|
|
* page_counter_set_max - set the maximum number of pages allowed
|
|
* @counter: counter
|
|
* @nr_pages: limit to set
|
|
*
|
|
* Returns 0 on success, -EBUSY if the current number of pages on the
|
|
* counter already exceeds the specified limit.
|
|
*
|
|
* The caller must serialize invocations on the same counter.
|
|
*/
|
|
int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
|
|
{
|
|
for (;;) {
|
|
unsigned long old;
|
|
long usage;
|
|
|
|
/*
|
|
* Update the limit while making sure that it's not
|
|
* below the concurrently-changing counter value.
|
|
*
|
|
* The xchg implies two full memory barriers before
|
|
* and after, so the read-swap-read is ordered and
|
|
* ensures coherency with page_counter_try_charge():
|
|
* that function modifies the count before checking
|
|
* the limit, so if it sees the old limit, we see the
|
|
* modified counter and retry.
|
|
*/
|
|
usage = atomic_long_read(&counter->usage);
|
|
|
|
if (usage > nr_pages)
|
|
return -EBUSY;
|
|
|
|
old = xchg(&counter->max, nr_pages);
|
|
|
|
if (atomic_long_read(&counter->usage) <= usage)
|
|
return 0;
|
|
|
|
counter->max = old;
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* page_counter_set_low - set the amount of protected memory
|
|
* @counter: counter
|
|
* @nr_pages: value to set
|
|
*
|
|
* The caller must serialize invocations on the same counter.
|
|
*/
|
|
void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
|
|
{
|
|
struct page_counter *c;
|
|
|
|
counter->low = nr_pages;
|
|
|
|
for (c = counter; c; c = c->parent)
|
|
propagate_low_usage(c, atomic_long_read(&c->usage));
|
|
}
|
|
|
|
/**
|
|
* page_counter_memparse - memparse() for page counter limits
|
|
* @buf: string to parse
|
|
* @max: string meaning maximum possible value
|
|
* @nr_pages: returns the result in number of pages
|
|
*
|
|
* Returns -EINVAL, or 0 and @nr_pages on success. @nr_pages will be
|
|
* limited to %PAGE_COUNTER_MAX.
|
|
*/
|
|
int page_counter_memparse(const char *buf, const char *max,
|
|
unsigned long *nr_pages)
|
|
{
|
|
char *end;
|
|
u64 bytes;
|
|
|
|
if (!strcmp(buf, max)) {
|
|
*nr_pages = PAGE_COUNTER_MAX;
|
|
return 0;
|
|
}
|
|
|
|
bytes = memparse(buf, &end);
|
|
if (*end != '\0')
|
|
return -EINVAL;
|
|
|
|
*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
|
|
|
|
return 0;
|
|
}
|