linux/drivers/md/bitmap.c
NeilBrown 538452700d md: fix bitmap-on-external-file bug.
commit a2ed9615e3
fixed a bug with 'internal' bitmaps, but in the process broke
'in a file' bitmaps.  So they are broken in 2.6.28

This fixes it, and needs to go in 2.6.28-stable.

Signed-off-by: NeilBrown <neilb@suse.de>
Cc: stable@kernel.org
2009-01-09 08:31:05 +11:00

1664 lines
43 KiB
C

/*
* bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
*
* bitmap_create - sets up the bitmap structure
* bitmap_destroy - destroys the bitmap structure
*
* additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
* - added disk storage for bitmap
* - changes to allow various bitmap chunk sizes
*/
/*
* Still to do:
*
* flush after percent set rather than just time based. (maybe both).
* wait if count gets too high, wake when it drops to half.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/file.h>
#include <linux/mount.h>
#include <linux/buffer_head.h>
#include <linux/raid/md.h>
#include <linux/raid/bitmap.h>
/* debug macros */
#define DEBUG 0
#if DEBUG
/* these are for debugging purposes only! */
/* define one and only one of these */
#define INJECT_FAULTS_1 0 /* cause bitmap_alloc_page to fail always */
#define INJECT_FAULTS_2 0 /* cause bitmap file to be kicked when first bit set*/
#define INJECT_FAULTS_3 0 /* treat bitmap file as kicked at init time */
#define INJECT_FAULTS_4 0 /* undef */
#define INJECT_FAULTS_5 0 /* undef */
#define INJECT_FAULTS_6 0
/* if these are defined, the driver will fail! debug only */
#define INJECT_FATAL_FAULT_1 0 /* fail kmalloc, causing bitmap_create to fail */
#define INJECT_FATAL_FAULT_2 0 /* undef */
#define INJECT_FATAL_FAULT_3 0 /* undef */
#endif
//#define DPRINTK PRINTK /* set this NULL to avoid verbose debug output */
#define DPRINTK(x...) do { } while(0)
#ifndef PRINTK
# if DEBUG > 0
# define PRINTK(x...) printk(KERN_DEBUG x)
# else
# define PRINTK(x...)
# endif
#endif
static inline char * bmname(struct bitmap *bitmap)
{
return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
}
/*
* just a placeholder - calls kmalloc for bitmap pages
*/
static unsigned char *bitmap_alloc_page(struct bitmap *bitmap)
{
unsigned char *page;
#ifdef INJECT_FAULTS_1
page = NULL;
#else
page = kmalloc(PAGE_SIZE, GFP_NOIO);
#endif
if (!page)
printk("%s: bitmap_alloc_page FAILED\n", bmname(bitmap));
else
PRINTK("%s: bitmap_alloc_page: allocated page at %p\n",
bmname(bitmap), page);
return page;
}
/*
* for now just a placeholder -- just calls kfree for bitmap pages
*/
static void bitmap_free_page(struct bitmap *bitmap, unsigned char *page)
{
PRINTK("%s: bitmap_free_page: free page %p\n", bmname(bitmap), page);
kfree(page);
}
/*
* check a page and, if necessary, allocate it (or hijack it if the alloc fails)
*
* 1) check to see if this page is allocated, if it's not then try to alloc
* 2) if the alloc fails, set the page's hijacked flag so we'll use the
* page pointer directly as a counter
*
* if we find our page, we increment the page's refcount so that it stays
* allocated while we're using it
*/
static int bitmap_checkpage(struct bitmap *bitmap, unsigned long page, int create)
{
unsigned char *mappage;
if (page >= bitmap->pages) {
printk(KERN_ALERT
"%s: invalid bitmap page request: %lu (> %lu)\n",
bmname(bitmap), page, bitmap->pages-1);
return -EINVAL;
}
if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
return 0;
if (bitmap->bp[page].map) /* page is already allocated, just return */
return 0;
if (!create)
return -ENOENT;
spin_unlock_irq(&bitmap->lock);
/* this page has not been allocated yet */
if ((mappage = bitmap_alloc_page(bitmap)) == NULL) {
PRINTK("%s: bitmap map page allocation failed, hijacking\n",
bmname(bitmap));
/* failed - set the hijacked flag so that we can use the
* pointer as a counter */
spin_lock_irq(&bitmap->lock);
if (!bitmap->bp[page].map)
bitmap->bp[page].hijacked = 1;
goto out;
}
/* got a page */
spin_lock_irq(&bitmap->lock);
/* recheck the page */
if (bitmap->bp[page].map || bitmap->bp[page].hijacked) {
/* somebody beat us to getting the page */
bitmap_free_page(bitmap, mappage);
return 0;
}
/* no page was in place and we have one, so install it */
memset(mappage, 0, PAGE_SIZE);
bitmap->bp[page].map = mappage;
bitmap->missing_pages--;
out:
return 0;
}
/* if page is completely empty, put it back on the free list, or dealloc it */
/* if page was hijacked, unmark the flag so it might get alloced next time */
/* Note: lock should be held when calling this */
static void bitmap_checkfree(struct bitmap *bitmap, unsigned long page)
{
char *ptr;
if (bitmap->bp[page].count) /* page is still busy */
return;
/* page is no longer in use, it can be released */
if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
bitmap->bp[page].hijacked = 0;
bitmap->bp[page].map = NULL;
return;
}
/* normal case, free the page */
#if 0
/* actually ... let's not. We will probably need the page again exactly when
* memory is tight and we are flusing to disk
*/
return;
#else
ptr = bitmap->bp[page].map;
bitmap->bp[page].map = NULL;
bitmap->missing_pages++;
bitmap_free_page(bitmap, ptr);
return;
#endif
}
/*
* bitmap file handling - read and write the bitmap file and its superblock
*/
/*
* basic page I/O operations
*/
/* IO operations when bitmap is stored near all superblocks */
static struct page *read_sb_page(mddev_t *mddev, long offset,
struct page *page,
unsigned long index, int size)
{
/* choose a good rdev and read the page from there */
mdk_rdev_t *rdev;
struct list_head *tmp;
sector_t target;
if (!page)
page = alloc_page(GFP_KERNEL);
if (!page)
return ERR_PTR(-ENOMEM);
rdev_for_each(rdev, tmp, mddev) {
if (! test_bit(In_sync, &rdev->flags)
|| test_bit(Faulty, &rdev->flags))
continue;
target = rdev->sb_start + offset + index * (PAGE_SIZE/512);
if (sync_page_io(rdev->bdev, target,
roundup(size, bdev_hardsect_size(rdev->bdev)),
page, READ)) {
page->index = index;
attach_page_buffers(page, NULL); /* so that free_buffer will
* quietly no-op */
return page;
}
}
return ERR_PTR(-EIO);
}
static mdk_rdev_t *next_active_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
{
/* Iterate the disks of an mddev, using rcu to protect access to the
* linked list, and raising the refcount of devices we return to ensure
* they don't disappear while in use.
* As devices are only added or removed when raid_disk is < 0 and
* nr_pending is 0 and In_sync is clear, the entries we return will
* still be in the same position on the list when we re-enter
* list_for_each_continue_rcu.
*/
struct list_head *pos;
rcu_read_lock();
if (rdev == NULL)
/* start at the beginning */
pos = &mddev->disks;
else {
/* release the previous rdev and start from there. */
rdev_dec_pending(rdev, mddev);
pos = &rdev->same_set;
}
list_for_each_continue_rcu(pos, &mddev->disks) {
rdev = list_entry(pos, mdk_rdev_t, same_set);
if (rdev->raid_disk >= 0 &&
test_bit(In_sync, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags)) {
/* this is a usable devices */
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
return rdev;
}
}
rcu_read_unlock();
return NULL;
}
static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
{
mdk_rdev_t *rdev = NULL;
mddev_t *mddev = bitmap->mddev;
while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
int size = PAGE_SIZE;
if (page->index == bitmap->file_pages-1)
size = roundup(bitmap->last_page_size,
bdev_hardsect_size(rdev->bdev));
/* Just make sure we aren't corrupting data or
* metadata
*/
if (bitmap->offset < 0) {
/* DATA BITMAP METADATA */
if (bitmap->offset
+ (long)(page->index * (PAGE_SIZE/512))
+ size/512 > 0)
/* bitmap runs in to metadata */
goto bad_alignment;
if (rdev->data_offset + mddev->size*2
> rdev->sb_start + bitmap->offset)
/* data runs in to bitmap */
goto bad_alignment;
} else if (rdev->sb_start < rdev->data_offset) {
/* METADATA BITMAP DATA */
if (rdev->sb_start
+ bitmap->offset
+ page->index*(PAGE_SIZE/512) + size/512
> rdev->data_offset)
/* bitmap runs in to data */
goto bad_alignment;
} else {
/* DATA METADATA BITMAP - no problems */
}
md_super_write(mddev, rdev,
rdev->sb_start + bitmap->offset
+ page->index * (PAGE_SIZE/512),
size,
page);
}
if (wait)
md_super_wait(mddev);
return 0;
bad_alignment:
rcu_read_unlock();
return -EINVAL;
}
static void bitmap_file_kick(struct bitmap *bitmap);
/*
* write out a page to a file
*/
static void write_page(struct bitmap *bitmap, struct page *page, int wait)
{
struct buffer_head *bh;
if (bitmap->file == NULL) {
switch (write_sb_page(bitmap, page, wait)) {
case -EINVAL:
bitmap->flags |= BITMAP_WRITE_ERROR;
}
} else {
bh = page_buffers(page);
while (bh && bh->b_blocknr) {
atomic_inc(&bitmap->pending_writes);
set_buffer_locked(bh);
set_buffer_mapped(bh);
submit_bh(WRITE, bh);
bh = bh->b_this_page;
}
if (wait) {
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
}
}
if (bitmap->flags & BITMAP_WRITE_ERROR)
bitmap_file_kick(bitmap);
}
static void end_bitmap_write(struct buffer_head *bh, int uptodate)
{
struct bitmap *bitmap = bh->b_private;
unsigned long flags;
if (!uptodate) {
spin_lock_irqsave(&bitmap->lock, flags);
bitmap->flags |= BITMAP_WRITE_ERROR;
spin_unlock_irqrestore(&bitmap->lock, flags);
}
if (atomic_dec_and_test(&bitmap->pending_writes))
wake_up(&bitmap->write_wait);
}
/* copied from buffer.c */
static void
__clear_page_buffers(struct page *page)
{
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
static void free_buffers(struct page *page)
{
struct buffer_head *bh = page_buffers(page);
while (bh) {
struct buffer_head *next = bh->b_this_page;
free_buffer_head(bh);
bh = next;
}
__clear_page_buffers(page);
put_page(page);
}
/* read a page from a file.
* We both read the page, and attach buffers to the page to record the
* address of each block (using bmap). These addresses will be used
* to write the block later, completely bypassing the filesystem.
* This usage is similar to how swap files are handled, and allows us
* to write to a file with no concerns of memory allocation failing.
*/
static struct page *read_page(struct file *file, unsigned long index,
struct bitmap *bitmap,
unsigned long count)
{
struct page *page = NULL;
struct inode *inode = file->f_path.dentry->d_inode;
struct buffer_head *bh;
sector_t block;
PRINTK("read bitmap file (%dB @ %Lu)\n", (int)PAGE_SIZE,
(unsigned long long)index << PAGE_SHIFT);
page = alloc_page(GFP_KERNEL);
if (!page)
page = ERR_PTR(-ENOMEM);
if (IS_ERR(page))
goto out;
bh = alloc_page_buffers(page, 1<<inode->i_blkbits, 0);
if (!bh) {
put_page(page);
page = ERR_PTR(-ENOMEM);
goto out;
}
attach_page_buffers(page, bh);
block = index << (PAGE_SHIFT - inode->i_blkbits);
while (bh) {
if (count == 0)
bh->b_blocknr = 0;
else {
bh->b_blocknr = bmap(inode, block);
if (bh->b_blocknr == 0) {
/* Cannot use this file! */
free_buffers(page);
page = ERR_PTR(-EINVAL);
goto out;
}
bh->b_bdev = inode->i_sb->s_bdev;
if (count < (1<<inode->i_blkbits))
count = 0;
else
count -= (1<<inode->i_blkbits);
bh->b_end_io = end_bitmap_write;
bh->b_private = bitmap;
atomic_inc(&bitmap->pending_writes);
set_buffer_locked(bh);
set_buffer_mapped(bh);
submit_bh(READ, bh);
}
block++;
bh = bh->b_this_page;
}
page->index = index;
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
if (bitmap->flags & BITMAP_WRITE_ERROR) {
free_buffers(page);
page = ERR_PTR(-EIO);
}
out:
if (IS_ERR(page))
printk(KERN_ALERT "md: bitmap read error: (%dB @ %Lu): %ld\n",
(int)PAGE_SIZE,
(unsigned long long)index << PAGE_SHIFT,
PTR_ERR(page));
return page;
}
/*
* bitmap file superblock operations
*/
/* update the event counter and sync the superblock to disk */
void bitmap_update_sb(struct bitmap *bitmap)
{
bitmap_super_t *sb;
unsigned long flags;
if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
return;
spin_lock_irqsave(&bitmap->lock, flags);
if (!bitmap->sb_page) { /* no superblock */
spin_unlock_irqrestore(&bitmap->lock, flags);
return;
}
spin_unlock_irqrestore(&bitmap->lock, flags);
sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
sb->events = cpu_to_le64(bitmap->mddev->events);
if (bitmap->mddev->events < bitmap->events_cleared) {
/* rocking back to read-only */
bitmap->events_cleared = bitmap->mddev->events;
sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
}
kunmap_atomic(sb, KM_USER0);
write_page(bitmap, bitmap->sb_page, 1);
}
/* print out the bitmap file superblock */
void bitmap_print_sb(struct bitmap *bitmap)
{
bitmap_super_t *sb;
if (!bitmap || !bitmap->sb_page)
return;
sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
printk(KERN_DEBUG "%s: bitmap file superblock:\n", bmname(bitmap));
printk(KERN_DEBUG " magic: %08x\n", le32_to_cpu(sb->magic));
printk(KERN_DEBUG " version: %d\n", le32_to_cpu(sb->version));
printk(KERN_DEBUG " uuid: %08x.%08x.%08x.%08x\n",
*(__u32 *)(sb->uuid+0),
*(__u32 *)(sb->uuid+4),
*(__u32 *)(sb->uuid+8),
*(__u32 *)(sb->uuid+12));
printk(KERN_DEBUG " events: %llu\n",
(unsigned long long) le64_to_cpu(sb->events));
printk(KERN_DEBUG "events cleared: %llu\n",
(unsigned long long) le64_to_cpu(sb->events_cleared));
printk(KERN_DEBUG " state: %08x\n", le32_to_cpu(sb->state));
printk(KERN_DEBUG " chunksize: %d B\n", le32_to_cpu(sb->chunksize));
printk(KERN_DEBUG " daemon sleep: %ds\n", le32_to_cpu(sb->daemon_sleep));
printk(KERN_DEBUG " sync size: %llu KB\n",
(unsigned long long)le64_to_cpu(sb->sync_size)/2);
printk(KERN_DEBUG "max write behind: %d\n", le32_to_cpu(sb->write_behind));
kunmap_atomic(sb, KM_USER0);
}
/* read the superblock from the bitmap file and initialize some bitmap fields */
static int bitmap_read_sb(struct bitmap *bitmap)
{
char *reason = NULL;
bitmap_super_t *sb;
unsigned long chunksize, daemon_sleep, write_behind;
unsigned long long events;
int err = -EINVAL;
/* page 0 is the superblock, read it... */
if (bitmap->file) {
loff_t isize = i_size_read(bitmap->file->f_mapping->host);
int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
bitmap->sb_page = read_page(bitmap->file, 0, bitmap, bytes);
} else {
bitmap->sb_page = read_sb_page(bitmap->mddev, bitmap->offset,
NULL,
0, sizeof(bitmap_super_t));
}
if (IS_ERR(bitmap->sb_page)) {
err = PTR_ERR(bitmap->sb_page);
bitmap->sb_page = NULL;
return err;
}
sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
chunksize = le32_to_cpu(sb->chunksize);
daemon_sleep = le32_to_cpu(sb->daemon_sleep);
write_behind = le32_to_cpu(sb->write_behind);
/* verify that the bitmap-specific fields are valid */
if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
reason = "bad magic";
else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
le32_to_cpu(sb->version) > BITMAP_MAJOR_HI)
reason = "unrecognized superblock version";
else if (chunksize < PAGE_SIZE)
reason = "bitmap chunksize too small";
else if ((1 << ffz(~chunksize)) != chunksize)
reason = "bitmap chunksize not a power of 2";
else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT / HZ)
reason = "daemon sleep period out of range";
else if (write_behind > COUNTER_MAX)
reason = "write-behind limit out of range (0 - 16383)";
if (reason) {
printk(KERN_INFO "%s: invalid bitmap file superblock: %s\n",
bmname(bitmap), reason);
goto out;
}
/* keep the array size field of the bitmap superblock up to date */
sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
if (!bitmap->mddev->persistent)
goto success;
/*
* if we have a persistent array superblock, compare the
* bitmap's UUID and event counter to the mddev's
*/
if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
printk(KERN_INFO "%s: bitmap superblock UUID mismatch\n",
bmname(bitmap));
goto out;
}
events = le64_to_cpu(sb->events);
if (events < bitmap->mddev->events) {
printk(KERN_INFO "%s: bitmap file is out of date (%llu < %llu) "
"-- forcing full recovery\n", bmname(bitmap), events,
(unsigned long long) bitmap->mddev->events);
sb->state |= cpu_to_le32(BITMAP_STALE);
}
success:
/* assign fields using values from superblock */
bitmap->chunksize = chunksize;
bitmap->daemon_sleep = daemon_sleep;
bitmap->daemon_lastrun = jiffies;
bitmap->max_write_behind = write_behind;
bitmap->flags |= le32_to_cpu(sb->state);
if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
bitmap->flags |= BITMAP_HOSTENDIAN;
bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
if (sb->state & cpu_to_le32(BITMAP_STALE))
bitmap->events_cleared = bitmap->mddev->events;
err = 0;
out:
kunmap_atomic(sb, KM_USER0);
if (err)
bitmap_print_sb(bitmap);
return err;
}
enum bitmap_mask_op {
MASK_SET,
MASK_UNSET
};
/* record the state of the bitmap in the superblock. Return the old value */
static int bitmap_mask_state(struct bitmap *bitmap, enum bitmap_state bits,
enum bitmap_mask_op op)
{
bitmap_super_t *sb;
unsigned long flags;
int old;
spin_lock_irqsave(&bitmap->lock, flags);
if (!bitmap->sb_page) { /* can't set the state */
spin_unlock_irqrestore(&bitmap->lock, flags);
return 0;
}
spin_unlock_irqrestore(&bitmap->lock, flags);
sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
old = le32_to_cpu(sb->state) & bits;
switch (op) {
case MASK_SET: sb->state |= cpu_to_le32(bits);
break;
case MASK_UNSET: sb->state &= cpu_to_le32(~bits);
break;
default: BUG();
}
kunmap_atomic(sb, KM_USER0);
return old;
}
/*
* general bitmap file operations
*/
/* calculate the index of the page that contains this bit */
static inline unsigned long file_page_index(unsigned long chunk)
{
return CHUNK_BIT_OFFSET(chunk) >> PAGE_BIT_SHIFT;
}
/* calculate the (bit) offset of this bit within a page */
static inline unsigned long file_page_offset(unsigned long chunk)
{
return CHUNK_BIT_OFFSET(chunk) & (PAGE_BITS - 1);
}
/*
* return a pointer to the page in the filemap that contains the given bit
*
* this lookup is complicated by the fact that the bitmap sb might be exactly
* 1 page (e.g., x86) or less than 1 page -- so the bitmap might start on page
* 0 or page 1
*/
static inline struct page *filemap_get_page(struct bitmap *bitmap,
unsigned long chunk)
{
if (file_page_index(chunk) >= bitmap->file_pages) return NULL;
return bitmap->filemap[file_page_index(chunk) - file_page_index(0)];
}
static void bitmap_file_unmap(struct bitmap *bitmap)
{
struct page **map, *sb_page;
unsigned long *attr;
int pages;
unsigned long flags;
spin_lock_irqsave(&bitmap->lock, flags);
map = bitmap->filemap;
bitmap->filemap = NULL;
attr = bitmap->filemap_attr;
bitmap->filemap_attr = NULL;
pages = bitmap->file_pages;
bitmap->file_pages = 0;
sb_page = bitmap->sb_page;
bitmap->sb_page = NULL;
spin_unlock_irqrestore(&bitmap->lock, flags);
while (pages--)
if (map[pages]->index != 0) /* 0 is sb_page, release it below */
free_buffers(map[pages]);
kfree(map);
kfree(attr);
if (sb_page)
free_buffers(sb_page);
}
static void bitmap_file_put(struct bitmap *bitmap)
{
struct file *file;
unsigned long flags;
spin_lock_irqsave(&bitmap->lock, flags);
file = bitmap->file;
bitmap->file = NULL;
spin_unlock_irqrestore(&bitmap->lock, flags);
if (file)
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
bitmap_file_unmap(bitmap);
if (file) {
struct inode *inode = file->f_path.dentry->d_inode;
invalidate_mapping_pages(inode->i_mapping, 0, -1);
fput(file);
}
}
/*
* bitmap_file_kick - if an error occurs while manipulating the bitmap file
* then it is no longer reliable, so we stop using it and we mark the file
* as failed in the superblock
*/
static void bitmap_file_kick(struct bitmap *bitmap)
{
char *path, *ptr = NULL;
if (bitmap_mask_state(bitmap, BITMAP_STALE, MASK_SET) == 0) {
bitmap_update_sb(bitmap);
if (bitmap->file) {
path = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (path)
ptr = d_path(&bitmap->file->f_path, path,
PAGE_SIZE);
printk(KERN_ALERT
"%s: kicking failed bitmap file %s from array!\n",
bmname(bitmap), IS_ERR(ptr) ? "" : ptr);
kfree(path);
} else
printk(KERN_ALERT
"%s: disabling internal bitmap due to errors\n",
bmname(bitmap));
}
bitmap_file_put(bitmap);
return;
}
enum bitmap_page_attr {
BITMAP_PAGE_DIRTY = 0, // there are set bits that need to be synced
BITMAP_PAGE_CLEAN = 1, // there are bits that might need to be cleared
BITMAP_PAGE_NEEDWRITE=2, // there are cleared bits that need to be synced
};
static inline void set_page_attr(struct bitmap *bitmap, struct page *page,
enum bitmap_page_attr attr)
{
__set_bit((page->index<<2) + attr, bitmap->filemap_attr);
}
static inline void clear_page_attr(struct bitmap *bitmap, struct page *page,
enum bitmap_page_attr attr)
{
__clear_bit((page->index<<2) + attr, bitmap->filemap_attr);
}
static inline unsigned long test_page_attr(struct bitmap *bitmap, struct page *page,
enum bitmap_page_attr attr)
{
return test_bit((page->index<<2) + attr, bitmap->filemap_attr);
}
/*
* bitmap_file_set_bit -- called before performing a write to the md device
* to set (and eventually sync) a particular bit in the bitmap file
*
* we set the bit immediately, then we record the page number so that
* when an unplug occurs, we can flush the dirty pages out to disk
*/
static void bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
{
unsigned long bit;
struct page *page;
void *kaddr;
unsigned long chunk = block >> CHUNK_BLOCK_SHIFT(bitmap);
if (!bitmap->filemap) {
return;
}
page = filemap_get_page(bitmap, chunk);
if (!page) return;
bit = file_page_offset(chunk);
/* set the bit */
kaddr = kmap_atomic(page, KM_USER0);
if (bitmap->flags & BITMAP_HOSTENDIAN)
set_bit(bit, kaddr);
else
ext2_set_bit(bit, kaddr);
kunmap_atomic(kaddr, KM_USER0);
PRINTK("set file bit %lu page %lu\n", bit, page->index);
/* record page number so it gets flushed to disk when unplug occurs */
set_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
}
/* this gets called when the md device is ready to unplug its underlying
* (slave) device queues -- before we let any writes go down, we need to
* sync the dirty pages of the bitmap file to disk */
void bitmap_unplug(struct bitmap *bitmap)
{
unsigned long i, flags;
int dirty, need_write;
struct page *page;
int wait = 0;
if (!bitmap)
return;
/* look at each page to see if there are any set bits that need to be
* flushed out to disk */
for (i = 0; i < bitmap->file_pages; i++) {
spin_lock_irqsave(&bitmap->lock, flags);
if (!bitmap->filemap) {
spin_unlock_irqrestore(&bitmap->lock, flags);
return;
}
page = bitmap->filemap[i];
dirty = test_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
need_write = test_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
clear_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
if (dirty)
wait = 1;
spin_unlock_irqrestore(&bitmap->lock, flags);
if (dirty | need_write)
write_page(bitmap, page, 0);
}
if (wait) { /* if any writes were performed, we need to wait on them */
if (bitmap->file)
wait_event(bitmap->write_wait,
atomic_read(&bitmap->pending_writes)==0);
else
md_super_wait(bitmap->mddev);
}
if (bitmap->flags & BITMAP_WRITE_ERROR)
bitmap_file_kick(bitmap);
}
static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
/* * bitmap_init_from_disk -- called at bitmap_create time to initialize
* the in-memory bitmap from the on-disk bitmap -- also, sets up the
* memory mapping of the bitmap file
* Special cases:
* if there's no bitmap file, or if the bitmap file had been
* previously kicked from the array, we mark all the bits as
* 1's in order to cause a full resync.
*
* We ignore all bits for sectors that end earlier than 'start'.
* This is used when reading an out-of-date bitmap...
*/
static int bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
{
unsigned long i, chunks, index, oldindex, bit;
struct page *page = NULL, *oldpage = NULL;
unsigned long num_pages, bit_cnt = 0;
struct file *file;
unsigned long bytes, offset;
int outofdate;
int ret = -ENOSPC;
void *paddr;
chunks = bitmap->chunks;
file = bitmap->file;
BUG_ON(!file && !bitmap->offset);
#ifdef INJECT_FAULTS_3
outofdate = 1;
#else
outofdate = bitmap->flags & BITMAP_STALE;
#endif
if (outofdate)
printk(KERN_INFO "%s: bitmap file is out of date, doing full "
"recovery\n", bmname(bitmap));
bytes = (chunks + 7) / 8;
num_pages = (bytes + sizeof(bitmap_super_t) + PAGE_SIZE - 1) / PAGE_SIZE;
if (file && i_size_read(file->f_mapping->host) < bytes + sizeof(bitmap_super_t)) {
printk(KERN_INFO "%s: bitmap file too short %lu < %lu\n",
bmname(bitmap),
(unsigned long) i_size_read(file->f_mapping->host),
bytes + sizeof(bitmap_super_t));
goto err;
}
ret = -ENOMEM;
bitmap->filemap = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
if (!bitmap->filemap)
goto err;
/* We need 4 bits per page, rounded up to a multiple of sizeof(unsigned long) */
bitmap->filemap_attr = kzalloc(
roundup( DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
GFP_KERNEL);
if (!bitmap->filemap_attr)
goto err;
oldindex = ~0L;
for (i = 0; i < chunks; i++) {
int b;
index = file_page_index(i);
bit = file_page_offset(i);
if (index != oldindex) { /* this is a new page, read it in */
int count;
/* unmap the old page, we're done with it */
if (index == num_pages-1)
count = bytes + sizeof(bitmap_super_t)
- index * PAGE_SIZE;
else
count = PAGE_SIZE;
if (index == 0) {
/*
* if we're here then the superblock page
* contains some bits (PAGE_SIZE != sizeof sb)
* we've already read it in, so just use it
*/
page = bitmap->sb_page;
offset = sizeof(bitmap_super_t);
if (!file)
read_sb_page(bitmap->mddev,
bitmap->offset,
page,
index, count);
} else if (file) {
page = read_page(file, index, bitmap, count);
offset = 0;
} else {
page = read_sb_page(bitmap->mddev, bitmap->offset,
NULL,
index, count);
offset = 0;
}
if (IS_ERR(page)) { /* read error */
ret = PTR_ERR(page);
goto err;
}
oldindex = index;
oldpage = page;
if (outofdate) {
/*
* if bitmap is out of date, dirty the
* whole page and write it out
*/
paddr = kmap_atomic(page, KM_USER0);
memset(paddr + offset, 0xff,
PAGE_SIZE - offset);
kunmap_atomic(paddr, KM_USER0);
write_page(bitmap, page, 1);
ret = -EIO;
if (bitmap->flags & BITMAP_WRITE_ERROR) {
/* release, page not in filemap yet */
put_page(page);
goto err;
}
}
bitmap->filemap[bitmap->file_pages++] = page;
bitmap->last_page_size = count;
}
paddr = kmap_atomic(page, KM_USER0);
if (bitmap->flags & BITMAP_HOSTENDIAN)
b = test_bit(bit, paddr);
else
b = ext2_test_bit(bit, paddr);
kunmap_atomic(paddr, KM_USER0);
if (b) {
/* if the disk bit is set, set the memory bit */
bitmap_set_memory_bits(bitmap, i << CHUNK_BLOCK_SHIFT(bitmap),
((i+1) << (CHUNK_BLOCK_SHIFT(bitmap)) >= start)
);
bit_cnt++;
set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
}
}
/* everything went OK */
ret = 0;
bitmap_mask_state(bitmap, BITMAP_STALE, MASK_UNSET);
if (bit_cnt) { /* Kick recovery if any bits were set */
set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
md_wakeup_thread(bitmap->mddev->thread);
}
printk(KERN_INFO "%s: bitmap initialized from disk: "
"read %lu/%lu pages, set %lu bits\n",
bmname(bitmap), bitmap->file_pages, num_pages, bit_cnt);
return 0;
err:
printk(KERN_INFO "%s: bitmap initialisation failed: %d\n",
bmname(bitmap), ret);
return ret;
}
void bitmap_write_all(struct bitmap *bitmap)
{
/* We don't actually write all bitmap blocks here,
* just flag them as needing to be written
*/
int i;
for (i=0; i < bitmap->file_pages; i++)
set_page_attr(bitmap, bitmap->filemap[i],
BITMAP_PAGE_NEEDWRITE);
}
static void bitmap_count_page(struct bitmap *bitmap, sector_t offset, int inc)
{
sector_t chunk = offset >> CHUNK_BLOCK_SHIFT(bitmap);
unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
bitmap->bp[page].count += inc;
/*
if (page == 0) printk("count page 0, offset %llu: %d gives %d\n",
(unsigned long long)offset, inc, bitmap->bp[page].count);
*/
bitmap_checkfree(bitmap, page);
}
static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
sector_t offset, int *blocks,
int create);
/*
* bitmap daemon -- periodically wakes up to clean bits and flush pages
* out to disk
*/
void bitmap_daemon_work(struct bitmap *bitmap)
{
unsigned long j;
unsigned long flags;
struct page *page = NULL, *lastpage = NULL;
int blocks;
void *paddr;
if (bitmap == NULL)
return;
if (time_before(jiffies, bitmap->daemon_lastrun + bitmap->daemon_sleep*HZ))
goto done;
bitmap->daemon_lastrun = jiffies;
if (bitmap->allclean) {
bitmap->mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
return;
}
bitmap->allclean = 1;
for (j = 0; j < bitmap->chunks; j++) {
bitmap_counter_t *bmc;
spin_lock_irqsave(&bitmap->lock, flags);
if (!bitmap->filemap) {
/* error or shutdown */
spin_unlock_irqrestore(&bitmap->lock, flags);
break;
}
page = filemap_get_page(bitmap, j);
if (page != lastpage) {
/* skip this page unless it's marked as needing cleaning */
if (!test_page_attr(bitmap, page, BITMAP_PAGE_CLEAN)) {
int need_write = test_page_attr(bitmap, page,
BITMAP_PAGE_NEEDWRITE);
if (need_write)
clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
spin_unlock_irqrestore(&bitmap->lock, flags);
if (need_write) {
write_page(bitmap, page, 0);
bitmap->allclean = 0;
}
continue;
}
/* grab the new page, sync and release the old */
if (lastpage != NULL) {
if (test_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE)) {
clear_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
spin_unlock_irqrestore(&bitmap->lock, flags);
write_page(bitmap, lastpage, 0);
} else {
set_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
spin_unlock_irqrestore(&bitmap->lock, flags);
}
} else
spin_unlock_irqrestore(&bitmap->lock, flags);
lastpage = page;
/* We are possibly going to clear some bits, so make
* sure that events_cleared is up-to-date.
*/
if (bitmap->need_sync) {
bitmap_super_t *sb;
bitmap->need_sync = 0;
sb = kmap_atomic(bitmap->sb_page, KM_USER0);
sb->events_cleared =
cpu_to_le64(bitmap->events_cleared);
kunmap_atomic(sb, KM_USER0);
write_page(bitmap, bitmap->sb_page, 1);
}
spin_lock_irqsave(&bitmap->lock, flags);
clear_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
}
bmc = bitmap_get_counter(bitmap, j << CHUNK_BLOCK_SHIFT(bitmap),
&blocks, 0);
if (bmc) {
/*
if (j < 100) printk("bitmap: j=%lu, *bmc = 0x%x\n", j, *bmc);
*/
if (*bmc)
bitmap->allclean = 0;
if (*bmc == 2) {
*bmc=1; /* maybe clear the bit next time */
set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
} else if (*bmc == 1) {
/* we can clear the bit */
*bmc = 0;
bitmap_count_page(bitmap, j << CHUNK_BLOCK_SHIFT(bitmap),
-1);
/* clear the bit */
paddr = kmap_atomic(page, KM_USER0);
if (bitmap->flags & BITMAP_HOSTENDIAN)
clear_bit(file_page_offset(j), paddr);
else
ext2_clear_bit(file_page_offset(j), paddr);
kunmap_atomic(paddr, KM_USER0);
}
}
spin_unlock_irqrestore(&bitmap->lock, flags);
}
/* now sync the final page */
if (lastpage != NULL) {
spin_lock_irqsave(&bitmap->lock, flags);
if (test_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE)) {
clear_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
spin_unlock_irqrestore(&bitmap->lock, flags);
write_page(bitmap, lastpage, 0);
} else {
set_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
spin_unlock_irqrestore(&bitmap->lock, flags);
}
}
done:
if (bitmap->allclean == 0)
bitmap->mddev->thread->timeout = bitmap->daemon_sleep * HZ;
}
static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
sector_t offset, int *blocks,
int create)
{
/* If 'create', we might release the lock and reclaim it.
* The lock must have been taken with interrupts enabled.
* If !create, we don't release the lock.
*/
sector_t chunk = offset >> CHUNK_BLOCK_SHIFT(bitmap);
unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
sector_t csize;
if (bitmap_checkpage(bitmap, page, create) < 0) {
csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap));
*blocks = csize - (offset & (csize- 1));
return NULL;
}
/* now locked ... */
if (bitmap->bp[page].hijacked) { /* hijacked pointer */
/* should we use the first or second counter field
* of the hijacked pointer? */
int hi = (pageoff > PAGE_COUNTER_MASK);
csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap) +
PAGE_COUNTER_SHIFT - 1);
*blocks = csize - (offset & (csize- 1));
return &((bitmap_counter_t *)
&bitmap->bp[page].map)[hi];
} else { /* page is allocated */
csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap));
*blocks = csize - (offset & (csize- 1));
return (bitmap_counter_t *)
&(bitmap->bp[page].map[pageoff]);
}
}
int bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind)
{
if (!bitmap) return 0;
if (behind) {
atomic_inc(&bitmap->behind_writes);
PRINTK(KERN_DEBUG "inc write-behind count %d/%d\n",
atomic_read(&bitmap->behind_writes), bitmap->max_write_behind);
}
while (sectors) {
int blocks;
bitmap_counter_t *bmc;
spin_lock_irq(&bitmap->lock);
bmc = bitmap_get_counter(bitmap, offset, &blocks, 1);
if (!bmc) {
spin_unlock_irq(&bitmap->lock);
return 0;
}
if (unlikely((*bmc & COUNTER_MAX) == COUNTER_MAX)) {
DEFINE_WAIT(__wait);
/* note that it is safe to do the prepare_to_wait
* after the test as long as we do it before dropping
* the spinlock.
*/
prepare_to_wait(&bitmap->overflow_wait, &__wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&bitmap->lock);
blk_unplug(bitmap->mddev->queue);
schedule();
finish_wait(&bitmap->overflow_wait, &__wait);
continue;
}
switch(*bmc) {
case 0:
bitmap_file_set_bit(bitmap, offset);
bitmap_count_page(bitmap,offset, 1);
blk_plug_device_unlocked(bitmap->mddev->queue);
/* fall through */
case 1:
*bmc = 2;
}
(*bmc)++;
spin_unlock_irq(&bitmap->lock);
offset += blocks;
if (sectors > blocks)
sectors -= blocks;
else sectors = 0;
}
bitmap->allclean = 0;
return 0;
}
void bitmap_endwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors,
int success, int behind)
{
if (!bitmap) return;
if (behind) {
atomic_dec(&bitmap->behind_writes);
PRINTK(KERN_DEBUG "dec write-behind count %d/%d\n",
atomic_read(&bitmap->behind_writes), bitmap->max_write_behind);
}
while (sectors) {
int blocks;
unsigned long flags;
bitmap_counter_t *bmc;
spin_lock_irqsave(&bitmap->lock, flags);
bmc = bitmap_get_counter(bitmap, offset, &blocks, 0);
if (!bmc) {
spin_unlock_irqrestore(&bitmap->lock, flags);
return;
}
if (success &&
bitmap->events_cleared < bitmap->mddev->events) {
bitmap->events_cleared = bitmap->mddev->events;
bitmap->need_sync = 1;
}
if (!success && ! (*bmc & NEEDED_MASK))
*bmc |= NEEDED_MASK;
if ((*bmc & COUNTER_MAX) == COUNTER_MAX)
wake_up(&bitmap->overflow_wait);
(*bmc)--;
if (*bmc <= 2) {
set_page_attr(bitmap,
filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)),
BITMAP_PAGE_CLEAN);
}
spin_unlock_irqrestore(&bitmap->lock, flags);
offset += blocks;
if (sectors > blocks)
sectors -= blocks;
else sectors = 0;
}
}
int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, int *blocks,
int degraded)
{
bitmap_counter_t *bmc;
int rv;
if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
*blocks = 1024;
return 1; /* always resync if no bitmap */
}
spin_lock_irq(&bitmap->lock);
bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
rv = 0;
if (bmc) {
/* locked */
if (RESYNC(*bmc))
rv = 1;
else if (NEEDED(*bmc)) {
rv = 1;
if (!degraded) { /* don't set/clear bits if degraded */
*bmc |= RESYNC_MASK;
*bmc &= ~NEEDED_MASK;
}
}
}
spin_unlock_irq(&bitmap->lock);
bitmap->allclean = 0;
return rv;
}
void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int aborted)
{
bitmap_counter_t *bmc;
unsigned long flags;
/*
if (offset == 0) printk("bitmap_end_sync 0 (%d)\n", aborted);
*/ if (bitmap == NULL) {
*blocks = 1024;
return;
}
spin_lock_irqsave(&bitmap->lock, flags);
bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
if (bmc == NULL)
goto unlock;
/* locked */
/*
if (offset == 0) printk("bitmap_end sync found 0x%x, blocks %d\n", *bmc, *blocks);
*/
if (RESYNC(*bmc)) {
*bmc &= ~RESYNC_MASK;
if (!NEEDED(*bmc) && aborted)
*bmc |= NEEDED_MASK;
else {
if (*bmc <= 2) {
set_page_attr(bitmap,
filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)),
BITMAP_PAGE_CLEAN);
}
}
}
unlock:
spin_unlock_irqrestore(&bitmap->lock, flags);
bitmap->allclean = 0;
}
void bitmap_close_sync(struct bitmap *bitmap)
{
/* Sync has finished, and any bitmap chunks that weren't synced
* properly have been aborted. It remains to us to clear the
* RESYNC bit wherever it is still on
*/
sector_t sector = 0;
int blocks;
if (!bitmap)
return;
while (sector < bitmap->mddev->resync_max_sectors) {
bitmap_end_sync(bitmap, sector, &blocks, 0);
sector += blocks;
}
}
void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector)
{
sector_t s = 0;
int blocks;
if (!bitmap)
return;
if (sector == 0) {
bitmap->last_end_sync = jiffies;
return;
}
if (time_before(jiffies, (bitmap->last_end_sync
+ bitmap->daemon_sleep * HZ)))
return;
wait_event(bitmap->mddev->recovery_wait,
atomic_read(&bitmap->mddev->recovery_active) == 0);
sector &= ~((1ULL << CHUNK_BLOCK_SHIFT(bitmap)) - 1);
s = 0;
while (s < sector && s < bitmap->mddev->resync_max_sectors) {
bitmap_end_sync(bitmap, s, &blocks, 0);
s += blocks;
}
bitmap->last_end_sync = jiffies;
}
static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
{
/* For each chunk covered by any of these sectors, set the
* counter to 1 and set resync_needed. They should all
* be 0 at this point
*/
int secs;
bitmap_counter_t *bmc;
spin_lock_irq(&bitmap->lock);
bmc = bitmap_get_counter(bitmap, offset, &secs, 1);
if (!bmc) {
spin_unlock_irq(&bitmap->lock);
return;
}
if (! *bmc) {
struct page *page;
*bmc = 1 | (needed?NEEDED_MASK:0);
bitmap_count_page(bitmap, offset, 1);
page = filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap));
set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
}
spin_unlock_irq(&bitmap->lock);
bitmap->allclean = 0;
}
/* dirty the memory and file bits for bitmap chunks "s" to "e" */
void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e)
{
unsigned long chunk;
for (chunk = s; chunk <= e; chunk++) {
sector_t sec = chunk << CHUNK_BLOCK_SHIFT(bitmap);
bitmap_set_memory_bits(bitmap, sec, 1);
bitmap_file_set_bit(bitmap, sec);
}
}
/*
* flush out any pending updates
*/
void bitmap_flush(mddev_t *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
int sleep;
if (!bitmap) /* there was no bitmap */
return;
/* run the daemon_work three time to ensure everything is flushed
* that can be
*/
sleep = bitmap->daemon_sleep;
bitmap->daemon_sleep = 0;
bitmap_daemon_work(bitmap);
bitmap_daemon_work(bitmap);
bitmap_daemon_work(bitmap);
bitmap->daemon_sleep = sleep;
bitmap_update_sb(bitmap);
}
/*
* free memory that was allocated
*/
static void bitmap_free(struct bitmap *bitmap)
{
unsigned long k, pages;
struct bitmap_page *bp;
if (!bitmap) /* there was no bitmap */
return;
/* release the bitmap file and kill the daemon */
bitmap_file_put(bitmap);
bp = bitmap->bp;
pages = bitmap->pages;
/* free all allocated memory */
if (bp) /* deallocate the page memory */
for (k = 0; k < pages; k++)
if (bp[k].map && !bp[k].hijacked)
kfree(bp[k].map);
kfree(bp);
kfree(bitmap);
}
void bitmap_destroy(mddev_t *mddev)
{
struct bitmap *bitmap = mddev->bitmap;
if (!bitmap) /* there was no bitmap */
return;
mddev->bitmap = NULL; /* disconnect from the md device */
if (mddev->thread)
mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
bitmap_free(bitmap);
}
/*
* initialize the bitmap structure
* if this returns an error, bitmap_destroy must be called to do clean up
*/
int bitmap_create(mddev_t *mddev)
{
struct bitmap *bitmap;
unsigned long blocks = mddev->resync_max_sectors;
unsigned long chunks;
unsigned long pages;
struct file *file = mddev->bitmap_file;
int err;
sector_t start;
BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
if (!file && !mddev->bitmap_offset) /* bitmap disabled, nothing to do */
return 0;
BUG_ON(file && mddev->bitmap_offset);
bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
if (!bitmap)
return -ENOMEM;
spin_lock_init(&bitmap->lock);
atomic_set(&bitmap->pending_writes, 0);
init_waitqueue_head(&bitmap->write_wait);
init_waitqueue_head(&bitmap->overflow_wait);
bitmap->mddev = mddev;
bitmap->file = file;
bitmap->offset = mddev->bitmap_offset;
if (file) {
get_file(file);
do_sync_mapping_range(file->f_mapping, 0, LLONG_MAX,
SYNC_FILE_RANGE_WAIT_BEFORE |
SYNC_FILE_RANGE_WRITE |
SYNC_FILE_RANGE_WAIT_AFTER);
}
/* read superblock from bitmap file (this sets bitmap->chunksize) */
err = bitmap_read_sb(bitmap);
if (err)
goto error;
bitmap->chunkshift = ffz(~bitmap->chunksize);
/* now that chunksize and chunkshift are set, we can use these macros */
chunks = (blocks + CHUNK_BLOCK_RATIO(bitmap) - 1) /
CHUNK_BLOCK_RATIO(bitmap);
pages = (chunks + PAGE_COUNTER_RATIO - 1) / PAGE_COUNTER_RATIO;
BUG_ON(!pages);
bitmap->chunks = chunks;
bitmap->pages = pages;
bitmap->missing_pages = pages;
bitmap->counter_bits = COUNTER_BITS;
bitmap->syncchunk = ~0UL;
#ifdef INJECT_FATAL_FAULT_1
bitmap->bp = NULL;
#else
bitmap->bp = kzalloc(pages * sizeof(*bitmap->bp), GFP_KERNEL);
#endif
err = -ENOMEM;
if (!bitmap->bp)
goto error;
/* now that we have some pages available, initialize the in-memory
* bitmap from the on-disk bitmap */
start = 0;
if (mddev->degraded == 0
|| bitmap->events_cleared == mddev->events)
/* no need to keep dirty bits to optimise a re-add of a missing device */
start = mddev->recovery_cp;
err = bitmap_init_from_disk(bitmap, start);
if (err)
goto error;
printk(KERN_INFO "created bitmap (%lu pages) for device %s\n",
pages, bmname(bitmap));
mddev->bitmap = bitmap;
mddev->thread->timeout = bitmap->daemon_sleep * HZ;
bitmap_update_sb(bitmap);
return (bitmap->flags & BITMAP_WRITE_ERROR) ? -EIO : 0;
error:
bitmap_free(bitmap);
return err;
}
/* the bitmap API -- for raid personalities */
EXPORT_SYMBOL(bitmap_startwrite);
EXPORT_SYMBOL(bitmap_endwrite);
EXPORT_SYMBOL(bitmap_start_sync);
EXPORT_SYMBOL(bitmap_end_sync);
EXPORT_SYMBOL(bitmap_unplug);
EXPORT_SYMBOL(bitmap_close_sync);
EXPORT_SYMBOL(bitmap_cond_end_sync);