forked from Minki/linux
5a1a3df1f6
When finishing io we run btrfs_dec_test_ordered_pending, and then immediately run btrfs_lookup_ordered_extent, but btrfs_dec_test_ordered_pending does that already, so we're searching twice when we don't have to. This patch lets us pass a btrfs_ordered_extent in to btrfs_dec_test_ordered_pending so if we do complete io on that ordered extent we can just use the one we found then instead of having to do another btrfs_lookup_ordered_extent. This made my fio job with the other patch go from 24 mb/s to 29 mb/s. Signed-off-by: Josef Bacik <josef@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
836 lines
22 KiB
C
836 lines
22 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->len < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->len;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* helper to check if a given offset is inside a given entry
|
|
*/
|
|
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
|
|
{
|
|
if (file_offset < entry->file_offset ||
|
|
entry->file_offset + entry->len <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_root *root = &tree->tree;
|
|
struct rb_node *prev;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (tree->last) {
|
|
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (offset_in_entry(entry, file_offset))
|
|
return tree->last;
|
|
}
|
|
ret = __tree_search(root, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
tree->last = ret;
|
|
return ret;
|
|
}
|
|
|
|
/* allocate and add a new ordered_extent into the per-inode tree.
|
|
* file_offset is the logical offset in the file
|
|
*
|
|
* start is the disk block number of an extent already reserved in the
|
|
* extent allocation tree
|
|
*
|
|
* len is the length of the extent
|
|
*
|
|
* The tree is given a single reference on the ordered extent that was
|
|
* inserted.
|
|
*/
|
|
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
|
|
u64 start, u64 len, u64 disk_len, int type)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
entry = kzalloc(sizeof(*entry), GFP_NOFS);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->start = start;
|
|
entry->len = len;
|
|
entry->disk_len = disk_len;
|
|
entry->bytes_left = len;
|
|
entry->inode = inode;
|
|
if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
|
|
set_bit(type, &entry->flags);
|
|
|
|
/* one ref for the tree */
|
|
atomic_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
|
|
spin_lock(&tree->lock);
|
|
node = tree_insert(&tree->tree, file_offset,
|
|
&entry->rb_node);
|
|
BUG_ON(node);
|
|
spin_unlock(&tree->lock);
|
|
|
|
spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&BTRFS_I(inode)->root->fs_info->ordered_extents);
|
|
spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
|
|
|
|
BUG_ON(node);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
int btrfs_add_ordered_sum(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock(&tree->lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
spin_unlock(&tree->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this is used to account for finished IO across a given range
|
|
* of the file. The IO should not span ordered extents. If
|
|
* a given ordered_extent is completely done, 1 is returned, otherwise
|
|
* 0.
|
|
*
|
|
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
|
|
* to make sure this function only returns 1 once for a given ordered extent.
|
|
*/
|
|
int btrfs_dec_test_ordered_pending(struct inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, file_offset)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (io_size > entry->bytes_left) {
|
|
printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
|
|
(unsigned long long)entry->bytes_left,
|
|
(unsigned long long)io_size);
|
|
}
|
|
entry->bytes_left -= io_size;
|
|
if (entry->bytes_left == 0)
|
|
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
else
|
|
ret = 1;
|
|
out:
|
|
if (!ret && cached && entry) {
|
|
*cached = entry;
|
|
atomic_inc(&entry->refs);
|
|
}
|
|
spin_unlock(&tree->lock);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
if (atomic_dec_and_test(&entry->refs)) {
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kfree(sum);
|
|
}
|
|
kfree(entry);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and you must wake_up entry->wait. You must hold the tree lock
|
|
* while you call this function.
|
|
*/
|
|
static int __btrfs_remove_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
tree->last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
|
|
spin_lock(&BTRFS_I(inode)->accounting_lock);
|
|
BTRFS_I(inode)->outstanding_extents--;
|
|
spin_unlock(&BTRFS_I(inode)->accounting_lock);
|
|
btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
|
|
inode, 1);
|
|
|
|
spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
|
|
/*
|
|
* we have no more ordered extents for this inode and
|
|
* no dirty pages. We can safely remove it from the
|
|
* list of ordered extents
|
|
*/
|
|
if (RB_EMPTY_ROOT(&tree->tree) &&
|
|
!mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
|
|
list_del_init(&BTRFS_I(inode)->ordered_operations);
|
|
}
|
|
spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* but any waiters are woken.
|
|
*/
|
|
int btrfs_remove_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
int ret;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock(&tree->lock);
|
|
ret = __btrfs_remove_ordered_extent(inode, entry);
|
|
spin_unlock(&tree->lock);
|
|
wake_up(&entry->wait);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* wait for all the ordered extents in a root. This is done when balancing
|
|
* space between drives.
|
|
*/
|
|
int btrfs_wait_ordered_extents(struct btrfs_root *root,
|
|
int nocow_only, int delay_iput)
|
|
{
|
|
struct list_head splice;
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct inode *inode;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
list_splice_init(&root->fs_info->ordered_extents, &splice);
|
|
while (!list_empty(&splice)) {
|
|
cur = splice.next;
|
|
ordered = list_entry(cur, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
if (nocow_only &&
|
|
!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
|
|
!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
|
|
list_move(&ordered->root_extent_list,
|
|
&root->fs_info->ordered_extents);
|
|
cond_resched_lock(&root->fs_info->ordered_extent_lock);
|
|
continue;
|
|
}
|
|
|
|
list_del_init(&ordered->root_extent_list);
|
|
atomic_inc(&ordered->refs);
|
|
|
|
/*
|
|
* the inode may be getting freed (in sys_unlink path).
|
|
*/
|
|
inode = igrab(ordered->inode);
|
|
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
|
|
if (inode) {
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (delay_iput)
|
|
btrfs_add_delayed_iput(inode);
|
|
else
|
|
iput(inode);
|
|
} else {
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
}
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this is used during transaction commit to write all the inodes
|
|
* added to the ordered operation list. These files must be fully on
|
|
* disk before the transaction commits.
|
|
*
|
|
* we have two modes here, one is to just start the IO via filemap_flush
|
|
* and the other is to wait for all the io. When we wait, we have an
|
|
* extra check to make sure the ordered operation list really is empty
|
|
* before we return
|
|
*/
|
|
int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
|
|
{
|
|
struct btrfs_inode *btrfs_inode;
|
|
struct inode *inode;
|
|
struct list_head splice;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&root->fs_info->ordered_operations_mutex);
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
again:
|
|
list_splice_init(&root->fs_info->ordered_operations, &splice);
|
|
|
|
while (!list_empty(&splice)) {
|
|
btrfs_inode = list_entry(splice.next, struct btrfs_inode,
|
|
ordered_operations);
|
|
|
|
inode = &btrfs_inode->vfs_inode;
|
|
|
|
list_del_init(&btrfs_inode->ordered_operations);
|
|
|
|
/*
|
|
* the inode may be getting freed (in sys_unlink path).
|
|
*/
|
|
inode = igrab(inode);
|
|
|
|
if (!wait && inode) {
|
|
list_add_tail(&BTRFS_I(inode)->ordered_operations,
|
|
&root->fs_info->ordered_operations);
|
|
}
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
|
|
if (inode) {
|
|
if (wait)
|
|
btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
else
|
|
filemap_flush(inode->i_mapping);
|
|
btrfs_add_delayed_iput(inode);
|
|
}
|
|
|
|
cond_resched();
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
}
|
|
if (wait && !list_empty(&root->fs_info->ordered_operations))
|
|
goto again;
|
|
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
mutex_unlock(&root->fs_info->ordered_operations_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Used to start IO or wait for a given ordered extent to finish.
|
|
*
|
|
* If wait is one, this effectively waits on page writeback for all the pages
|
|
* in the extent, and it waits on the io completion code to insert
|
|
* metadata into the btree corresponding to the extent
|
|
*/
|
|
void btrfs_start_ordered_extent(struct inode *inode,
|
|
struct btrfs_ordered_extent *entry,
|
|
int wait)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->len - 1;
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for pdflush to find them
|
|
*/
|
|
filemap_fdatawrite_range(inode->i_mapping, start, end);
|
|
if (wait) {
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
|
|
&entry->flags));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
|
|
{
|
|
u64 end;
|
|
u64 orig_end;
|
|
u64 wait_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
int found;
|
|
|
|
if (start + len < start) {
|
|
orig_end = INT_LIMIT(loff_t);
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > INT_LIMIT(loff_t))
|
|
orig_end = INT_LIMIT(loff_t);
|
|
}
|
|
wait_end = orig_end;
|
|
again:
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
|
|
|
|
/* The compression code will leave pages locked but return from
|
|
* writepage without setting the page writeback. Starting again
|
|
* with WB_SYNC_ALL will end up waiting for the IO to actually start.
|
|
*/
|
|
filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
|
|
|
|
filemap_fdatawait_range(inode->i_mapping, start, orig_end);
|
|
|
|
end = orig_end;
|
|
found = 0;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(inode, end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->len < start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
found++;
|
|
btrfs_start_ordered_extent(inode, ordered, 1);
|
|
end = ordered->file_offset;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
|
|
EXTENT_DELALLOC, 0, NULL)) {
|
|
schedule_timeout(1);
|
|
goto again;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!offset_in_entry(entry, file_offset))
|
|
entry = NULL;
|
|
if (entry)
|
|
atomic_inc(&entry->refs);
|
|
out:
|
|
spin_unlock(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &BTRFS_I(inode)->ordered_tree;
|
|
spin_lock(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
atomic_inc(&entry->refs);
|
|
out:
|
|
spin_unlock(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* After an extent is done, call this to conditionally update the on disk
|
|
* i_size. i_size is updated to cover any fully written part of the file.
|
|
*/
|
|
int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
|
|
struct btrfs_ordered_extent *ordered)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
u64 disk_i_size;
|
|
u64 new_i_size;
|
|
u64 i_size_test;
|
|
u64 i_size = i_size_read(inode);
|
|
struct rb_node *node;
|
|
struct rb_node *prev = NULL;
|
|
struct btrfs_ordered_extent *test;
|
|
int ret = 1;
|
|
|
|
if (ordered)
|
|
offset = entry_end(ordered);
|
|
else
|
|
offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
|
|
|
|
spin_lock(&tree->lock);
|
|
disk_i_size = BTRFS_I(inode)->disk_i_size;
|
|
|
|
/* truncate file */
|
|
if (disk_i_size > i_size) {
|
|
BTRFS_I(inode)->disk_i_size = i_size;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if the disk i_size is already at the inode->i_size, or
|
|
* this ordered extent is inside the disk i_size, we're done
|
|
*/
|
|
if (disk_i_size == i_size || offset <= disk_i_size) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* we can't update the disk_isize if there are delalloc bytes
|
|
* between disk_i_size and this ordered extent
|
|
*/
|
|
if (test_range_bit(io_tree, disk_i_size, offset - 1,
|
|
EXTENT_DELALLOC, 0, NULL)) {
|
|
goto out;
|
|
}
|
|
/*
|
|
* walk backward from this ordered extent to disk_i_size.
|
|
* if we find an ordered extent then we can't update disk i_size
|
|
* yet
|
|
*/
|
|
if (ordered) {
|
|
node = rb_prev(&ordered->rb_node);
|
|
} else {
|
|
prev = tree_search(tree, offset);
|
|
/*
|
|
* we insert file extents without involving ordered struct,
|
|
* so there should be no ordered struct cover this offset
|
|
*/
|
|
if (prev) {
|
|
test = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
BUG_ON(offset_in_entry(test, offset));
|
|
}
|
|
node = prev;
|
|
}
|
|
while (node) {
|
|
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (test->file_offset + test->len <= disk_i_size)
|
|
break;
|
|
if (test->file_offset >= i_size)
|
|
break;
|
|
if (test->file_offset >= disk_i_size)
|
|
goto out;
|
|
node = rb_prev(node);
|
|
}
|
|
new_i_size = min_t(u64, offset, i_size);
|
|
|
|
/*
|
|
* at this point, we know we can safely update i_size to at least
|
|
* the offset from this ordered extent. But, we need to
|
|
* walk forward and see if ios from higher up in the file have
|
|
* finished.
|
|
*/
|
|
if (ordered) {
|
|
node = rb_next(&ordered->rb_node);
|
|
} else {
|
|
if (prev)
|
|
node = rb_next(prev);
|
|
else
|
|
node = rb_first(&tree->tree);
|
|
}
|
|
i_size_test = 0;
|
|
if (node) {
|
|
/*
|
|
* do we have an area where IO might have finished
|
|
* between our ordered extent and the next one.
|
|
*/
|
|
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (test->file_offset > offset)
|
|
i_size_test = test->file_offset;
|
|
} else {
|
|
i_size_test = i_size;
|
|
}
|
|
|
|
/*
|
|
* i_size_test is the end of a region after this ordered
|
|
* extent where there are no ordered extents. As long as there
|
|
* are no delalloc bytes in this area, it is safe to update
|
|
* disk_i_size to the end of the region.
|
|
*/
|
|
if (i_size_test > offset &&
|
|
!test_range_bit(io_tree, offset, i_size_test - 1,
|
|
EXTENT_DELALLOC, 0, NULL)) {
|
|
new_i_size = min_t(u64, i_size_test, i_size);
|
|
}
|
|
BTRFS_I(inode)->disk_i_size = new_i_size;
|
|
ret = 0;
|
|
out:
|
|
/*
|
|
* we need to remove the ordered extent with the tree lock held
|
|
* so that other people calling this function don't find our fully
|
|
* processed ordered entry and skip updating the i_size
|
|
*/
|
|
if (ordered)
|
|
__btrfs_remove_ordered_extent(inode, ordered);
|
|
spin_unlock(&tree->lock);
|
|
if (ordered)
|
|
wake_up(&ordered->wait);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* search the ordered extents for one corresponding to 'offset' and
|
|
* try to find a checksum. This is used because we allow pages to
|
|
* be reclaimed before their checksum is actually put into the btree
|
|
*/
|
|
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
|
|
u32 *sum)
|
|
{
|
|
struct btrfs_ordered_sum *ordered_sum;
|
|
struct btrfs_sector_sum *sector_sums;
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
unsigned long num_sectors;
|
|
unsigned long i;
|
|
u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
|
|
int ret = 1;
|
|
|
|
ordered = btrfs_lookup_ordered_extent(inode, offset);
|
|
if (!ordered)
|
|
return 1;
|
|
|
|
spin_lock(&tree->lock);
|
|
list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
|
|
if (disk_bytenr >= ordered_sum->bytenr) {
|
|
num_sectors = ordered_sum->len / sectorsize;
|
|
sector_sums = ordered_sum->sums;
|
|
for (i = 0; i < num_sectors; i++) {
|
|
if (sector_sums[i].bytenr == disk_bytenr) {
|
|
*sum = sector_sums[i].sum;
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&tree->lock);
|
|
btrfs_put_ordered_extent(ordered);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* add a given inode to the list of inodes that must be fully on
|
|
* disk before a transaction commit finishes.
|
|
*
|
|
* This basically gives us the ext3 style data=ordered mode, and it is mostly
|
|
* used to make sure renamed files are fully on disk.
|
|
*
|
|
* It is a noop if the inode is already fully on disk.
|
|
*
|
|
* If trans is not null, we'll do a friendly check for a transaction that
|
|
* is already flushing things and force the IO down ourselves.
|
|
*/
|
|
int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct inode *inode)
|
|
{
|
|
u64 last_mod;
|
|
|
|
last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
|
|
|
|
/*
|
|
* if this file hasn't been changed since the last transaction
|
|
* commit, we can safely return without doing anything
|
|
*/
|
|
if (last_mod < root->fs_info->last_trans_committed)
|
|
return 0;
|
|
|
|
/*
|
|
* the transaction is already committing. Just start the IO and
|
|
* don't bother with all of this list nonsense
|
|
*/
|
|
if (trans && root->fs_info->running_transaction->blocked) {
|
|
btrfs_wait_ordered_range(inode, 0, (u64)-1);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&root->fs_info->ordered_extent_lock);
|
|
if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
|
|
list_add_tail(&BTRFS_I(inode)->ordered_operations,
|
|
&root->fs_info->ordered_operations);
|
|
}
|
|
spin_unlock(&root->fs_info->ordered_extent_lock);
|
|
|
|
return 0;
|
|
}
|