linux/mm/hugetlb_vmemmap.c
Vasily Gorbik db5e8d8431 mm: hugetlb_vmemmap: include missing linux/moduleparam.h
The kernel test robot reported build failures with a 'randconfig' on s390:
>> mm/hugetlb_vmemmap.c:421:11: error: a function declaration without a
prototype is deprecated in all versions of C [-Werror,-Wstrict-prototypes]
   core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
             ^

Link: https://lore.kernel.org/linux-mm/202210300751.rG3UDsuc-lkp@intel.com/
Link: https://lkml.kernel.org/r/patch.git-296b83ca939b.your-ad-here.call-01667411912-ext-5073@work.hours
Fixes: 30152245c6 ("mm: hugetlb_vmemmap: replace early_param() with core_param()")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-08 15:57:23 -08:00

584 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* HugeTLB Vmemmap Optimization (HVO)
*
* Copyright (c) 2020, ByteDance. All rights reserved.
*
* Author: Muchun Song <songmuchun@bytedance.com>
*
* See Documentation/mm/vmemmap_dedup.rst
*/
#define pr_fmt(fmt) "HugeTLB: " fmt
#include <linux/pgtable.h>
#include <linux/moduleparam.h>
#include <linux/bootmem_info.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include "hugetlb_vmemmap.h"
/**
* struct vmemmap_remap_walk - walk vmemmap page table
*
* @remap_pte: called for each lowest-level entry (PTE).
* @nr_walked: the number of walked pte.
* @reuse_page: the page which is reused for the tail vmemmap pages.
* @reuse_addr: the virtual address of the @reuse_page page.
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
* or is mapped from.
*/
struct vmemmap_remap_walk {
void (*remap_pte)(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk);
unsigned long nr_walked;
struct page *reuse_page;
unsigned long reuse_addr;
struct list_head *vmemmap_pages;
};
static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
{
pmd_t __pmd;
int i;
unsigned long addr = start;
struct page *page = pmd_page(*pmd);
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
if (!pgtable)
return -ENOMEM;
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
pgprot_t pgprot = PAGE_KERNEL;
entry = mk_pte(page + i, pgprot);
pte = pte_offset_kernel(&__pmd, addr);
set_pte_at(&init_mm, addr, pte, entry);
}
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_leaf(*pmd))) {
/*
* Higher order allocations from buddy allocator must be able to
* be treated as indepdenent small pages (as they can be freed
* individually).
*/
if (!PageReserved(page))
split_page(page, get_order(PMD_SIZE));
/* Make pte visible before pmd. See comment in pmd_install(). */
smp_wmb();
pmd_populate_kernel(&init_mm, pmd, pgtable);
flush_tlb_kernel_range(start, start + PMD_SIZE);
} else {
pte_free_kernel(&init_mm, pgtable);
}
spin_unlock(&init_mm.page_table_lock);
return 0;
}
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
{
int leaf;
spin_lock(&init_mm.page_table_lock);
leaf = pmd_leaf(*pmd);
spin_unlock(&init_mm.page_table_lock);
if (!leaf)
return 0;
return __split_vmemmap_huge_pmd(pmd, start);
}
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
/*
* The reuse_page is found 'first' in table walk before we start
* remapping (which is calling @walk->remap_pte).
*/
if (!walk->reuse_page) {
walk->reuse_page = pte_page(*pte);
/*
* Because the reuse address is part of the range that we are
* walking, skip the reuse address range.
*/
addr += PAGE_SIZE;
pte++;
walk->nr_walked++;
}
for (; addr != end; addr += PAGE_SIZE, pte++) {
walk->remap_pte(pte, addr, walk);
walk->nr_walked++;
}
}
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
int ret;
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
if (ret)
return ret;
next = pmd_addr_end(addr, end);
vmemmap_pte_range(pmd, addr, next, walk);
} while (pmd++, addr = next, addr != end);
return 0;
}
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(p4d, addr);
do {
int ret;
next = pud_addr_end(addr, end);
ret = vmemmap_pmd_range(pud, addr, next, walk);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
int ret;
next = p4d_addr_end(addr, end);
ret = vmemmap_pud_range(p4d, addr, next, walk);
if (ret)
return ret;
} while (p4d++, addr = next, addr != end);
return 0;
}
static int vmemmap_remap_range(unsigned long start, unsigned long end,
struct vmemmap_remap_walk *walk)
{
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
VM_BUG_ON(!PAGE_ALIGNED(start));
VM_BUG_ON(!PAGE_ALIGNED(end));
pgd = pgd_offset_k(addr);
do {
int ret;
next = pgd_addr_end(addr, end);
ret = vmemmap_p4d_range(pgd, addr, next, walk);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
/*
* We only change the mapping of the vmemmap virtual address range
* [@start + PAGE_SIZE, end), so we only need to flush the TLB which
* belongs to the range.
*/
flush_tlb_kernel_range(start + PAGE_SIZE, end);
return 0;
}
/*
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
* allocator or buddy allocator. If the PG_reserved flag is set, it means
* that it allocated from the memblock allocator, just free it via the
* free_bootmem_page(). Otherwise, use __free_page().
*/
static inline void free_vmemmap_page(struct page *page)
{
if (PageReserved(page))
free_bootmem_page(page);
else
__free_page(page);
}
/* Free a list of the vmemmap pages */
static void free_vmemmap_page_list(struct list_head *list)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
list_del(&page->lru);
free_vmemmap_page(page);
}
}
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
/*
* Remap the tail pages as read-only to catch illegal write operation
* to the tail pages.
*/
pgprot_t pgprot = PAGE_KERNEL_RO;
pte_t entry = mk_pte(walk->reuse_page, pgprot);
struct page *page = pte_page(*pte);
list_add_tail(&page->lru, walk->vmemmap_pages);
set_pte_at(&init_mm, addr, pte, entry);
}
/*
* How many struct page structs need to be reset. When we reuse the head
* struct page, the special metadata (e.g. page->flags or page->mapping)
* cannot copy to the tail struct page structs. The invalid value will be
* checked in the free_tail_pages_check(). In order to avoid the message
* of "corrupted mapping in tail page". We need to reset at least 3 (one
* head struct page struct and two tail struct page structs) struct page
* structs.
*/
#define NR_RESET_STRUCT_PAGE 3
static inline void reset_struct_pages(struct page *start)
{
struct page *from = start + NR_RESET_STRUCT_PAGE;
BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
}
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
pgprot_t pgprot = PAGE_KERNEL;
struct page *page;
void *to;
BUG_ON(pte_page(*pte) != walk->reuse_page);
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
list_del(&page->lru);
to = page_to_virt(page);
copy_page(to, (void *)walk->reuse_addr);
reset_struct_pages(to);
/*
* Makes sure that preceding stores to the page contents become visible
* before the set_pte_at() write.
*/
smp_wmb();
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}
/**
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
* to the page which @reuse is mapped to, then free vmemmap
* which the range are mapped to.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_free(unsigned long start, unsigned long end,
unsigned long reuse)
{
int ret;
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_remap_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/*
* In order to make remapping routine most efficient for the huge pages,
* the routine of vmemmap page table walking has the following rules
* (see more details from the vmemmap_pte_range()):
*
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
* should be continuous.
* - The @reuse address is part of the range [@reuse, @end) that we are
* walking which is passed to vmemmap_remap_range().
* - The @reuse address is the first in the complete range.
*
* So we need to make sure that @start and @reuse meet the above rules.
*/
BUG_ON(start - reuse != PAGE_SIZE);
mmap_read_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
if (ret && walk.nr_walked) {
end = reuse + walk.nr_walked * PAGE_SIZE;
/*
* vmemmap_pages contains pages from the previous
* vmemmap_remap_range call which failed. These
* are pages which were removed from the vmemmap.
* They will be restored in the following call.
*/
walk = (struct vmemmap_remap_walk) {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
vmemmap_remap_range(reuse, end, &walk);
}
mmap_read_unlock(&init_mm);
free_vmemmap_page_list(&vmemmap_pages);
return ret;
}
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
gfp_t gfp_mask, struct list_head *list)
{
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
int nid = page_to_nid((struct page *)start);
struct page *page, *next;
while (nr_pages--) {
page = alloc_pages_node(nid, gfp_mask, 0);
if (!page)
goto out;
list_add_tail(&page->lru, list);
}
return 0;
out:
list_for_each_entry_safe(page, next, list, lru)
__free_pages(page, 0);
return -ENOMEM;
}
/**
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
* to the page which is from the @vmemmap_pages
* respectively.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
* @gfp_mask: GFP flag for allocating vmemmap pages.
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
unsigned long reuse, gfp_t gfp_mask)
{
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
return -ENOMEM;
mmap_read_lock(&init_mm);
vmemmap_remap_range(reuse, end, &walk);
mmap_read_unlock(&init_mm);
return 0;
}
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
/**
* hugetlb_vmemmap_restore - restore previously optimized (by
* hugetlb_vmemmap_optimize()) vmemmap pages which
* will be reallocated and remapped.
* @h: struct hstate.
* @head: the head page whose vmemmap pages will be restored.
*
* Return: %0 if @head's vmemmap pages have been reallocated and remapped,
* negative error code otherwise.
*/
int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
{
int ret;
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
unsigned long vmemmap_reuse;
if (!HPageVmemmapOptimized(head))
return 0;
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
* The pages which the vmemmap virtual address range [@vmemmap_start,
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
* the range is mapped to the page which @vmemmap_reuse is mapped to.
* When a HugeTLB page is freed to the buddy allocator, previously
* discarded vmemmap pages must be allocated and remapping.
*/
ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
if (!ret) {
ClearHPageVmemmapOptimized(head);
static_branch_dec(&hugetlb_optimize_vmemmap_key);
}
return ret;
}
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
{
if (!READ_ONCE(vmemmap_optimize_enabled))
return false;
if (!hugetlb_vmemmap_optimizable(h))
return false;
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
pmd_t *pmdp, pmd;
struct page *vmemmap_page;
unsigned long vaddr = (unsigned long)head;
/*
* Only the vmemmap page's vmemmap page can be self-hosted.
* Walking the page tables to find the backing page of the
* vmemmap page.
*/
pmdp = pmd_off_k(vaddr);
/*
* The READ_ONCE() is used to stabilize *pmdp in a register or
* on the stack so that it will stop changing under the code.
* The only concurrent operation where it can be changed is
* split_vmemmap_huge_pmd() (*pmdp will be stable after this
* operation).
*/
pmd = READ_ONCE(*pmdp);
if (pmd_leaf(pmd))
vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
else
vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
/*
* Due to HugeTLB alignment requirements and the vmemmap pages
* being at the start of the hotplugged memory region in
* memory_hotplug.memmap_on_memory case. Checking any vmemmap
* page's vmemmap page if it is marked as VmemmapSelfHosted is
* sufficient.
*
* [ hotplugged memory ]
* [ section ][...][ section ]
* [ vmemmap ][ usable memory ]
* ^ | | |
* +---+ | |
* ^ | |
* +-------+ |
* ^ |
* +-------------------------------------------+
*/
if (PageVmemmapSelfHosted(vmemmap_page))
return false;
}
return true;
}
/**
* hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
* @h: struct hstate.
* @head: the head page whose vmemmap pages will be optimized.
*
* This function only tries to optimize @head's vmemmap pages and does not
* guarantee that the optimization will succeed after it returns. The caller
* can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
* have been optimized.
*/
void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
{
unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
unsigned long vmemmap_reuse;
if (!vmemmap_should_optimize(h, head))
return;
static_branch_inc(&hugetlb_optimize_vmemmap_key);
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
* Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
* to the page which @vmemmap_reuse is mapped to, then free the pages
* which the range [@vmemmap_start, @vmemmap_end] is mapped to.
*/
if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
static_branch_dec(&hugetlb_optimize_vmemmap_key);
else
SetHPageVmemmapOptimized(head);
}
static struct ctl_table hugetlb_vmemmap_sysctls[] = {
{
.procname = "hugetlb_optimize_vmemmap",
.data = &vmemmap_optimize_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dobool,
},
{ }
};
static int __init hugetlb_vmemmap_init(void)
{
/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
const struct hstate *h;
for_each_hstate(h) {
if (hugetlb_vmemmap_optimizable(h)) {
register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
break;
}
}
}
return 0;
}
late_initcall(hugetlb_vmemmap_init);