/* * linux/fs/nfs/file.c * * Copyright (C) 1992 Rick Sladkey * * Changes Copyright (C) 1994 by Florian La Roche * - Do not copy data too often around in the kernel. * - In nfs_file_read the return value of kmalloc wasn't checked. * - Put in a better version of read look-ahead buffering. Original idea * and implementation by Wai S Kok elekokws@ee.nus.sg. * * Expire cache on write to a file by Wai S Kok (Oct 1994). * * Total rewrite of read side for new NFS buffer cache.. Linus. * * nfs regular file handling functions */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "delegation.h" #include "internal.h" #include "iostat.h" #include "fscache.h" #include "nfstrace.h" #define NFSDBG_FACILITY NFSDBG_FILE static const struct vm_operations_struct nfs_file_vm_ops; /* Hack for future NFS swap support */ #ifndef IS_SWAPFILE # define IS_SWAPFILE(inode) (0) #endif int nfs_check_flags(int flags) { if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT)) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(nfs_check_flags); /* * Open file */ static int nfs_file_open(struct inode *inode, struct file *filp) { int res; dprintk("NFS: open file(%pD2)\n", filp); nfs_inc_stats(inode, NFSIOS_VFSOPEN); res = nfs_check_flags(filp->f_flags); if (res) return res; res = nfs_open(inode, filp); return res; } int nfs_file_release(struct inode *inode, struct file *filp) { dprintk("NFS: release(%pD2)\n", filp); nfs_inc_stats(inode, NFSIOS_VFSRELEASE); return nfs_release(inode, filp); } EXPORT_SYMBOL_GPL(nfs_file_release); /** * nfs_revalidate_size - Revalidate the file size * @inode - pointer to inode struct * @file - pointer to struct file * * Revalidates the file length. This is basically a wrapper around * nfs_revalidate_inode() that takes into account the fact that we may * have cached writes (in which case we don't care about the server's * idea of what the file length is), or O_DIRECT (in which case we * shouldn't trust the cache). */ static int nfs_revalidate_file_size(struct inode *inode, struct file *filp) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_inode *nfsi = NFS_I(inode); if (nfs_have_delegated_attributes(inode)) goto out_noreval; if (filp->f_flags & O_DIRECT) goto force_reval; if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE) goto force_reval; if (nfs_attribute_timeout(inode)) goto force_reval; out_noreval: return 0; force_reval: return __nfs_revalidate_inode(server, inode); } loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence) { dprintk("NFS: llseek file(%pD2, %lld, %d)\n", filp, offset, whence); /* * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate * the cached file length */ if (whence != SEEK_SET && whence != SEEK_CUR) { struct inode *inode = filp->f_mapping->host; int retval = nfs_revalidate_file_size(inode, filp); if (retval < 0) return (loff_t)retval; } return generic_file_llseek(filp, offset, whence); } EXPORT_SYMBOL_GPL(nfs_file_llseek); /* * Flush all dirty pages, and check for write errors. */ int nfs_file_flush(struct file *file, fl_owner_t id) { struct inode *inode = file_inode(file); dprintk("NFS: flush(%pD2)\n", file); nfs_inc_stats(inode, NFSIOS_VFSFLUSH); if ((file->f_mode & FMODE_WRITE) == 0) return 0; /* * If we're holding a write delegation, then just start the i/o * but don't wait for completion (or send a commit). */ if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE)) return filemap_fdatawrite(file->f_mapping); /* Flush writes to the server and return any errors */ return vfs_fsync(file, 0); } EXPORT_SYMBOL_GPL(nfs_file_flush); ssize_t nfs_file_read(struct kiocb *iocb, struct iov_iter *to) { struct inode *inode = file_inode(iocb->ki_filp); ssize_t result; if (iocb->ki_filp->f_flags & O_DIRECT) return nfs_file_direct_read(iocb, to, iocb->ki_pos, true); dprintk("NFS: read(%pD2, %zu@%lu)\n", iocb->ki_filp, iov_iter_count(to), (unsigned long) iocb->ki_pos); result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping); if (!result) { result = generic_file_read_iter(iocb, to); if (result > 0) nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result); } return result; } EXPORT_SYMBOL_GPL(nfs_file_read); ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos, struct pipe_inode_info *pipe, size_t count, unsigned int flags) { struct inode *inode = file_inode(filp); ssize_t res; dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n", filp, (unsigned long) count, (unsigned long long) *ppos); res = nfs_revalidate_mapping(inode, filp->f_mapping); if (!res) { res = generic_file_splice_read(filp, ppos, pipe, count, flags); if (res > 0) nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res); } return res; } EXPORT_SYMBOL_GPL(nfs_file_splice_read); int nfs_file_mmap(struct file * file, struct vm_area_struct * vma) { struct inode *inode = file_inode(file); int status; dprintk("NFS: mmap(%pD2)\n", file); /* Note: generic_file_mmap() returns ENOSYS on nommu systems * so we call that before revalidating the mapping */ status = generic_file_mmap(file, vma); if (!status) { vma->vm_ops = &nfs_file_vm_ops; status = nfs_revalidate_mapping(inode, file->f_mapping); } return status; } EXPORT_SYMBOL_GPL(nfs_file_mmap); /* * Flush any dirty pages for this process, and check for write errors. * The return status from this call provides a reliable indication of * whether any write errors occurred for this process. * * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to * disk, but it retrieves and clears ctx->error after synching, despite * the two being set at the same time in nfs_context_set_write_error(). * This is because the former is used to notify the _next_ call to * nfs_file_write() that a write error occurred, and hence cause it to * fall back to doing a synchronous write. */ int nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync) { struct nfs_open_context *ctx = nfs_file_open_context(file); struct inode *inode = file_inode(file); int have_error, do_resend, status; int ret = 0; dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync); nfs_inc_stats(inode, NFSIOS_VFSFSYNC); do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); status = nfs_commit_inode(inode, FLUSH_SYNC); have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags); if (have_error) { ret = xchg(&ctx->error, 0); if (ret) goto out; } if (status < 0) { ret = status; goto out; } do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags); if (do_resend) ret = -EAGAIN; out: return ret; } EXPORT_SYMBOL_GPL(nfs_file_fsync_commit); static int nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync) { int ret; struct inode *inode = file_inode(file); trace_nfs_fsync_enter(inode); do { ret = filemap_write_and_wait_range(inode->i_mapping, start, end); if (ret != 0) break; mutex_lock(&inode->i_mutex); ret = nfs_file_fsync_commit(file, start, end, datasync); mutex_unlock(&inode->i_mutex); /* * If nfs_file_fsync_commit detected a server reboot, then * resend all dirty pages that might have been covered by * the NFS_CONTEXT_RESEND_WRITES flag */ start = 0; end = LLONG_MAX; } while (ret == -EAGAIN); trace_nfs_fsync_exit(inode, ret); return ret; } /* * Decide whether a read/modify/write cycle may be more efficient * then a modify/write/read cycle when writing to a page in the * page cache. * * The modify/write/read cycle may occur if a page is read before * being completely filled by the writer. In this situation, the * page must be completely written to stable storage on the server * before it can be refilled by reading in the page from the server. * This can lead to expensive, small, FILE_SYNC mode writes being * done. * * It may be more efficient to read the page first if the file is * open for reading in addition to writing, the page is not marked * as Uptodate, it is not dirty or waiting to be committed, * indicating that it was previously allocated and then modified, * that there were valid bytes of data in that range of the file, * and that the new data won't completely replace the old data in * that range of the file. */ static int nfs_want_read_modify_write(struct file *file, struct page *page, loff_t pos, unsigned len) { unsigned int pglen = nfs_page_length(page); unsigned int offset = pos & (PAGE_CACHE_SIZE - 1); unsigned int end = offset + len; if ((file->f_mode & FMODE_READ) && /* open for read? */ !PageUptodate(page) && /* Uptodate? */ !PagePrivate(page) && /* i/o request already? */ pglen && /* valid bytes of file? */ (end < pglen || offset)) /* replace all valid bytes? */ return 1; return 0; } /* * This does the "real" work of the write. We must allocate and lock the * page to be sent back to the generic routine, which then copies the * data from user space. * * If the writer ends up delaying the write, the writer needs to * increment the page use counts until he is done with the page. */ static int nfs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret; pgoff_t index = pos >> PAGE_CACHE_SHIFT; struct page *page; int once_thru = 0; dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n", file, mapping->host->i_ino, len, (long long) pos); start: /* * Prevent starvation issues if someone is doing a consistency * sync-to-disk */ ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING, nfs_wait_bit_killable, TASK_KILLABLE); if (ret) return ret; page = grab_cache_page_write_begin(mapping, index, flags); if (!page) return -ENOMEM; *pagep = page; ret = nfs_flush_incompatible(file, page); if (ret) { unlock_page(page); page_cache_release(page); } else if (!once_thru && nfs_want_read_modify_write(file, page, pos, len)) { once_thru = 1; ret = nfs_readpage(file, page); page_cache_release(page); if (!ret) goto start; } return ret; } static int nfs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { unsigned offset = pos & (PAGE_CACHE_SIZE - 1); struct nfs_open_context *ctx = nfs_file_open_context(file); int status; dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n", file, mapping->host->i_ino, len, (long long) pos); /* * Zero any uninitialised parts of the page, and then mark the page * as up to date if it turns out that we're extending the file. */ if (!PageUptodate(page)) { unsigned pglen = nfs_page_length(page); unsigned end = offset + len; if (pglen == 0) { zero_user_segments(page, 0, offset, end, PAGE_CACHE_SIZE); SetPageUptodate(page); } else if (end >= pglen) { zero_user_segment(page, end, PAGE_CACHE_SIZE); if (offset == 0) SetPageUptodate(page); } else zero_user_segment(page, pglen, PAGE_CACHE_SIZE); } status = nfs_updatepage(file, page, offset, copied); unlock_page(page); page_cache_release(page); if (status < 0) return status; NFS_I(mapping->host)->write_io += copied; if (nfs_ctx_key_to_expire(ctx)) { status = nfs_wb_all(mapping->host); if (status < 0) return status; } return copied; } /* * Partially or wholly invalidate a page * - Release the private state associated with a page if undergoing complete * page invalidation * - Called if either PG_private or PG_fscache is set on the page * - Caller holds page lock */ static void nfs_invalidate_page(struct page *page, unsigned int offset, unsigned int length) { dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n", page, offset, length); if (offset != 0 || length < PAGE_CACHE_SIZE) return; /* Cancel any unstarted writes on this page */ nfs_wb_page_cancel(page_file_mapping(page)->host, page); nfs_fscache_invalidate_page(page, page->mapping->host); } /* * Attempt to release the private state associated with a page * - Called if either PG_private or PG_fscache is set on the page * - Caller holds page lock * - Return true (may release page) or false (may not) */ static int nfs_release_page(struct page *page, gfp_t gfp) { struct address_space *mapping = page->mapping; dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page); /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not * doing this memory reclaim for a fs-related allocation. */ if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL && !(current->flags & PF_FSTRANS)) { int how = FLUSH_SYNC; /* Don't let kswapd deadlock waiting for OOM RPC calls */ if (current_is_kswapd()) how = 0; nfs_commit_inode(mapping->host, how); } /* If PagePrivate() is set, then the page is not freeable */ if (PagePrivate(page)) return 0; return nfs_fscache_release_page(page, gfp); } static void nfs_check_dirty_writeback(struct page *page, bool *dirty, bool *writeback) { struct nfs_inode *nfsi; struct address_space *mapping = page_file_mapping(page); if (!mapping || PageSwapCache(page)) return; /* * Check if an unstable page is currently being committed and * if so, have the VM treat it as if the page is under writeback * so it will not block due to pages that will shortly be freeable. */ nfsi = NFS_I(mapping->host); if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) { *writeback = true; return; } /* * If PagePrivate() is set, then the page is not freeable and as the * inode is not being committed, it's not going to be cleaned in the * near future so treat it as dirty */ if (PagePrivate(page)) *dirty = true; } /* * Attempt to clear the private state associated with a page when an error * occurs that requires the cached contents of an inode to be written back or * destroyed * - Called if either PG_private or fscache is set on the page * - Caller holds page lock * - Return 0 if successful, -error otherwise */ static int nfs_launder_page(struct page *page) { struct inode *inode = page_file_mapping(page)->host; struct nfs_inode *nfsi = NFS_I(inode); dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n", inode->i_ino, (long long)page_offset(page)); nfs_fscache_wait_on_page_write(nfsi, page); return nfs_wb_page(inode, page); } #ifdef CONFIG_NFS_SWAP static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file, sector_t *span) { *span = sis->pages; return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1); } static void nfs_swap_deactivate(struct file *file) { xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0); } #endif const struct address_space_operations nfs_file_aops = { .readpage = nfs_readpage, .readpages = nfs_readpages, .set_page_dirty = __set_page_dirty_nobuffers, .writepage = nfs_writepage, .writepages = nfs_writepages, .write_begin = nfs_write_begin, .write_end = nfs_write_end, .invalidatepage = nfs_invalidate_page, .releasepage = nfs_release_page, .direct_IO = nfs_direct_IO, .migratepage = nfs_migrate_page, .launder_page = nfs_launder_page, .is_dirty_writeback = nfs_check_dirty_writeback, .error_remove_page = generic_error_remove_page, #ifdef CONFIG_NFS_SWAP .swap_activate = nfs_swap_activate, .swap_deactivate = nfs_swap_deactivate, #endif }; /* * Notification that a PTE pointing to an NFS page is about to be made * writable, implying that someone is about to modify the page through a * shared-writable mapping */ static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct file *filp = vma->vm_file; struct inode *inode = file_inode(filp); unsigned pagelen; int ret = VM_FAULT_NOPAGE; struct address_space *mapping; dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n", filp, filp->f_mapping->host->i_ino, (long long)page_offset(page)); /* make sure the cache has finished storing the page */ nfs_fscache_wait_on_page_write(NFS_I(inode), page); lock_page(page); mapping = page_file_mapping(page); if (mapping != inode->i_mapping) goto out_unlock; wait_on_page_writeback(page); pagelen = nfs_page_length(page); if (pagelen == 0) goto out_unlock; ret = VM_FAULT_LOCKED; if (nfs_flush_incompatible(filp, page) == 0 && nfs_updatepage(filp, page, 0, pagelen) == 0) goto out; ret = VM_FAULT_SIGBUS; out_unlock: unlock_page(page); out: return ret; } static const struct vm_operations_struct nfs_file_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = nfs_vm_page_mkwrite, .remap_pages = generic_file_remap_pages, }; static int nfs_need_sync_write(struct file *filp, struct inode *inode) { struct nfs_open_context *ctx; if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC)) return 1; ctx = nfs_file_open_context(filp); if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) || nfs_ctx_key_to_expire(ctx)) return 1; return 0; } ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file_inode(file); unsigned long written = 0; ssize_t result; size_t count = iov_iter_count(from); loff_t pos = iocb->ki_pos; result = nfs_key_timeout_notify(file, inode); if (result) return result; if (file->f_flags & O_DIRECT) return nfs_file_direct_write(iocb, from, pos, true); dprintk("NFS: write(%pD2, %zu@%Ld)\n", file, count, (long long) pos); result = -EBUSY; if (IS_SWAPFILE(inode)) goto out_swapfile; /* * O_APPEND implies that we must revalidate the file length. */ if (file->f_flags & O_APPEND) { result = nfs_revalidate_file_size(inode, file); if (result) goto out; } result = count; if (!count) goto out; result = generic_file_write_iter(iocb, from); if (result > 0) written = result; /* Return error values for O_DSYNC and IS_SYNC() */ if (result >= 0 && nfs_need_sync_write(file, inode)) { int err = vfs_fsync(file, 0); if (err < 0) result = err; } if (result > 0) nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); out: return result; out_swapfile: printk(KERN_INFO "NFS: attempt to write to active swap file!\n"); goto out; } EXPORT_SYMBOL_GPL(nfs_file_write); ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe, struct file *filp, loff_t *ppos, size_t count, unsigned int flags) { struct inode *inode = file_inode(filp); unsigned long written = 0; ssize_t ret; dprintk("NFS splice_write(%pD2, %lu@%llu)\n", filp, (unsigned long) count, (unsigned long long) *ppos); /* * The combination of splice and an O_APPEND destination is disallowed. */ ret = generic_file_splice_write(pipe, filp, ppos, count, flags); if (ret > 0) written = ret; if (ret >= 0 && nfs_need_sync_write(filp, inode)) { int err = vfs_fsync(filp, 0); if (err < 0) ret = err; } if (ret > 0) nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written); return ret; } EXPORT_SYMBOL_GPL(nfs_file_splice_write); static int do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) { struct inode *inode = filp->f_mapping->host; int status = 0; unsigned int saved_type = fl->fl_type; /* Try local locking first */ posix_test_lock(filp, fl); if (fl->fl_type != F_UNLCK) { /* found a conflict */ goto out; } fl->fl_type = saved_type; if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) goto out_noconflict; if (is_local) goto out_noconflict; status = NFS_PROTO(inode)->lock(filp, cmd, fl); out: return status; out_noconflict: fl->fl_type = F_UNLCK; goto out; } static int do_vfs_lock(struct file *file, struct file_lock *fl) { int res = 0; switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { case FL_POSIX: res = posix_lock_file_wait(file, fl); break; case FL_FLOCK: res = flock_lock_file_wait(file, fl); break; default: BUG(); } return res; } static int do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) { struct inode *inode = filp->f_mapping->host; struct nfs_lock_context *l_ctx; int status; /* * Flush all pending writes before doing anything * with locks.. */ nfs_sync_mapping(filp->f_mapping); l_ctx = nfs_get_lock_context(nfs_file_open_context(filp)); if (!IS_ERR(l_ctx)) { status = nfs_iocounter_wait(&l_ctx->io_count); nfs_put_lock_context(l_ctx); if (status < 0) return status; } /* NOTE: special case * If we're signalled while cleaning up locks on process exit, we * still need to complete the unlock. */ /* * Use local locking if mounted with "-onolock" or with appropriate * "-olocal_lock=" */ if (!is_local) status = NFS_PROTO(inode)->lock(filp, cmd, fl); else status = do_vfs_lock(filp, fl); return status; } static int is_time_granular(struct timespec *ts) { return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000)); } static int do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local) { struct inode *inode = filp->f_mapping->host; int status; /* * Flush all pending writes before doing anything * with locks.. */ status = nfs_sync_mapping(filp->f_mapping); if (status != 0) goto out; /* * Use local locking if mounted with "-onolock" or with appropriate * "-olocal_lock=" */ if (!is_local) status = NFS_PROTO(inode)->lock(filp, cmd, fl); else status = do_vfs_lock(filp, fl); if (status < 0) goto out; /* * Revalidate the cache if the server has time stamps granular * enough to detect subsecond changes. Otherwise, clear the * cache to prevent missing any changes. * * This makes locking act as a cache coherency point. */ nfs_sync_mapping(filp->f_mapping); if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) { if (is_time_granular(&NFS_SERVER(inode)->time_delta)) __nfs_revalidate_inode(NFS_SERVER(inode), inode); else nfs_zap_caches(inode); } out: return status; } /* * Lock a (portion of) a file */ int nfs_lock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_mapping->host; int ret = -ENOLCK; int is_local = 0; dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n", filp, fl->fl_type, fl->fl_flags, (long long)fl->fl_start, (long long)fl->fl_end); nfs_inc_stats(inode, NFSIOS_VFSLOCK); /* No mandatory locks over NFS */ if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK) goto out_err; if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL) is_local = 1; if (NFS_PROTO(inode)->lock_check_bounds != NULL) { ret = NFS_PROTO(inode)->lock_check_bounds(fl); if (ret < 0) goto out_err; } if (IS_GETLK(cmd)) ret = do_getlk(filp, cmd, fl, is_local); else if (fl->fl_type == F_UNLCK) ret = do_unlk(filp, cmd, fl, is_local); else ret = do_setlk(filp, cmd, fl, is_local); out_err: return ret; } EXPORT_SYMBOL_GPL(nfs_lock); /* * Lock a (portion of) a file */ int nfs_flock(struct file *filp, int cmd, struct file_lock *fl) { struct inode *inode = filp->f_mapping->host; int is_local = 0; dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n", filp, fl->fl_type, fl->fl_flags); if (!(fl->fl_flags & FL_FLOCK)) return -ENOLCK; /* * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of * any standard. In principle we might be able to support LOCK_MAND * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the * NFS code is not set up for it. */ if (fl->fl_type & LOCK_MAND) return -EINVAL; if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK) is_local = 1; /* We're simulating flock() locks using posix locks on the server */ fl->fl_owner = (fl_owner_t)filp; fl->fl_start = 0; fl->fl_end = OFFSET_MAX; if (fl->fl_type == F_UNLCK) return do_unlk(filp, cmd, fl, is_local); return do_setlk(filp, cmd, fl, is_local); } EXPORT_SYMBOL_GPL(nfs_flock); /* * There is no protocol support for leases, so we have no way to implement * them correctly in the face of opens by other clients. */ int nfs_setlease(struct file *file, long arg, struct file_lock **fl) { dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg); return -EINVAL; } EXPORT_SYMBOL_GPL(nfs_setlease); const struct file_operations nfs_file_operations = { .llseek = nfs_file_llseek, .read = new_sync_read, .write = new_sync_write, .read_iter = nfs_file_read, .write_iter = nfs_file_write, .mmap = nfs_file_mmap, .open = nfs_file_open, .flush = nfs_file_flush, .release = nfs_file_release, .fsync = nfs_file_fsync, .lock = nfs_lock, .flock = nfs_flock, .splice_read = nfs_file_splice_read, .splice_write = nfs_file_splice_write, .check_flags = nfs_check_flags, .setlease = nfs_setlease, }; EXPORT_SYMBOL_GPL(nfs_file_operations);