/* * Disk Array driver for HP Smart Array SAS controllers * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hpsa_cmd.h" #include "hpsa.h" /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ #define HPSA_DRIVER_VERSION "3.4.0-1" #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" #define HPSA "hpsa" /* How long to wait (in milliseconds) for board to go into simple mode */ #define MAX_CONFIG_WAIT 30000 #define MAX_IOCTL_CONFIG_WAIT 1000 /*define how many times we will try a command because of bus resets */ #define MAX_CMD_RETRIES 3 /* Embedded module documentation macros - see modules.h */ MODULE_AUTHOR("Hewlett-Packard Company"); MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ HPSA_DRIVER_VERSION); MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); MODULE_VERSION(HPSA_DRIVER_VERSION); MODULE_LICENSE("GPL"); static int hpsa_allow_any; module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(hpsa_allow_any, "Allow hpsa driver to access unknown HP Smart Array hardware"); static int hpsa_simple_mode; module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(hpsa_simple_mode, "Use 'simple mode' rather than 'performant mode'"); /* define the PCI info for the cards we can control */ static const struct pci_device_id hpsa_pci_device_id[] = { {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); /* board_id = Subsystem Device ID & Vendor ID * product = Marketing Name for the board * access = Address of the struct of function pointers */ static struct board_type products[] = { {0x3241103C, "Smart Array P212", &SA5_access}, {0x3243103C, "Smart Array P410", &SA5_access}, {0x3245103C, "Smart Array P410i", &SA5_access}, {0x3247103C, "Smart Array P411", &SA5_access}, {0x3249103C, "Smart Array P812", &SA5_access}, {0x324A103C, "Smart Array P712m", &SA5_access}, {0x324B103C, "Smart Array P711m", &SA5_access}, {0x3350103C, "Smart Array P222", &SA5_access}, {0x3351103C, "Smart Array P420", &SA5_access}, {0x3352103C, "Smart Array P421", &SA5_access}, {0x3353103C, "Smart Array P822", &SA5_access}, {0x3354103C, "Smart Array P420i", &SA5_access}, {0x3355103C, "Smart Array P220i", &SA5_access}, {0x3356103C, "Smart Array P721m", &SA5_access}, {0x1921103C, "Smart Array P830i", &SA5_access}, {0x1922103C, "Smart Array P430", &SA5_access}, {0x1923103C, "Smart Array P431", &SA5_access}, {0x1924103C, "Smart Array P830", &SA5_access}, {0x1926103C, "Smart Array P731m", &SA5_access}, {0x1928103C, "Smart Array P230i", &SA5_access}, {0x1929103C, "Smart Array P530", &SA5_access}, {0x21BD103C, "Smart Array", &SA5_access}, {0x21BE103C, "Smart Array", &SA5_access}, {0x21BF103C, "Smart Array", &SA5_access}, {0x21C0103C, "Smart Array", &SA5_access}, {0x21C1103C, "Smart Array", &SA5_access}, {0x21C2103C, "Smart Array", &SA5_access}, {0x21C3103C, "Smart Array", &SA5_access}, {0x21C4103C, "Smart Array", &SA5_access}, {0x21C5103C, "Smart Array", &SA5_access}, {0x21C7103C, "Smart Array", &SA5_access}, {0x21C8103C, "Smart Array", &SA5_access}, {0x21C9103C, "Smart Array", &SA5_access}, {0xFFFF103C, "Unknown Smart Array", &SA5_access}, }; static int number_of_controllers; static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); static void start_io(struct ctlr_info *h); #ifdef CONFIG_COMPAT static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); #endif static void cmd_free(struct ctlr_info *h, struct CommandList *c); static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); static struct CommandList *cmd_alloc(struct ctlr_info *h); static struct CommandList *cmd_special_alloc(struct ctlr_info *h); static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, int cmd_type); static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); static void hpsa_scan_start(struct Scsi_Host *); static int hpsa_scan_finished(struct Scsi_Host *sh, unsigned long elapsed_time); static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason); static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); static int hpsa_slave_alloc(struct scsi_device *sdev); static void hpsa_slave_destroy(struct scsi_device *sdev); static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); static int check_for_unit_attention(struct ctlr_info *h, struct CommandList *c); static void check_ioctl_unit_attention(struct ctlr_info *h, struct CommandList *c); /* performant mode helper functions */ static void calc_bucket_map(int *bucket, int num_buckets, int nsgs, int min_blocks, int *bucket_map); static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); static inline u32 next_command(struct ctlr_info *h, u8 q); static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset); static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar); static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, int wait_for_ready); static inline void finish_cmd(struct CommandList *c); static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h); #define BOARD_NOT_READY 0 #define BOARD_READY 1 static void hpsa_drain_commands(struct ctlr_info *h); static void hpsa_flush_cache(struct ctlr_info *h); static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr); static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) { unsigned long *priv = shost_priv(sdev->host); return (struct ctlr_info *) *priv; } static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) { unsigned long *priv = shost_priv(sh); return (struct ctlr_info *) *priv; } static int check_for_unit_attention(struct ctlr_info *h, struct CommandList *c) { if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) return 0; switch (c->err_info->SenseInfo[12]) { case STATE_CHANGED: dev_warn(&h->pdev->dev, HPSA "%d: a state change " "detected, command retried\n", h->ctlr); break; case LUN_FAILED: dev_warn(&h->pdev->dev, HPSA "%d: LUN failure " "detected, action required\n", h->ctlr); break; case REPORT_LUNS_CHANGED: dev_warn(&h->pdev->dev, HPSA "%d: report LUN data " "changed, action required\n", h->ctlr); /* * Note: this REPORT_LUNS_CHANGED condition only occurs on the external * target (array) devices. */ break; case POWER_OR_RESET: dev_warn(&h->pdev->dev, HPSA "%d: a power on " "or device reset detected\n", h->ctlr); break; case UNIT_ATTENTION_CLEARED: dev_warn(&h->pdev->dev, HPSA "%d: unit attention " "cleared by another initiator\n", h->ctlr); break; default: dev_warn(&h->pdev->dev, HPSA "%d: unknown " "unit attention detected\n", h->ctlr); break; } return 1; } static int check_for_busy(struct ctlr_info *h, struct CommandList *c) { if (c->err_info->CommandStatus != CMD_TARGET_STATUS || (c->err_info->ScsiStatus != SAM_STAT_BUSY && c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) return 0; dev_warn(&h->pdev->dev, HPSA "device busy"); return 1; } static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int status, len; struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); char tmpbuf[10]; if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; strncpy(tmpbuf, buf, len); tmpbuf[len] = '\0'; if (sscanf(tmpbuf, "%d", &status) != 1) return -EINVAL; h = shost_to_hba(shost); h->acciopath_status = !!status; dev_warn(&h->pdev->dev, "hpsa: HP SSD Smart Path %s via sysfs update.\n", h->acciopath_status ? "enabled" : "disabled"); return count; } static ssize_t host_store_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); hpsa_scan_start(h->scsi_host); return count; } static ssize_t host_show_firmware_revision(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); unsigned char *fwrev; h = shost_to_hba(shost); if (!h->hba_inquiry_data) return 0; fwrev = &h->hba_inquiry_data[32]; return snprintf(buf, 20, "%c%c%c%c\n", fwrev[0], fwrev[1], fwrev[2], fwrev[3]); } static ssize_t host_show_commands_outstanding(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct ctlr_info *h = shost_to_hba(shost); return snprintf(buf, 20, "%d\n", h->commands_outstanding); } static ssize_t host_show_transport_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 20, "%s\n", h->transMethod & CFGTBL_Trans_Performant ? "performant" : "simple"); } static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 30, "HP SSD Smart Path %s\n", (h->acciopath_status == 1) ? "enabled" : "disabled"); } /* List of controllers which cannot be hard reset on kexec with reset_devices */ static u32 unresettable_controller[] = { 0x324a103C, /* Smart Array P712m */ 0x324b103C, /* SmartArray P711m */ 0x3223103C, /* Smart Array P800 */ 0x3234103C, /* Smart Array P400 */ 0x3235103C, /* Smart Array P400i */ 0x3211103C, /* Smart Array E200i */ 0x3212103C, /* Smart Array E200 */ 0x3213103C, /* Smart Array E200i */ 0x3214103C, /* Smart Array E200i */ 0x3215103C, /* Smart Array E200i */ 0x3237103C, /* Smart Array E500 */ 0x323D103C, /* Smart Array P700m */ 0x40800E11, /* Smart Array 5i */ 0x409C0E11, /* Smart Array 6400 */ 0x409D0E11, /* Smart Array 6400 EM */ 0x40700E11, /* Smart Array 5300 */ 0x40820E11, /* Smart Array 532 */ 0x40830E11, /* Smart Array 5312 */ 0x409A0E11, /* Smart Array 641 */ 0x409B0E11, /* Smart Array 642 */ 0x40910E11, /* Smart Array 6i */ }; /* List of controllers which cannot even be soft reset */ static u32 soft_unresettable_controller[] = { 0x40800E11, /* Smart Array 5i */ 0x40700E11, /* Smart Array 5300 */ 0x40820E11, /* Smart Array 532 */ 0x40830E11, /* Smart Array 5312 */ 0x409A0E11, /* Smart Array 641 */ 0x409B0E11, /* Smart Array 642 */ 0x40910E11, /* Smart Array 6i */ /* Exclude 640x boards. These are two pci devices in one slot * which share a battery backed cache module. One controls the * cache, the other accesses the cache through the one that controls * it. If we reset the one controlling the cache, the other will * likely not be happy. Just forbid resetting this conjoined mess. * The 640x isn't really supported by hpsa anyway. */ 0x409C0E11, /* Smart Array 6400 */ 0x409D0E11, /* Smart Array 6400 EM */ }; static int ctlr_is_hard_resettable(u32 board_id) { int i; for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) if (unresettable_controller[i] == board_id) return 0; return 1; } static int ctlr_is_soft_resettable(u32 board_id) { int i; for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) if (soft_unresettable_controller[i] == board_id) return 0; return 1; } static int ctlr_is_resettable(u32 board_id) { return ctlr_is_hard_resettable(board_id) || ctlr_is_soft_resettable(board_id); } static ssize_t host_show_resettable(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct Scsi_Host *shost = class_to_shost(dev); h = shost_to_hba(shost); return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); } static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) { return (scsi3addr[3] & 0xC0) == 0x40; } static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", "1(ADM)", "UNKNOWN" }; #define HPSA_RAID_0 0 #define HPSA_RAID_4 1 #define HPSA_RAID_1 2 /* also used for RAID 10 */ #define HPSA_RAID_5 3 /* also used for RAID 50 */ #define HPSA_RAID_51 4 #define HPSA_RAID_6 5 /* also used for RAID 60 */ #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) static ssize_t raid_level_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t l = 0; unsigned char rlevel; struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } /* Is this even a logical drive? */ if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { spin_unlock_irqrestore(&h->lock, flags); l = snprintf(buf, PAGE_SIZE, "N/A\n"); return l; } rlevel = hdev->raid_level; spin_unlock_irqrestore(&h->lock, flags); if (rlevel > RAID_UNKNOWN) rlevel = RAID_UNKNOWN; l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); return l; } static ssize_t lunid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; unsigned char lunid[8]; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", lunid[0], lunid[1], lunid[2], lunid[3], lunid[4], lunid[5], lunid[6], lunid[7]); } static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; unsigned char sn[16]; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } memcpy(sn, hdev->device_id, sizeof(sn)); spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 16 * 2 + 2, "%02X%02X%02X%02X%02X%02X%02X%02X" "%02X%02X%02X%02X%02X%02X%02X%02X\n", sn[0], sn[1], sn[2], sn[3], sn[4], sn[5], sn[6], sn[7], sn[8], sn[9], sn[10], sn[11], sn[12], sn[13], sn[14], sn[15]); } static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, struct device_attribute *attr, char *buf) { struct ctlr_info *h; struct scsi_device *sdev; struct hpsa_scsi_dev_t *hdev; unsigned long flags; int offload_enabled; sdev = to_scsi_device(dev); h = sdev_to_hba(sdev); spin_lock_irqsave(&h->lock, flags); hdev = sdev->hostdata; if (!hdev) { spin_unlock_irqrestore(&h->lock, flags); return -ENODEV; } offload_enabled = hdev->offload_enabled; spin_unlock_irqrestore(&h->lock, flags); return snprintf(buf, 20, "%d\n", offload_enabled); } static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, host_show_hp_ssd_smart_path_enabled, NULL); static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, host_show_hp_ssd_smart_path_status, host_store_hp_ssd_smart_path_status); static DEVICE_ATTR(firmware_revision, S_IRUGO, host_show_firmware_revision, NULL); static DEVICE_ATTR(commands_outstanding, S_IRUGO, host_show_commands_outstanding, NULL); static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL); static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL); static struct device_attribute *hpsa_sdev_attrs[] = { &dev_attr_raid_level, &dev_attr_lunid, &dev_attr_unique_id, &dev_attr_hp_ssd_smart_path_enabled, NULL, }; static struct device_attribute *hpsa_shost_attrs[] = { &dev_attr_rescan, &dev_attr_firmware_revision, &dev_attr_commands_outstanding, &dev_attr_transport_mode, &dev_attr_resettable, &dev_attr_hp_ssd_smart_path_status, NULL, }; static struct scsi_host_template hpsa_driver_template = { .module = THIS_MODULE, .name = HPSA, .proc_name = HPSA, .queuecommand = hpsa_scsi_queue_command, .scan_start = hpsa_scan_start, .scan_finished = hpsa_scan_finished, .change_queue_depth = hpsa_change_queue_depth, .this_id = -1, .use_clustering = ENABLE_CLUSTERING, .eh_abort_handler = hpsa_eh_abort_handler, .eh_device_reset_handler = hpsa_eh_device_reset_handler, .ioctl = hpsa_ioctl, .slave_alloc = hpsa_slave_alloc, .slave_destroy = hpsa_slave_destroy, #ifdef CONFIG_COMPAT .compat_ioctl = hpsa_compat_ioctl, #endif .sdev_attrs = hpsa_sdev_attrs, .shost_attrs = hpsa_shost_attrs, .max_sectors = 8192, .no_write_same = 1, }; /* Enqueuing and dequeuing functions for cmdlists. */ static inline void addQ(struct list_head *list, struct CommandList *c) { list_add_tail(&c->list, list); } static inline u32 next_command(struct ctlr_info *h, u8 q) { u32 a; struct reply_pool *rq = &h->reply_queue[q]; unsigned long flags; if (h->transMethod & CFGTBL_Trans_io_accel1) return h->access.command_completed(h, q); if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) return h->access.command_completed(h, q); if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { a = rq->head[rq->current_entry]; rq->current_entry++; spin_lock_irqsave(&h->lock, flags); h->commands_outstanding--; spin_unlock_irqrestore(&h->lock, flags); } else { a = FIFO_EMPTY; } /* Check for wraparound */ if (rq->current_entry == h->max_commands) { rq->current_entry = 0; rq->wraparound ^= 1; } return a; } /* * There are some special bits in the bus address of the * command that we have to set for the controller to know * how to process the command: * * Normal performant mode: * bit 0: 1 means performant mode, 0 means simple mode. * bits 1-3 = block fetch table entry * bits 4-6 = command type (== 0) * * ioaccel1 mode: * bit 0 = "performant mode" bit. * bits 1-3 = block fetch table entry * bits 4-6 = command type (== 110) * (command type is needed because ioaccel1 mode * commands are submitted through the same register as normal * mode commands, so this is how the controller knows whether * the command is normal mode or ioaccel1 mode.) * * ioaccel2 mode: * bit 0 = "performant mode" bit. * bits 1-4 = block fetch table entry (note extra bit) * bits 4-6 = not needed, because ioaccel2 mode has * a separate special register for submitting commands. */ /* set_performant_mode: Modify the tag for cciss performant * set bit 0 for pull model, bits 3-1 for block fetch * register number */ static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) { if (likely(h->transMethod & CFGTBL_Trans_Performant)) { c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); if (likely(h->msix_vector > 0)) c->Header.ReplyQueue = raw_smp_processor_id() % h->nreply_queues; } } static void set_ioaccel1_performant_mode(struct ctlr_info *h, struct CommandList *c) { struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; /* Tell the controller to post the reply to the queue for this * processor. This seems to give the best I/O throughput. */ cp->ReplyQueue = smp_processor_id() % h->nreply_queues; /* Set the bits in the address sent down to include: * - performant mode bit (bit 0) * - pull count (bits 1-3) * - command type (bits 4-6) */ c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | IOACCEL1_BUSADDR_CMDTYPE; } static void set_ioaccel2_performant_mode(struct ctlr_info *h, struct CommandList *c) { struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; /* Tell the controller to post the reply to the queue for this * processor. This seems to give the best I/O throughput. */ cp->reply_queue = smp_processor_id() % h->nreply_queues; /* Set the bits in the address sent down to include: * - performant mode bit not used in ioaccel mode 2 * - pull count (bits 0-3) * - command type isn't needed for ioaccel2 */ c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); } static int is_firmware_flash_cmd(u8 *cdb) { return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; } /* * During firmware flash, the heartbeat register may not update as frequently * as it should. So we dial down lockup detection during firmware flash. and * dial it back up when firmware flash completes. */ #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, struct CommandList *c) { if (!is_firmware_flash_cmd(c->Request.CDB)) return; atomic_inc(&h->firmware_flash_in_progress); h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; } static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, struct CommandList *c) { if (is_firmware_flash_cmd(c->Request.CDB) && atomic_dec_and_test(&h->firmware_flash_in_progress)) h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; } static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) { unsigned long flags; switch (c->cmd_type) { case CMD_IOACCEL1: set_ioaccel1_performant_mode(h, c); break; case CMD_IOACCEL2: set_ioaccel2_performant_mode(h, c); break; default: set_performant_mode(h, c); } dial_down_lockup_detection_during_fw_flash(h, c); spin_lock_irqsave(&h->lock, flags); addQ(&h->reqQ, c); h->Qdepth++; spin_unlock_irqrestore(&h->lock, flags); start_io(h); } static inline void removeQ(struct CommandList *c) { if (WARN_ON(list_empty(&c->list))) return; list_del_init(&c->list); } static inline int is_hba_lunid(unsigned char scsi3addr[]) { return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; } static inline int is_scsi_rev_5(struct ctlr_info *h) { if (!h->hba_inquiry_data) return 0; if ((h->hba_inquiry_data[2] & 0x07) == 5) return 1; return 0; } static int hpsa_find_target_lun(struct ctlr_info *h, unsigned char scsi3addr[], int bus, int *target, int *lun) { /* finds an unused bus, target, lun for a new physical device * assumes h->devlock is held */ int i, found = 0; DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); bitmap_zero(lun_taken, HPSA_MAX_DEVICES); for (i = 0; i < h->ndevices; i++) { if (h->dev[i]->bus == bus && h->dev[i]->target != -1) __set_bit(h->dev[i]->target, lun_taken); } i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); if (i < HPSA_MAX_DEVICES) { /* *bus = 1; */ *target = i; *lun = 0; found = 1; } return !found; } /* Add an entry into h->dev[] array. */ static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, struct hpsa_scsi_dev_t *device, struct hpsa_scsi_dev_t *added[], int *nadded) { /* assumes h->devlock is held */ int n = h->ndevices; int i; unsigned char addr1[8], addr2[8]; struct hpsa_scsi_dev_t *sd; if (n >= HPSA_MAX_DEVICES) { dev_err(&h->pdev->dev, "too many devices, some will be " "inaccessible.\n"); return -1; } /* physical devices do not have lun or target assigned until now. */ if (device->lun != -1) /* Logical device, lun is already assigned. */ goto lun_assigned; /* If this device a non-zero lun of a multi-lun device * byte 4 of the 8-byte LUN addr will contain the logical * unit no, zero otherise. */ if (device->scsi3addr[4] == 0) { /* This is not a non-zero lun of a multi-lun device */ if (hpsa_find_target_lun(h, device->scsi3addr, device->bus, &device->target, &device->lun) != 0) return -1; goto lun_assigned; } /* This is a non-zero lun of a multi-lun device. * Search through our list and find the device which * has the same 8 byte LUN address, excepting byte 4. * Assign the same bus and target for this new LUN. * Use the logical unit number from the firmware. */ memcpy(addr1, device->scsi3addr, 8); addr1[4] = 0; for (i = 0; i < n; i++) { sd = h->dev[i]; memcpy(addr2, sd->scsi3addr, 8); addr2[4] = 0; /* differ only in byte 4? */ if (memcmp(addr1, addr2, 8) == 0) { device->bus = sd->bus; device->target = sd->target; device->lun = device->scsi3addr[4]; break; } } if (device->lun == -1) { dev_warn(&h->pdev->dev, "physical device with no LUN=0," " suspect firmware bug or unsupported hardware " "configuration.\n"); return -1; } lun_assigned: h->dev[n] = device; h->ndevices++; added[*nadded] = device; (*nadded)++; /* initially, (before registering with scsi layer) we don't * know our hostno and we don't want to print anything first * time anyway (the scsi layer's inquiries will show that info) */ /* if (hostno != -1) */ dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", scsi_device_type(device->devtype), hostno, device->bus, device->target, device->lun); return 0; } /* Update an entry in h->dev[] array. */ static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, int entry, struct hpsa_scsi_dev_t *new_entry) { /* assumes h->devlock is held */ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); /* Raid level changed. */ h->dev[entry]->raid_level = new_entry->raid_level; /* Raid offload parameters changed. */ h->dev[entry]->offload_config = new_entry->offload_config; h->dev[entry]->offload_enabled = new_entry->offload_enabled; h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; h->dev[entry]->raid_map = new_entry->raid_map; dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", scsi_device_type(new_entry->devtype), hostno, new_entry->bus, new_entry->target, new_entry->lun); } /* Replace an entry from h->dev[] array. */ static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, int entry, struct hpsa_scsi_dev_t *new_entry, struct hpsa_scsi_dev_t *added[], int *nadded, struct hpsa_scsi_dev_t *removed[], int *nremoved) { /* assumes h->devlock is held */ BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); removed[*nremoved] = h->dev[entry]; (*nremoved)++; /* * New physical devices won't have target/lun assigned yet * so we need to preserve the values in the slot we are replacing. */ if (new_entry->target == -1) { new_entry->target = h->dev[entry]->target; new_entry->lun = h->dev[entry]->lun; } h->dev[entry] = new_entry; added[*nadded] = new_entry; (*nadded)++; dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", scsi_device_type(new_entry->devtype), hostno, new_entry->bus, new_entry->target, new_entry->lun); } /* Remove an entry from h->dev[] array. */ static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, struct hpsa_scsi_dev_t *removed[], int *nremoved) { /* assumes h->devlock is held */ int i; struct hpsa_scsi_dev_t *sd; BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); sd = h->dev[entry]; removed[*nremoved] = h->dev[entry]; (*nremoved)++; for (i = entry; i < h->ndevices-1; i++) h->dev[i] = h->dev[i+1]; h->ndevices--; dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, sd->lun); } #define SCSI3ADDR_EQ(a, b) ( \ (a)[7] == (b)[7] && \ (a)[6] == (b)[6] && \ (a)[5] == (b)[5] && \ (a)[4] == (b)[4] && \ (a)[3] == (b)[3] && \ (a)[2] == (b)[2] && \ (a)[1] == (b)[1] && \ (a)[0] == (b)[0]) static void fixup_botched_add(struct ctlr_info *h, struct hpsa_scsi_dev_t *added) { /* called when scsi_add_device fails in order to re-adjust * h->dev[] to match the mid layer's view. */ unsigned long flags; int i, j; spin_lock_irqsave(&h->lock, flags); for (i = 0; i < h->ndevices; i++) { if (h->dev[i] == added) { for (j = i; j < h->ndevices-1; j++) h->dev[j] = h->dev[j+1]; h->ndevices--; break; } } spin_unlock_irqrestore(&h->lock, flags); kfree(added); } static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, struct hpsa_scsi_dev_t *dev2) { /* we compare everything except lun and target as these * are not yet assigned. Compare parts likely * to differ first */ if (memcmp(dev1->scsi3addr, dev2->scsi3addr, sizeof(dev1->scsi3addr)) != 0) return 0; if (memcmp(dev1->device_id, dev2->device_id, sizeof(dev1->device_id)) != 0) return 0; if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) return 0; if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) return 0; if (dev1->devtype != dev2->devtype) return 0; if (dev1->bus != dev2->bus) return 0; return 1; } static inline int device_updated(struct hpsa_scsi_dev_t *dev1, struct hpsa_scsi_dev_t *dev2) { /* Device attributes that can change, but don't mean * that the device is a different device, nor that the OS * needs to be told anything about the change. */ if (dev1->raid_level != dev2->raid_level) return 1; if (dev1->offload_config != dev2->offload_config) return 1; if (dev1->offload_enabled != dev2->offload_enabled) return 1; return 0; } /* Find needle in haystack. If exact match found, return DEVICE_SAME, * and return needle location in *index. If scsi3addr matches, but not * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle * location in *index. * In the case of a minor device attribute change, such as RAID level, just * return DEVICE_UPDATED, along with the updated device's location in index. * If needle not found, return DEVICE_NOT_FOUND. */ static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, struct hpsa_scsi_dev_t *haystack[], int haystack_size, int *index) { int i; #define DEVICE_NOT_FOUND 0 #define DEVICE_CHANGED 1 #define DEVICE_SAME 2 #define DEVICE_UPDATED 3 for (i = 0; i < haystack_size; i++) { if (haystack[i] == NULL) /* previously removed. */ continue; if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { *index = i; if (device_is_the_same(needle, haystack[i])) { if (device_updated(needle, haystack[i])) return DEVICE_UPDATED; return DEVICE_SAME; } else { return DEVICE_CHANGED; } } } *index = -1; return DEVICE_NOT_FOUND; } static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, struct hpsa_scsi_dev_t *sd[], int nsds) { /* sd contains scsi3 addresses and devtypes, and inquiry * data. This function takes what's in sd to be the current * reality and updates h->dev[] to reflect that reality. */ int i, entry, device_change, changes = 0; struct hpsa_scsi_dev_t *csd; unsigned long flags; struct hpsa_scsi_dev_t **added, **removed; int nadded, nremoved; struct Scsi_Host *sh = NULL; added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); if (!added || !removed) { dev_warn(&h->pdev->dev, "out of memory in " "adjust_hpsa_scsi_table\n"); goto free_and_out; } spin_lock_irqsave(&h->devlock, flags); /* find any devices in h->dev[] that are not in * sd[] and remove them from h->dev[], and for any * devices which have changed, remove the old device * info and add the new device info. * If minor device attributes change, just update * the existing device structure. */ i = 0; nremoved = 0; nadded = 0; while (i < h->ndevices) { csd = h->dev[i]; device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); if (device_change == DEVICE_NOT_FOUND) { changes++; hpsa_scsi_remove_entry(h, hostno, i, removed, &nremoved); continue; /* remove ^^^, hence i not incremented */ } else if (device_change == DEVICE_CHANGED) { changes++; hpsa_scsi_replace_entry(h, hostno, i, sd[entry], added, &nadded, removed, &nremoved); /* Set it to NULL to prevent it from being freed * at the bottom of hpsa_update_scsi_devices() */ sd[entry] = NULL; } else if (device_change == DEVICE_UPDATED) { hpsa_scsi_update_entry(h, hostno, i, sd[entry]); } i++; } /* Now, make sure every device listed in sd[] is also * listed in h->dev[], adding them if they aren't found */ for (i = 0; i < nsds; i++) { if (!sd[i]) /* if already added above. */ continue; device_change = hpsa_scsi_find_entry(sd[i], h->dev, h->ndevices, &entry); if (device_change == DEVICE_NOT_FOUND) { changes++; if (hpsa_scsi_add_entry(h, hostno, sd[i], added, &nadded) != 0) break; sd[i] = NULL; /* prevent from being freed later. */ } else if (device_change == DEVICE_CHANGED) { /* should never happen... */ changes++; dev_warn(&h->pdev->dev, "device unexpectedly changed.\n"); /* but if it does happen, we just ignore that device */ } } spin_unlock_irqrestore(&h->devlock, flags); /* Don't notify scsi mid layer of any changes the first time through * (or if there are no changes) scsi_scan_host will do it later the * first time through. */ if (hostno == -1 || !changes) goto free_and_out; sh = h->scsi_host; /* Notify scsi mid layer of any removed devices */ for (i = 0; i < nremoved; i++) { struct scsi_device *sdev = scsi_device_lookup(sh, removed[i]->bus, removed[i]->target, removed[i]->lun); if (sdev != NULL) { scsi_remove_device(sdev); scsi_device_put(sdev); } else { /* We don't expect to get here. * future cmds to this device will get selection * timeout as if the device was gone. */ dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " " for removal.", hostno, removed[i]->bus, removed[i]->target, removed[i]->lun); } kfree(removed[i]); removed[i] = NULL; } /* Notify scsi mid layer of any added devices */ for (i = 0; i < nadded; i++) { if (scsi_add_device(sh, added[i]->bus, added[i]->target, added[i]->lun) == 0) continue; dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " "device not added.\n", hostno, added[i]->bus, added[i]->target, added[i]->lun); /* now we have to remove it from h->dev, * since it didn't get added to scsi mid layer */ fixup_botched_add(h, added[i]); } free_and_out: kfree(added); kfree(removed); } /* * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * * Assume's h->devlock is held. */ static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, int bus, int target, int lun) { int i; struct hpsa_scsi_dev_t *sd; for (i = 0; i < h->ndevices; i++) { sd = h->dev[i]; if (sd->bus == bus && sd->target == target && sd->lun == lun) return sd; } return NULL; } /* link sdev->hostdata to our per-device structure. */ static int hpsa_slave_alloc(struct scsi_device *sdev) { struct hpsa_scsi_dev_t *sd; unsigned long flags; struct ctlr_info *h; h = sdev_to_hba(sdev); spin_lock_irqsave(&h->devlock, flags); sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), sdev_id(sdev), sdev->lun); if (sd != NULL) sdev->hostdata = sd; spin_unlock_irqrestore(&h->devlock, flags); return 0; } static void hpsa_slave_destroy(struct scsi_device *sdev) { /* nothing to do. */ } static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) { int i; if (!h->cmd_sg_list) return; for (i = 0; i < h->nr_cmds; i++) { kfree(h->cmd_sg_list[i]); h->cmd_sg_list[i] = NULL; } kfree(h->cmd_sg_list); h->cmd_sg_list = NULL; } static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) { int i; if (h->chainsize <= 0) return 0; h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, GFP_KERNEL); if (!h->cmd_sg_list) return -ENOMEM; for (i = 0; i < h->nr_cmds; i++) { h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * h->chainsize, GFP_KERNEL); if (!h->cmd_sg_list[i]) goto clean; } return 0; clean: hpsa_free_sg_chain_blocks(h); return -ENOMEM; } static int hpsa_map_sg_chain_block(struct ctlr_info *h, struct CommandList *c) { struct SGDescriptor *chain_sg, *chain_block; u64 temp64; chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; chain_block = h->cmd_sg_list[c->cmdindex]; chain_sg->Ext = HPSA_SG_CHAIN; chain_sg->Len = sizeof(*chain_sg) * (c->Header.SGTotal - h->max_cmd_sg_entries); temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, PCI_DMA_TODEVICE); if (dma_mapping_error(&h->pdev->dev, temp64)) { /* prevent subsequent unmapping */ chain_sg->Addr.lower = 0; chain_sg->Addr.upper = 0; return -1; } chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); return 0; } static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, struct CommandList *c) { struct SGDescriptor *chain_sg; union u64bit temp64; if (c->Header.SGTotal <= h->max_cmd_sg_entries) return; chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; temp64.val32.lower = chain_sg->Addr.lower; temp64.val32.upper = chain_sg->Addr.upper; pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); } static void handle_ioaccel_mode2_error(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, struct io_accel2_cmd *c2) { int data_len; switch (c2->error_data.serv_response) { case IOACCEL2_SERV_RESPONSE_COMPLETE: switch (c2->error_data.status) { case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: break; case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: dev_warn(&h->pdev->dev, "%s: task complete with check condition.\n", "HP SSD Smart Path"); if (c2->error_data.data_present != IOACCEL2_SENSE_DATA_PRESENT) break; /* copy the sense data */ data_len = c2->error_data.sense_data_len; if (data_len > SCSI_SENSE_BUFFERSIZE) data_len = SCSI_SENSE_BUFFERSIZE; if (data_len > sizeof(c2->error_data.sense_data_buff)) data_len = sizeof(c2->error_data.sense_data_buff); memcpy(cmd->sense_buffer, c2->error_data.sense_data_buff, data_len); cmd->result |= SAM_STAT_CHECK_CONDITION; break; case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: dev_warn(&h->pdev->dev, "%s: task complete with BUSY status.\n", "HP SSD Smart Path"); break; case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: dev_warn(&h->pdev->dev, "%s: task complete with reservation conflict.\n", "HP SSD Smart Path"); break; case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: /* Make scsi midlayer do unlimited retries */ cmd->result = DID_IMM_RETRY << 16; break; case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: dev_warn(&h->pdev->dev, "%s: task complete with aborted status.\n", "HP SSD Smart Path"); break; default: dev_warn(&h->pdev->dev, "%s: task complete with unrecognized status: 0x%02x\n", "HP SSD Smart Path", c2->error_data.status); break; } break; case IOACCEL2_SERV_RESPONSE_FAILURE: /* don't expect to get here. */ dev_warn(&h->pdev->dev, "unexpected delivery or target failure, status = 0x%02x\n", c2->error_data.status); break; case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: break; case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: break; case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: dev_warn(&h->pdev->dev, "task management function rejected.\n"); break; case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: dev_warn(&h->pdev->dev, "task management function invalid LUN\n"); break; default: dev_warn(&h->pdev->dev, "%s: Unrecognized server response: 0x%02x\n", "HP SSD Smart Path", c2->error_data.serv_response); break; } } static void process_ioaccel2_completion(struct ctlr_info *h, struct CommandList *c, struct scsi_cmnd *cmd, struct hpsa_scsi_dev_t *dev) { struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; /* check for good status */ if (likely(c2->error_data.serv_response == 0 && c2->error_data.status == 0)) { cmd_free(h, c); cmd->scsi_done(cmd); return; } /* Any RAID offload error results in retry which will use * the normal I/O path so the controller can handle whatever's * wrong. */ if (is_logical_dev_addr_mode(dev->scsi3addr) && c2->error_data.serv_response == IOACCEL2_SERV_RESPONSE_FAILURE) { if (c2->error_data.status != IOACCEL2_STATUS_SR_IOACCEL_DISABLED) dev_warn(&h->pdev->dev, "%s: Error 0x%02x, Retrying on standard path.\n", "HP SSD Smart Path", c2->error_data.status); dev->offload_enabled = 0; h->drv_req_rescan = 1; /* schedule controller for a rescan */ cmd->result = DID_SOFT_ERROR << 16; cmd_free(h, c); cmd->scsi_done(cmd); return; } handle_ioaccel_mode2_error(h, c, cmd, c2); cmd_free(h, c); cmd->scsi_done(cmd); } static void complete_scsi_command(struct CommandList *cp) { struct scsi_cmnd *cmd; struct ctlr_info *h; struct ErrorInfo *ei; struct hpsa_scsi_dev_t *dev; unsigned char sense_key; unsigned char asc; /* additional sense code */ unsigned char ascq; /* additional sense code qualifier */ unsigned long sense_data_size; ei = cp->err_info; cmd = (struct scsi_cmnd *) cp->scsi_cmd; h = cp->h; dev = cmd->device->hostdata; scsi_dma_unmap(cmd); /* undo the DMA mappings */ if ((cp->cmd_type == CMD_SCSI) && (cp->Header.SGTotal > h->max_cmd_sg_entries)) hpsa_unmap_sg_chain_block(h, cp); cmd->result = (DID_OK << 16); /* host byte */ cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ if (cp->cmd_type == CMD_IOACCEL2) return process_ioaccel2_completion(h, cp, cmd, dev); cmd->result |= ei->ScsiStatus; /* copy the sense data whether we need to or not. */ if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) sense_data_size = SCSI_SENSE_BUFFERSIZE; else sense_data_size = sizeof(ei->SenseInfo); if (ei->SenseLen < sense_data_size) sense_data_size = ei->SenseLen; memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); scsi_set_resid(cmd, ei->ResidualCnt); if (ei->CommandStatus == 0) { cmd_free(h, cp); cmd->scsi_done(cmd); return; } /* For I/O accelerator commands, copy over some fields to the normal * CISS header used below for error handling. */ if (cp->cmd_type == CMD_IOACCEL1) { struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd); cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK; cp->Header.Tag.lower = c->Tag.lower; cp->Header.Tag.upper = c->Tag.upper; memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); /* Any RAID offload error results in retry which will use * the normal I/O path so the controller can handle whatever's * wrong. */ if (is_logical_dev_addr_mode(dev->scsi3addr)) { if (ei->CommandStatus == CMD_IOACCEL_DISABLED) dev->offload_enabled = 0; cmd->result = DID_SOFT_ERROR << 16; cmd_free(h, cp); cmd->scsi_done(cmd); return; } } /* an error has occurred */ switch (ei->CommandStatus) { case CMD_TARGET_STATUS: if (ei->ScsiStatus) { /* Get sense key */ sense_key = 0xf & ei->SenseInfo[2]; /* Get additional sense code */ asc = ei->SenseInfo[12]; /* Get addition sense code qualifier */ ascq = ei->SenseInfo[13]; } if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { if (check_for_unit_attention(h, cp)) break; if (sense_key == ILLEGAL_REQUEST) { /* * SCSI REPORT_LUNS is commonly unsupported on * Smart Array. Suppress noisy complaint. */ if (cp->Request.CDB[0] == REPORT_LUNS) break; /* If ASC/ASCQ indicate Logical Unit * Not Supported condition, */ if ((asc == 0x25) && (ascq == 0x0)) { dev_warn(&h->pdev->dev, "cp %p " "has check condition\n", cp); break; } } if (sense_key == NOT_READY) { /* If Sense is Not Ready, Logical Unit * Not ready, Manual Intervention * required */ if ((asc == 0x04) && (ascq == 0x03)) { dev_warn(&h->pdev->dev, "cp %p " "has check condition: unit " "not ready, manual " "intervention required\n", cp); break; } } if (sense_key == ABORTED_COMMAND) { /* Aborted command is retryable */ dev_warn(&h->pdev->dev, "cp %p " "has check condition: aborted command: " "ASC: 0x%x, ASCQ: 0x%x\n", cp, asc, ascq); cmd->result |= DID_SOFT_ERROR << 16; break; } /* Must be some other type of check condition */ dev_dbg(&h->pdev->dev, "cp %p has check condition: " "unknown type: " "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " "Returning result: 0x%x, " "cmd=[%02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x]\n", cp, sense_key, asc, ascq, cmd->result, cmd->cmnd[0], cmd->cmnd[1], cmd->cmnd[2], cmd->cmnd[3], cmd->cmnd[4], cmd->cmnd[5], cmd->cmnd[6], cmd->cmnd[7], cmd->cmnd[8], cmd->cmnd[9], cmd->cmnd[10], cmd->cmnd[11], cmd->cmnd[12], cmd->cmnd[13], cmd->cmnd[14], cmd->cmnd[15]); break; } /* Problem was not a check condition * Pass it up to the upper layers... */ if (ei->ScsiStatus) { dev_warn(&h->pdev->dev, "cp %p has status 0x%x " "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " "Returning result: 0x%x\n", cp, ei->ScsiStatus, sense_key, asc, ascq, cmd->result); } else { /* scsi status is zero??? How??? */ dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " "Returning no connection.\n", cp), /* Ordinarily, this case should never happen, * but there is a bug in some released firmware * revisions that allows it to happen if, for * example, a 4100 backplane loses power and * the tape drive is in it. We assume that * it's a fatal error of some kind because we * can't show that it wasn't. We will make it * look like selection timeout since that is * the most common reason for this to occur, * and it's severe enough. */ cmd->result = DID_NO_CONNECT << 16; } break; case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ break; case CMD_DATA_OVERRUN: dev_warn(&h->pdev->dev, "cp %p has" " completed with data overrun " "reported\n", cp); break; case CMD_INVALID: { /* print_bytes(cp, sizeof(*cp), 1, 0); print_cmd(cp); */ /* We get CMD_INVALID if you address a non-existent device * instead of a selection timeout (no response). You will * see this if you yank out a drive, then try to access it. * This is kind of a shame because it means that any other * CMD_INVALID (e.g. driver bug) will get interpreted as a * missing target. */ cmd->result = DID_NO_CONNECT << 16; } break; case CMD_PROTOCOL_ERR: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p has " "protocol error\n", cp); break; case CMD_HARDWARE_ERR: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); break; case CMD_CONNECTION_LOST: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); break; case CMD_ABORTED: cmd->result = DID_ABORT << 16; dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", cp, ei->ScsiStatus); break; case CMD_ABORT_FAILED: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); break; case CMD_UNSOLICITED_ABORT: cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " "abort\n", cp); break; case CMD_TIMEOUT: cmd->result = DID_TIME_OUT << 16; dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); break; case CMD_UNABORTABLE: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "Command unabortable\n"); break; case CMD_IOACCEL_DISABLED: /* This only handles the direct pass-through case since RAID * offload is handled above. Just attempt a retry. */ cmd->result = DID_SOFT_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p had HP SSD Smart Path error\n", cp); break; default: cmd->result = DID_ERROR << 16; dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", cp, ei->CommandStatus); } cmd_free(h, cp); cmd->scsi_done(cmd); } static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c, int sg_used, int data_direction) { int i; union u64bit addr64; for (i = 0; i < sg_used; i++) { addr64.val32.lower = c->SG[i].Addr.lower; addr64.val32.upper = c->SG[i].Addr.upper; pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, data_direction); } } static int hpsa_map_one(struct pci_dev *pdev, struct CommandList *cp, unsigned char *buf, size_t buflen, int data_direction) { u64 addr64; if (buflen == 0 || data_direction == PCI_DMA_NONE) { cp->Header.SGList = 0; cp->Header.SGTotal = 0; return 0; } addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); if (dma_mapping_error(&pdev->dev, addr64)) { /* Prevent subsequent unmap of something never mapped */ cp->Header.SGList = 0; cp->Header.SGTotal = 0; return -1; } cp->SG[0].Addr.lower = (u32) (addr64 & (u64) 0x00000000FFFFFFFF); cp->SG[0].Addr.upper = (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); cp->SG[0].Len = buflen; cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */ cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ return 0; } static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, struct CommandList *c) { DECLARE_COMPLETION_ONSTACK(wait); c->waiting = &wait; enqueue_cmd_and_start_io(h, c); wait_for_completion(&wait); } static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, struct CommandList *c) { unsigned long flags; /* If controller lockup detected, fake a hardware error. */ spin_lock_irqsave(&h->lock, flags); if (unlikely(h->lockup_detected)) { spin_unlock_irqrestore(&h->lock, flags); c->err_info->CommandStatus = CMD_HARDWARE_ERR; } else { spin_unlock_irqrestore(&h->lock, flags); hpsa_scsi_do_simple_cmd_core(h, c); } } #define MAX_DRIVER_CMD_RETRIES 25 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, struct CommandList *c, int data_direction) { int backoff_time = 10, retry_count = 0; do { memset(c->err_info, 0, sizeof(*c->err_info)); hpsa_scsi_do_simple_cmd_core(h, c); retry_count++; if (retry_count > 3) { msleep(backoff_time); if (backoff_time < 1000) backoff_time *= 2; } } while ((check_for_unit_attention(h, c) || check_for_busy(h, c)) && retry_count <= MAX_DRIVER_CMD_RETRIES); hpsa_pci_unmap(h->pdev, c, 1, data_direction); } static void hpsa_scsi_interpret_error(struct CommandList *cp) { struct ErrorInfo *ei; struct device *d = &cp->h->pdev->dev; ei = cp->err_info; switch (ei->CommandStatus) { case CMD_TARGET_STATUS: dev_warn(d, "cmd %p has completed with errors\n", cp); dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, ei->ScsiStatus); if (ei->ScsiStatus == 0) dev_warn(d, "SCSI status is abnormally zero. " "(probably indicates selection timeout " "reported incorrectly due to a known " "firmware bug, circa July, 2001.)\n"); break; case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ dev_info(d, "UNDERRUN\n"); break; case CMD_DATA_OVERRUN: dev_warn(d, "cp %p has completed with data overrun\n", cp); break; case CMD_INVALID: { /* controller unfortunately reports SCSI passthru's * to non-existent targets as invalid commands. */ dev_warn(d, "cp %p is reported invalid (probably means " "target device no longer present)\n", cp); /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); print_cmd(cp); */ } break; case CMD_PROTOCOL_ERR: dev_warn(d, "cp %p has protocol error \n", cp); break; case CMD_HARDWARE_ERR: /* cmd->result = DID_ERROR << 16; */ dev_warn(d, "cp %p had hardware error\n", cp); break; case CMD_CONNECTION_LOST: dev_warn(d, "cp %p had connection lost\n", cp); break; case CMD_ABORTED: dev_warn(d, "cp %p was aborted\n", cp); break; case CMD_ABORT_FAILED: dev_warn(d, "cp %p reports abort failed\n", cp); break; case CMD_UNSOLICITED_ABORT: dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); break; case CMD_TIMEOUT: dev_warn(d, "cp %p timed out\n", cp); break; case CMD_UNABORTABLE: dev_warn(d, "Command unabortable\n"); break; default: dev_warn(d, "cp %p returned unknown status %x\n", cp, ei->CommandStatus); } } static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, unsigned char page, unsigned char *buf, unsigned char bufsize) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_special_alloc(h); if (c == NULL) { /* trouble... */ dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); return -ENOMEM; } if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD)) { rc = -1; goto out; } hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(c); rc = -1; } out: cmd_special_free(h, c); return rc; } static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, u8 reset_type) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; c = cmd_special_alloc(h); if (c == NULL) { /* trouble... */ dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); return -ENOMEM; } /* fill_cmd can't fail here, no data buffer to map. */ (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */ hpsa_scsi_do_simple_cmd_core(h, c); /* no unmap needed here because no data xfer. */ ei = c->err_info; if (ei->CommandStatus != 0) { hpsa_scsi_interpret_error(c); rc = -1; } cmd_special_free(h, c); return rc; } static void hpsa_get_raid_level(struct ctlr_info *h, unsigned char *scsi3addr, unsigned char *raid_level) { int rc; unsigned char *buf; *raid_level = RAID_UNKNOWN; buf = kzalloc(64, GFP_KERNEL); if (!buf) return; rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); if (rc == 0) *raid_level = buf[8]; if (*raid_level > RAID_UNKNOWN) *raid_level = RAID_UNKNOWN; kfree(buf); return; } #define HPSA_MAP_DEBUG #ifdef HPSA_MAP_DEBUG static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, struct raid_map_data *map_buff) { struct raid_map_disk_data *dd = &map_buff->data[0]; int map, row, col; u16 map_cnt, row_cnt, disks_per_row; if (rc != 0) return; dev_info(&h->pdev->dev, "structure_size = %u\n", le32_to_cpu(map_buff->structure_size)); dev_info(&h->pdev->dev, "volume_blk_size = %u\n", le32_to_cpu(map_buff->volume_blk_size)); dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", le64_to_cpu(map_buff->volume_blk_cnt)); dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", map_buff->phys_blk_shift); dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", map_buff->parity_rotation_shift); dev_info(&h->pdev->dev, "strip_size = %u\n", le16_to_cpu(map_buff->strip_size)); dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", le64_to_cpu(map_buff->disk_starting_blk)); dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", le64_to_cpu(map_buff->disk_blk_cnt)); dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", le16_to_cpu(map_buff->data_disks_per_row)); dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", le16_to_cpu(map_buff->metadata_disks_per_row)); dev_info(&h->pdev->dev, "row_cnt = %u\n", le16_to_cpu(map_buff->row_cnt)); dev_info(&h->pdev->dev, "layout_map_count = %u\n", le16_to_cpu(map_buff->layout_map_count)); map_cnt = le16_to_cpu(map_buff->layout_map_count); for (map = 0; map < map_cnt; map++) { dev_info(&h->pdev->dev, "Map%u:\n", map); row_cnt = le16_to_cpu(map_buff->row_cnt); for (row = 0; row < row_cnt; row++) { dev_info(&h->pdev->dev, " Row%u:\n", row); disks_per_row = le16_to_cpu(map_buff->data_disks_per_row); for (col = 0; col < disks_per_row; col++, dd++) dev_info(&h->pdev->dev, " D%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, dd->xor_mult[0], dd->xor_mult[1]); disks_per_row = le16_to_cpu(map_buff->metadata_disks_per_row); for (col = 0; col < disks_per_row; col++, dd++) dev_info(&h->pdev->dev, " M%02u: h=0x%04x xor=%u,%u\n", col, dd->ioaccel_handle, dd->xor_mult[0], dd->xor_mult[1]); } } } #else static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, __attribute__((unused)) int rc, __attribute__((unused)) struct raid_map_data *map_buff) { } #endif static int hpsa_get_raid_map(struct ctlr_info *h, unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) { int rc = 0; struct CommandList *c; struct ErrorInfo *ei; c = cmd_special_alloc(h); if (c == NULL) { dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); return -ENOMEM; } if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, sizeof(this_device->raid_map), 0, scsi3addr, TYPE_CMD)) { dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n"); cmd_special_free(h, c); return -ENOMEM; } hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(c); cmd_special_free(h, c); return -1; } cmd_special_free(h, c); /* @todo in the future, dynamically allocate RAID map memory */ if (le32_to_cpu(this_device->raid_map.structure_size) > sizeof(this_device->raid_map)) { dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); rc = -1; } hpsa_debug_map_buff(h, rc, &this_device->raid_map); return rc; } static void hpsa_get_ioaccel_status(struct ctlr_info *h, unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) { int rc; unsigned char *buf; u8 ioaccel_status; this_device->offload_config = 0; this_device->offload_enabled = 0; buf = kzalloc(64, GFP_KERNEL); if (!buf) return; rc = hpsa_scsi_do_inquiry(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); if (rc != 0) goto out; #define IOACCEL_STATUS_BYTE 4 #define OFFLOAD_CONFIGURED_BIT 0x01 #define OFFLOAD_ENABLED_BIT 0x02 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; this_device->offload_config = !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); if (this_device->offload_config) { this_device->offload_enabled = !!(ioaccel_status & OFFLOAD_ENABLED_BIT); if (hpsa_get_raid_map(h, scsi3addr, this_device)) this_device->offload_enabled = 0; } out: kfree(buf); return; } /* Get the device id from inquiry page 0x83 */ static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, unsigned char *device_id, int buflen) { int rc; unsigned char *buf; if (buflen > 16) buflen = 16; buf = kzalloc(64, GFP_KERNEL); if (!buf) return -1; rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); if (rc == 0) memcpy(device_id, &buf[8], buflen); kfree(buf); return rc != 0; } static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, struct ReportLUNdata *buf, int bufsize, int extended_response) { int rc = IO_OK; struct CommandList *c; unsigned char scsi3addr[8]; struct ErrorInfo *ei; c = cmd_special_alloc(h); if (c == NULL) { /* trouble... */ dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); return -1; } /* address the controller */ memset(scsi3addr, 0, sizeof(scsi3addr)); if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, buf, bufsize, 0, scsi3addr, TYPE_CMD)) { rc = -1; goto out; } if (extended_response) c->Request.CDB[1] = extended_response; hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); ei = c->err_info; if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { hpsa_scsi_interpret_error(c); rc = -1; } else { if (buf->extended_response_flag != extended_response) { dev_err(&h->pdev->dev, "report luns requested format %u, got %u\n", extended_response, buf->extended_response_flag); rc = -1; } } out: cmd_special_free(h, c); return rc; } static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, struct ReportLUNdata *buf, int bufsize, int extended_response) { return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); } static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, struct ReportLUNdata *buf, int bufsize) { return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); } static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, int bus, int target, int lun) { device->bus = bus; device->target = target; device->lun = lun; } static int hpsa_update_device_info(struct ctlr_info *h, unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, unsigned char *is_OBDR_device) { #define OBDR_SIG_OFFSET 43 #define OBDR_TAPE_SIG "$DR-10" #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) unsigned char *inq_buff; unsigned char *obdr_sig; inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); if (!inq_buff) goto bail_out; /* Do an inquiry to the device to see what it is. */ if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { /* Inquiry failed (msg printed already) */ dev_err(&h->pdev->dev, "hpsa_update_device_info: inquiry failed\n"); goto bail_out; } this_device->devtype = (inq_buff[0] & 0x1f); memcpy(this_device->scsi3addr, scsi3addr, 8); memcpy(this_device->vendor, &inq_buff[8], sizeof(this_device->vendor)); memcpy(this_device->model, &inq_buff[16], sizeof(this_device->model)); memset(this_device->device_id, 0, sizeof(this_device->device_id)); hpsa_get_device_id(h, scsi3addr, this_device->device_id, sizeof(this_device->device_id)); if (this_device->devtype == TYPE_DISK && is_logical_dev_addr_mode(scsi3addr)) { hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) hpsa_get_ioaccel_status(h, scsi3addr, this_device); } else { this_device->raid_level = RAID_UNKNOWN; this_device->offload_config = 0; this_device->offload_enabled = 0; } if (is_OBDR_device) { /* See if this is a One-Button-Disaster-Recovery device * by looking for "$DR-10" at offset 43 in inquiry data. */ obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; *is_OBDR_device = (this_device->devtype == TYPE_ROM && strncmp(obdr_sig, OBDR_TAPE_SIG, OBDR_SIG_LEN) == 0); } kfree(inq_buff); return 0; bail_out: kfree(inq_buff); return 1; } static unsigned char *ext_target_model[] = { "MSA2012", "MSA2024", "MSA2312", "MSA2324", "P2000 G3 SAS", "MSA 2040 SAS", NULL, }; static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) { int i; for (i = 0; ext_target_model[i]; i++) if (strncmp(device->model, ext_target_model[i], strlen(ext_target_model[i])) == 0) return 1; return 0; } /* Helper function to assign bus, target, lun mapping of devices. * Puts non-external target logical volumes on bus 0, external target logical * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. * Logical drive target and lun are assigned at this time, but * physical device lun and target assignment are deferred (assigned * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) */ static void figure_bus_target_lun(struct ctlr_info *h, u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) { u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); if (!is_logical_dev_addr_mode(lunaddrbytes)) { /* physical device, target and lun filled in later */ if (is_hba_lunid(lunaddrbytes)) hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); else /* defer target, lun assignment for physical devices */ hpsa_set_bus_target_lun(device, 2, -1, -1); return; } /* It's a logical device */ if (is_ext_target(h, device)) { /* external target way, put logicals on bus 1 * and match target/lun numbers box * reports, other smart array, bus 0, target 0, match lunid */ hpsa_set_bus_target_lun(device, 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); return; } hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); } /* * If there is no lun 0 on a target, linux won't find any devices. * For the external targets (arrays), we have to manually detect the enclosure * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report * it for some reason. *tmpdevice is the target we're adding, * this_device is a pointer into the current element of currentsd[] * that we're building up in update_scsi_devices(), below. * lunzerobits is a bitmap that tracks which targets already have a * lun 0 assigned. * Returns 1 if an enclosure was added, 0 if not. */ static int add_ext_target_dev(struct ctlr_info *h, struct hpsa_scsi_dev_t *tmpdevice, struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, unsigned long lunzerobits[], int *n_ext_target_devs) { unsigned char scsi3addr[8]; if (test_bit(tmpdevice->target, lunzerobits)) return 0; /* There is already a lun 0 on this target. */ if (!is_logical_dev_addr_mode(lunaddrbytes)) return 0; /* It's the logical targets that may lack lun 0. */ if (!is_ext_target(h, tmpdevice)) return 0; /* Only external target devices have this problem. */ if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ return 0; memset(scsi3addr, 0, 8); scsi3addr[3] = tmpdevice->target; if (is_hba_lunid(scsi3addr)) return 0; /* Don't add the RAID controller here. */ if (is_scsi_rev_5(h)) return 0; /* p1210m doesn't need to do this. */ if (*n_ext_target_devs >= MAX_EXT_TARGETS) { dev_warn(&h->pdev->dev, "Maximum number of external " "target devices exceeded. Check your hardware " "configuration."); return 0; } if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) return 0; (*n_ext_target_devs)++; hpsa_set_bus_target_lun(this_device, tmpdevice->bus, tmpdevice->target, 0); set_bit(tmpdevice->target, lunzerobits); return 1; } /* * Get address of physical disk used for an ioaccel2 mode command: * 1. Extract ioaccel2 handle from the command. * 2. Find a matching ioaccel2 handle from list of physical disks. * 3. Return: * 1 and set scsi3addr to address of matching physical * 0 if no matching physical disk was found. */ static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) { struct ReportExtendedLUNdata *physicals = NULL; int responsesize = 24; /* size of physical extended response */ int extended = 2; /* flag forces reporting 'other dev info'. */ int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize; u32 nphysicals = 0; /* number of reported physical devs */ int found = 0; /* found match (1) or not (0) */ u32 find; /* handle we need to match */ int i; struct scsi_cmnd *scmd; /* scsi command within request being aborted */ struct hpsa_scsi_dev_t *d; /* device of request being aborted */ struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */ u32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */ u32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */ if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2) return 0; /* no match */ /* point to the ioaccel2 device handle */ c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; if (c2a == NULL) return 0; /* no match */ scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd; if (scmd == NULL) return 0; /* no match */ d = scmd->device->hostdata; if (d == NULL) return 0; /* no match */ it_nexus = cpu_to_le32((u32) d->ioaccel_handle); scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus); find = c2a->scsi_nexus; /* Get the list of physical devices */ physicals = kzalloc(reportsize, GFP_KERNEL); if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals, reportsize, extended)) { dev_err(&h->pdev->dev, "Can't lookup %s device handle: report physical LUNs failed.\n", "HP SSD Smart Path"); kfree(physicals); return 0; } nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) / responsesize; /* find ioaccel2 handle in list of physicals: */ for (i = 0; i < nphysicals; i++) { /* handle is in bytes 28-31 of each lun */ if (memcmp(&((struct ReportExtendedLUNdata *) physicals)->LUN[i][20], &find, 4) != 0) { continue; /* didn't match */ } found = 1; memcpy(scsi3addr, &((struct ReportExtendedLUNdata *) physicals)->LUN[i][0], 8); break; /* found it */ } kfree(physicals); if (found) return 1; else return 0; } /* * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, * logdev. The number of luns in physdev and logdev are returned in * *nphysicals and *nlogicals, respectively. * Returns 0 on success, -1 otherwise. */ static int hpsa_gather_lun_info(struct ctlr_info *h, int reportlunsize, struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode, struct ReportLUNdata *logdev, u32 *nlogicals) { int physical_entry_size = 8; *physical_mode = 0; /* For I/O accelerator mode we need to read physical device handles */ if (h->transMethod & CFGTBL_Trans_io_accel1 || h->transMethod & CFGTBL_Trans_io_accel2) { *physical_mode = HPSA_REPORT_PHYS_EXTENDED; physical_entry_size = 24; } if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, *physical_mode)) { dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); return -1; } *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / physical_entry_size; if (*nphysicals > HPSA_MAX_PHYS_LUN) { dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); *nphysicals = HPSA_MAX_PHYS_LUN; } if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); return -1; } *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; /* Reject Logicals in excess of our max capability. */ if (*nlogicals > HPSA_MAX_LUN) { dev_warn(&h->pdev->dev, "maximum logical LUNs (%d) exceeded. " "%d LUNs ignored.\n", HPSA_MAX_LUN, *nlogicals - HPSA_MAX_LUN); *nlogicals = HPSA_MAX_LUN; } if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { dev_warn(&h->pdev->dev, "maximum logical + physical LUNs (%d) exceeded. " "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; } return 0; } u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, int nphysicals, int nlogicals, struct ReportExtendedLUNdata *physdev_list, struct ReportLUNdata *logdev_list) { /* Helper function, figure out where the LUN ID info is coming from * given index i, lists of physical and logical devices, where in * the list the raid controller is supposed to appear (first or last) */ int logicals_start = nphysicals + (raid_ctlr_position == 0); int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); if (i == raid_ctlr_position) return RAID_CTLR_LUNID; if (i < logicals_start) return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; if (i < last_device) return &logdev_list->LUN[i - nphysicals - (raid_ctlr_position == 0)][0]; BUG(); return NULL; } static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) { /* the idea here is we could get notified * that some devices have changed, so we do a report * physical luns and report logical luns cmd, and adjust * our list of devices accordingly. * * The scsi3addr's of devices won't change so long as the * adapter is not reset. That means we can rescan and * tell which devices we already know about, vs. new * devices, vs. disappearing devices. */ struct ReportExtendedLUNdata *physdev_list = NULL; struct ReportLUNdata *logdev_list = NULL; u32 nphysicals = 0; u32 nlogicals = 0; int physical_mode = 0; u32 ndev_allocated = 0; struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; int ncurrent = 0; int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24; int i, n_ext_target_devs, ndevs_to_allocate; int raid_ctlr_position; DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); physdev_list = kzalloc(reportlunsize, GFP_KERNEL); logdev_list = kzalloc(reportlunsize, GFP_KERNEL); tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { dev_err(&h->pdev->dev, "out of memory\n"); goto out; } memset(lunzerobits, 0, sizeof(lunzerobits)); if (hpsa_gather_lun_info(h, reportlunsize, (struct ReportLUNdata *) physdev_list, &nphysicals, &physical_mode, logdev_list, &nlogicals)) goto out; /* We might see up to the maximum number of logical and physical disks * plus external target devices, and a device for the local RAID * controller. */ ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; /* Allocate the per device structures */ for (i = 0; i < ndevs_to_allocate; i++) { if (i >= HPSA_MAX_DEVICES) { dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." " %d devices ignored.\n", HPSA_MAX_DEVICES, ndevs_to_allocate - HPSA_MAX_DEVICES); break; } currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); if (!currentsd[i]) { dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", __FILE__, __LINE__); goto out; } ndev_allocated++; } if (unlikely(is_scsi_rev_5(h))) raid_ctlr_position = 0; else raid_ctlr_position = nphysicals + nlogicals; /* adjust our table of devices */ n_ext_target_devs = 0; for (i = 0; i < nphysicals + nlogicals + 1; i++) { u8 *lunaddrbytes, is_OBDR = 0; /* Figure out where the LUN ID info is coming from */ lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, i, nphysicals, nlogicals, physdev_list, logdev_list); /* skip masked physical devices. */ if (lunaddrbytes[3] & 0xC0 && i < nphysicals + (raid_ctlr_position == 0)) continue; /* Get device type, vendor, model, device id */ if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, &is_OBDR)) continue; /* skip it if we can't talk to it. */ figure_bus_target_lun(h, lunaddrbytes, tmpdevice); this_device = currentsd[ncurrent]; /* * For external target devices, we have to insert a LUN 0 which * doesn't show up in CCISS_REPORT_PHYSICAL data, but there * is nonetheless an enclosure device there. We have to * present that otherwise linux won't find anything if * there is no lun 0. */ if (add_ext_target_dev(h, tmpdevice, this_device, lunaddrbytes, lunzerobits, &n_ext_target_devs)) { ncurrent++; this_device = currentsd[ncurrent]; } *this_device = *tmpdevice; switch (this_device->devtype) { case TYPE_ROM: /* We don't *really* support actual CD-ROM devices, * just "One Button Disaster Recovery" tape drive * which temporarily pretends to be a CD-ROM drive. * So we check that the device is really an OBDR tape * device by checking for "$DR-10" in bytes 43-48 of * the inquiry data. */ if (is_OBDR) ncurrent++; break; case TYPE_DISK: if (i >= nphysicals) { ncurrent++; break; } if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) { memcpy(&this_device->ioaccel_handle, &lunaddrbytes[20], sizeof(this_device->ioaccel_handle)); ncurrent++; } break; case TYPE_TAPE: case TYPE_MEDIUM_CHANGER: ncurrent++; break; case TYPE_RAID: /* Only present the Smartarray HBA as a RAID controller. * If it's a RAID controller other than the HBA itself * (an external RAID controller, MSA500 or similar) * don't present it. */ if (!is_hba_lunid(lunaddrbytes)) break; ncurrent++; break; default: break; } if (ncurrent >= HPSA_MAX_DEVICES) break; } adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); out: kfree(tmpdevice); for (i = 0; i < ndev_allocated; i++) kfree(currentsd[i]); kfree(currentsd); kfree(physdev_list); kfree(logdev_list); } /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci * dma mapping and fills in the scatter gather entries of the * hpsa command, cp. */ static int hpsa_scatter_gather(struct ctlr_info *h, struct CommandList *cp, struct scsi_cmnd *cmd) { unsigned int len; struct scatterlist *sg; u64 addr64; int use_sg, i, sg_index, chained; struct SGDescriptor *curr_sg; BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); use_sg = scsi_dma_map(cmd); if (use_sg < 0) return use_sg; if (!use_sg) goto sglist_finished; curr_sg = cp->SG; chained = 0; sg_index = 0; scsi_for_each_sg(cmd, sg, use_sg, i) { if (i == h->max_cmd_sg_entries - 1 && use_sg > h->max_cmd_sg_entries) { chained = 1; curr_sg = h->cmd_sg_list[cp->cmdindex]; sg_index = 0; } addr64 = (u64) sg_dma_address(sg); len = sg_dma_len(sg); curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); curr_sg->Len = len; curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST; curr_sg++; } if (use_sg + chained > h->maxSG) h->maxSG = use_sg + chained; if (chained) { cp->Header.SGList = h->max_cmd_sg_entries; cp->Header.SGTotal = (u16) (use_sg + 1); if (hpsa_map_sg_chain_block(h, cp)) { scsi_dma_unmap(cmd); return -1; } return 0; } sglist_finished: cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ return 0; } #define IO_ACCEL_INELIGIBLE (1) static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) { int is_write = 0; u32 block; u32 block_cnt; /* Perform some CDB fixups if needed using 10 byte reads/writes only */ switch (cdb[0]) { case WRITE_6: case WRITE_12: is_write = 1; case READ_6: case READ_12: if (*cdb_len == 6) { block = (((u32) cdb[2]) << 8) | cdb[3]; block_cnt = cdb[4]; } else { BUG_ON(*cdb_len != 12); block = (((u32) cdb[2]) << 24) | (((u32) cdb[3]) << 16) | (((u32) cdb[4]) << 8) | cdb[5]; block_cnt = (((u32) cdb[6]) << 24) | (((u32) cdb[7]) << 16) | (((u32) cdb[8]) << 8) | cdb[9]; } if (block_cnt > 0xffff) return IO_ACCEL_INELIGIBLE; cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; cdb[2] = (u8) (block >> 24); cdb[3] = (u8) (block >> 16); cdb[4] = (u8) (block >> 8); cdb[5] = (u8) (block); cdb[6] = 0; cdb[7] = (u8) (block_cnt >> 8); cdb[8] = (u8) (block_cnt); cdb[9] = 0; *cdb_len = 10; break; } return 0; } static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr) { struct scsi_cmnd *cmd = c->scsi_cmd; struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; unsigned int len; unsigned int total_len = 0; struct scatterlist *sg; u64 addr64; int use_sg, i; struct SGDescriptor *curr_sg; u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; /* TODO: implement chaining support */ if (scsi_sg_count(cmd) > h->ioaccel_maxsg) return IO_ACCEL_INELIGIBLE; BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); if (fixup_ioaccel_cdb(cdb, &cdb_len)) return IO_ACCEL_INELIGIBLE; c->cmd_type = CMD_IOACCEL1; /* Adjust the DMA address to point to the accelerated command buffer */ c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + (c->cmdindex * sizeof(*cp)); BUG_ON(c->busaddr & 0x0000007F); use_sg = scsi_dma_map(cmd); if (use_sg < 0) return use_sg; if (use_sg) { curr_sg = cp->SG; scsi_for_each_sg(cmd, sg, use_sg, i) { addr64 = (u64) sg_dma_address(sg); len = sg_dma_len(sg); total_len += len; curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); curr_sg->Len = len; if (i == (scsi_sg_count(cmd) - 1)) curr_sg->Ext = HPSA_SG_LAST; else curr_sg->Ext = 0; /* we are not chaining */ curr_sg++; } switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: control |= IOACCEL1_CONTROL_DATA_OUT; break; case DMA_FROM_DEVICE: control |= IOACCEL1_CONTROL_DATA_IN; break; case DMA_NONE: control |= IOACCEL1_CONTROL_NODATAXFER; break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } } else { control |= IOACCEL1_CONTROL_NODATAXFER; } c->Header.SGList = use_sg; /* Fill out the command structure to submit */ cp->dev_handle = ioaccel_handle & 0xFFFF; cp->transfer_len = total_len; cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ | (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK); cp->control = control; memcpy(cp->CDB, cdb, cdb_len); memcpy(cp->CISS_LUN, scsi3addr, 8); /* Tag was already set at init time. */ enqueue_cmd_and_start_io(h, c); return 0; } /* * Queue a command directly to a device behind the controller using the * I/O accelerator path. */ static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, struct CommandList *c) { struct scsi_cmnd *cmd = c->scsi_cmd; struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, cmd->cmnd, cmd->cmd_len, dev->scsi3addr); } static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr) { struct scsi_cmnd *cmd = c->scsi_cmd; struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; struct ioaccel2_sg_element *curr_sg; int use_sg, i; struct scatterlist *sg; u64 addr64; u32 len; u32 total_len = 0; if (scsi_sg_count(cmd) > h->ioaccel_maxsg) return IO_ACCEL_INELIGIBLE; if (fixup_ioaccel_cdb(cdb, &cdb_len)) return IO_ACCEL_INELIGIBLE; c->cmd_type = CMD_IOACCEL2; /* Adjust the DMA address to point to the accelerated command buffer */ c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + (c->cmdindex * sizeof(*cp)); BUG_ON(c->busaddr & 0x0000007F); memset(cp, 0, sizeof(*cp)); cp->IU_type = IOACCEL2_IU_TYPE; use_sg = scsi_dma_map(cmd); if (use_sg < 0) return use_sg; if (use_sg) { BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES); curr_sg = cp->sg; scsi_for_each_sg(cmd, sg, use_sg, i) { addr64 = (u64) sg_dma_address(sg); len = sg_dma_len(sg); total_len += len; curr_sg->address = cpu_to_le64(addr64); curr_sg->length = cpu_to_le32(len); curr_sg->reserved[0] = 0; curr_sg->reserved[1] = 0; curr_sg->reserved[2] = 0; curr_sg->chain_indicator = 0; curr_sg++; } switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: cp->direction = IOACCEL2_DIR_DATA_OUT; break; case DMA_FROM_DEVICE: cp->direction = IOACCEL2_DIR_DATA_IN; break; case DMA_NONE: cp->direction = IOACCEL2_DIR_NO_DATA; break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } } else { cp->direction = IOACCEL2_DIR_NO_DATA; } cp->scsi_nexus = ioaccel_handle; cp->Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT) | DIRECT_LOOKUP_BIT; memcpy(cp->cdb, cdb, sizeof(cp->cdb)); memset(cp->cciss_lun, 0, sizeof(cp->cciss_lun)); cp->cmd_priority_task_attr = 0; /* fill in sg elements */ cp->sg_count = (u8) use_sg; cp->data_len = cpu_to_le32(total_len); cp->err_ptr = cpu_to_le64(c->busaddr + offsetof(struct io_accel2_cmd, error_data)); cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data)); enqueue_cmd_and_start_io(h, c); return 0; } /* * Queue a command to the correct I/O accelerator path. */ static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, u8 *scsi3addr) { if (h->transMethod & CFGTBL_Trans_io_accel1) return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr); else return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, cdb, cdb_len, scsi3addr); } static void raid_map_helper(struct raid_map_data *map, int offload_to_mirror, u32 *map_index, u32 *current_group) { if (offload_to_mirror == 0) { /* use physical disk in the first mirrored group. */ *map_index %= map->data_disks_per_row; return; } do { /* determine mirror group that *map_index indicates */ *current_group = *map_index / map->data_disks_per_row; if (offload_to_mirror == *current_group) continue; if (*current_group < (map->layout_map_count - 1)) { /* select map index from next group */ *map_index += map->data_disks_per_row; (*current_group)++; } else { /* select map index from first group */ *map_index %= map->data_disks_per_row; *current_group = 0; } } while (offload_to_mirror != *current_group); } /* * Attempt to perform offload RAID mapping for a logical volume I/O. */ static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, struct CommandList *c) { struct scsi_cmnd *cmd = c->scsi_cmd; struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; struct raid_map_data *map = &dev->raid_map; struct raid_map_disk_data *dd = &map->data[0]; int is_write = 0; u32 map_index; u64 first_block, last_block; u32 block_cnt; u32 blocks_per_row; u64 first_row, last_row; u32 first_row_offset, last_row_offset; u32 first_column, last_column; u64 r0_first_row, r0_last_row; u32 r5or6_blocks_per_row; u64 r5or6_first_row, r5or6_last_row; u32 r5or6_first_row_offset, r5or6_last_row_offset; u32 r5or6_first_column, r5or6_last_column; u32 total_disks_per_row; u32 stripesize; u32 first_group, last_group, current_group; u32 map_row; u32 disk_handle; u64 disk_block; u32 disk_block_cnt; u8 cdb[16]; u8 cdb_len; #if BITS_PER_LONG == 32 u64 tmpdiv; #endif int offload_to_mirror; BUG_ON(!(dev->offload_config && dev->offload_enabled)); /* check for valid opcode, get LBA and block count */ switch (cmd->cmnd[0]) { case WRITE_6: is_write = 1; case READ_6: first_block = (((u64) cmd->cmnd[2]) << 8) | cmd->cmnd[3]; block_cnt = cmd->cmnd[4]; break; case WRITE_10: is_write = 1; case READ_10: first_block = (((u64) cmd->cmnd[2]) << 24) | (((u64) cmd->cmnd[3]) << 16) | (((u64) cmd->cmnd[4]) << 8) | cmd->cmnd[5]; block_cnt = (((u32) cmd->cmnd[7]) << 8) | cmd->cmnd[8]; break; case WRITE_12: is_write = 1; case READ_12: first_block = (((u64) cmd->cmnd[2]) << 24) | (((u64) cmd->cmnd[3]) << 16) | (((u64) cmd->cmnd[4]) << 8) | cmd->cmnd[5]; block_cnt = (((u32) cmd->cmnd[6]) << 24) | (((u32) cmd->cmnd[7]) << 16) | (((u32) cmd->cmnd[8]) << 8) | cmd->cmnd[9]; break; case WRITE_16: is_write = 1; case READ_16: first_block = (((u64) cmd->cmnd[2]) << 56) | (((u64) cmd->cmnd[3]) << 48) | (((u64) cmd->cmnd[4]) << 40) | (((u64) cmd->cmnd[5]) << 32) | (((u64) cmd->cmnd[6]) << 24) | (((u64) cmd->cmnd[7]) << 16) | (((u64) cmd->cmnd[8]) << 8) | cmd->cmnd[9]; block_cnt = (((u32) cmd->cmnd[10]) << 24) | (((u32) cmd->cmnd[11]) << 16) | (((u32) cmd->cmnd[12]) << 8) | cmd->cmnd[13]; break; default: return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ } BUG_ON(block_cnt == 0); last_block = first_block + block_cnt - 1; /* check for write to non-RAID-0 */ if (is_write && dev->raid_level != 0) return IO_ACCEL_INELIGIBLE; /* check for invalid block or wraparound */ if (last_block >= map->volume_blk_cnt || last_block < first_block) return IO_ACCEL_INELIGIBLE; /* calculate stripe information for the request */ blocks_per_row = map->data_disks_per_row * map->strip_size; #if BITS_PER_LONG == 32 tmpdiv = first_block; (void) do_div(tmpdiv, blocks_per_row); first_row = tmpdiv; tmpdiv = last_block; (void) do_div(tmpdiv, blocks_per_row); last_row = tmpdiv; first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); tmpdiv = first_row_offset; (void) do_div(tmpdiv, map->strip_size); first_column = tmpdiv; tmpdiv = last_row_offset; (void) do_div(tmpdiv, map->strip_size); last_column = tmpdiv; #else first_row = first_block / blocks_per_row; last_row = last_block / blocks_per_row; first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); first_column = first_row_offset / map->strip_size; last_column = last_row_offset / map->strip_size; #endif /* if this isn't a single row/column then give to the controller */ if ((first_row != last_row) || (first_column != last_column)) return IO_ACCEL_INELIGIBLE; /* proceeding with driver mapping */ total_disks_per_row = map->data_disks_per_row + map->metadata_disks_per_row; map_row = ((u32)(first_row >> map->parity_rotation_shift)) % map->row_cnt; map_index = (map_row * total_disks_per_row) + first_column; switch (dev->raid_level) { case HPSA_RAID_0: break; /* nothing special to do */ case HPSA_RAID_1: /* Handles load balance across RAID 1 members. * (2-drive R1 and R10 with even # of drives.) * Appropriate for SSDs, not optimal for HDDs */ BUG_ON(map->layout_map_count != 2); if (dev->offload_to_mirror) map_index += map->data_disks_per_row; dev->offload_to_mirror = !dev->offload_to_mirror; break; case HPSA_RAID_ADM: /* Handles N-way mirrors (R1-ADM) * and R10 with # of drives divisible by 3.) */ BUG_ON(map->layout_map_count != 3); offload_to_mirror = dev->offload_to_mirror; raid_map_helper(map, offload_to_mirror, &map_index, ¤t_group); /* set mirror group to use next time */ offload_to_mirror = (offload_to_mirror >= map->layout_map_count - 1) ? 0 : offload_to_mirror + 1; /* FIXME: remove after debug/dev */ BUG_ON(offload_to_mirror >= map->layout_map_count); dev_warn(&h->pdev->dev, "DEBUG: Using physical disk map index %d from mirror group %d\n", map_index, offload_to_mirror); dev->offload_to_mirror = offload_to_mirror; /* Avoid direct use of dev->offload_to_mirror within this * function since multiple threads might simultaneously * increment it beyond the range of dev->layout_map_count -1. */ break; case HPSA_RAID_5: case HPSA_RAID_6: if (map->layout_map_count <= 1) break; /* Verify first and last block are in same RAID group */ r5or6_blocks_per_row = map->strip_size * map->data_disks_per_row; BUG_ON(r5or6_blocks_per_row == 0); stripesize = r5or6_blocks_per_row * map->layout_map_count; #if BITS_PER_LONG == 32 tmpdiv = first_block; first_group = do_div(tmpdiv, stripesize); tmpdiv = first_group; (void) do_div(tmpdiv, r5or6_blocks_per_row); first_group = tmpdiv; tmpdiv = last_block; last_group = do_div(tmpdiv, stripesize); tmpdiv = last_group; (void) do_div(tmpdiv, r5or6_blocks_per_row); last_group = tmpdiv; #else first_group = (first_block % stripesize) / r5or6_blocks_per_row; last_group = (last_block % stripesize) / r5or6_blocks_per_row; if (first_group != last_group) #endif return IO_ACCEL_INELIGIBLE; /* Verify request is in a single row of RAID 5/6 */ #if BITS_PER_LONG == 32 tmpdiv = first_block; (void) do_div(tmpdiv, stripesize); first_row = r5or6_first_row = r0_first_row = tmpdiv; tmpdiv = last_block; (void) do_div(tmpdiv, stripesize); r5or6_last_row = r0_last_row = tmpdiv; #else first_row = r5or6_first_row = r0_first_row = first_block / stripesize; r5or6_last_row = r0_last_row = last_block / stripesize; #endif if (r5or6_first_row != r5or6_last_row) return IO_ACCEL_INELIGIBLE; /* Verify request is in a single column */ #if BITS_PER_LONG == 32 tmpdiv = first_block; first_row_offset = do_div(tmpdiv, stripesize); tmpdiv = first_row_offset; first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); r5or6_first_row_offset = first_row_offset; tmpdiv = last_block; r5or6_last_row_offset = do_div(tmpdiv, stripesize); tmpdiv = r5or6_last_row_offset; r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); tmpdiv = r5or6_first_row_offset; (void) do_div(tmpdiv, map->strip_size); first_column = r5or6_first_column = tmpdiv; tmpdiv = r5or6_last_row_offset; (void) do_div(tmpdiv, map->strip_size); r5or6_last_column = tmpdiv; #else first_row_offset = r5or6_first_row_offset = (u32)((first_block % stripesize) % r5or6_blocks_per_row); r5or6_last_row_offset = (u32)((last_block % stripesize) % r5or6_blocks_per_row); first_column = r5or6_first_column = r5or6_first_row_offset / map->strip_size; r5or6_last_column = r5or6_last_row_offset / map->strip_size; #endif if (r5or6_first_column != r5or6_last_column) return IO_ACCEL_INELIGIBLE; /* Request is eligible */ map_row = ((u32)(first_row >> map->parity_rotation_shift)) % map->row_cnt; map_index = (first_group * (map->row_cnt * total_disks_per_row)) + (map_row * total_disks_per_row) + first_column; break; default: return IO_ACCEL_INELIGIBLE; } disk_handle = dd[map_index].ioaccel_handle; disk_block = map->disk_starting_blk + (first_row * map->strip_size) + (first_row_offset - (first_column * map->strip_size)); disk_block_cnt = block_cnt; /* handle differing logical/physical block sizes */ if (map->phys_blk_shift) { disk_block <<= map->phys_blk_shift; disk_block_cnt <<= map->phys_blk_shift; } BUG_ON(disk_block_cnt > 0xffff); /* build the new CDB for the physical disk I/O */ if (disk_block > 0xffffffff) { cdb[0] = is_write ? WRITE_16 : READ_16; cdb[1] = 0; cdb[2] = (u8) (disk_block >> 56); cdb[3] = (u8) (disk_block >> 48); cdb[4] = (u8) (disk_block >> 40); cdb[5] = (u8) (disk_block >> 32); cdb[6] = (u8) (disk_block >> 24); cdb[7] = (u8) (disk_block >> 16); cdb[8] = (u8) (disk_block >> 8); cdb[9] = (u8) (disk_block); cdb[10] = (u8) (disk_block_cnt >> 24); cdb[11] = (u8) (disk_block_cnt >> 16); cdb[12] = (u8) (disk_block_cnt >> 8); cdb[13] = (u8) (disk_block_cnt); cdb[14] = 0; cdb[15] = 0; cdb_len = 16; } else { cdb[0] = is_write ? WRITE_10 : READ_10; cdb[1] = 0; cdb[2] = (u8) (disk_block >> 24); cdb[3] = (u8) (disk_block >> 16); cdb[4] = (u8) (disk_block >> 8); cdb[5] = (u8) (disk_block); cdb[6] = 0; cdb[7] = (u8) (disk_block_cnt >> 8); cdb[8] = (u8) (disk_block_cnt); cdb[9] = 0; cdb_len = 10; } return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, dev->scsi3addr); } static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; unsigned char scsi3addr[8]; struct CommandList *c; unsigned long flags; int rc = 0; /* Get the ptr to our adapter structure out of cmd->host. */ h = sdev_to_hba(cmd->device); dev = cmd->device->hostdata; if (!dev) { cmd->result = DID_NO_CONNECT << 16; done(cmd); return 0; } memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); spin_lock_irqsave(&h->lock, flags); if (unlikely(h->lockup_detected)) { spin_unlock_irqrestore(&h->lock, flags); cmd->result = DID_ERROR << 16; done(cmd); return 0; } spin_unlock_irqrestore(&h->lock, flags); c = cmd_alloc(h); if (c == NULL) { /* trouble... */ dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); return SCSI_MLQUEUE_HOST_BUSY; } /* Fill in the command list header */ cmd->scsi_done = done; /* save this for use by completion code */ /* save c in case we have to abort it */ cmd->host_scribble = (unsigned char *) c; c->cmd_type = CMD_SCSI; c->scsi_cmd = cmd; /* Call alternate submit routine for I/O accelerated commands. * Retries always go down the normal I/O path. */ if (likely(cmd->retries == 0 && cmd->request->cmd_type == REQ_TYPE_FS && h->acciopath_status)) { if (dev->offload_enabled) { rc = hpsa_scsi_ioaccel_raid_map(h, c); if (rc == 0) return 0; /* Sent on ioaccel path */ if (rc < 0) { /* scsi_dma_map failed. */ cmd_free(h, c); return SCSI_MLQUEUE_HOST_BUSY; } } else if (dev->ioaccel_handle) { rc = hpsa_scsi_ioaccel_direct_map(h, c); if (rc == 0) return 0; /* Sent on direct map path */ if (rc < 0) { /* scsi_dma_map failed. */ cmd_free(h, c); return SCSI_MLQUEUE_HOST_BUSY; } } } c->Header.ReplyQueue = 0; /* unused in simple mode */ memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; /* Fill in the request block... */ c->Request.Timeout = 0; memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); c->Request.CDBLen = cmd->cmd_len; memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); c->Request.Type.Type = TYPE_CMD; c->Request.Type.Attribute = ATTR_SIMPLE; switch (cmd->sc_data_direction) { case DMA_TO_DEVICE: c->Request.Type.Direction = XFER_WRITE; break; case DMA_FROM_DEVICE: c->Request.Type.Direction = XFER_READ; break; case DMA_NONE: c->Request.Type.Direction = XFER_NONE; break; case DMA_BIDIRECTIONAL: /* This can happen if a buggy application does a scsi passthru * and sets both inlen and outlen to non-zero. ( see * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) */ c->Request.Type.Direction = XFER_RSVD; /* This is technically wrong, and hpsa controllers should * reject it with CMD_INVALID, which is the most correct * response, but non-fibre backends appear to let it * slide by, and give the same results as if this field * were set correctly. Either way is acceptable for * our purposes here. */ break; default: dev_err(&h->pdev->dev, "unknown data direction: %d\n", cmd->sc_data_direction); BUG(); break; } if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ cmd_free(h, c); return SCSI_MLQUEUE_HOST_BUSY; } enqueue_cmd_and_start_io(h, c); /* the cmd'll come back via intr handler in complete_scsi_command() */ return 0; } static DEF_SCSI_QCMD(hpsa_scsi_queue_command) static int do_not_scan_if_controller_locked_up(struct ctlr_info *h) { unsigned long flags; /* * Don't let rescans be initiated on a controller known * to be locked up. If the controller locks up *during* * a rescan, that thread is probably hosed, but at least * we can prevent new rescan threads from piling up on a * locked up controller. */ spin_lock_irqsave(&h->lock, flags); if (unlikely(h->lockup_detected)) { spin_unlock_irqrestore(&h->lock, flags); spin_lock_irqsave(&h->scan_lock, flags); h->scan_finished = 1; wake_up_all(&h->scan_wait_queue); spin_unlock_irqrestore(&h->scan_lock, flags); return 1; } spin_unlock_irqrestore(&h->lock, flags); return 0; } static void hpsa_scan_start(struct Scsi_Host *sh) { struct ctlr_info *h = shost_to_hba(sh); unsigned long flags; if (do_not_scan_if_controller_locked_up(h)) return; /* wait until any scan already in progress is finished. */ while (1) { spin_lock_irqsave(&h->scan_lock, flags); if (h->scan_finished) break; spin_unlock_irqrestore(&h->scan_lock, flags); wait_event(h->scan_wait_queue, h->scan_finished); /* Note: We don't need to worry about a race between this * thread and driver unload because the midlayer will * have incremented the reference count, so unload won't * happen if we're in here. */ } h->scan_finished = 0; /* mark scan as in progress */ spin_unlock_irqrestore(&h->scan_lock, flags); if (do_not_scan_if_controller_locked_up(h)) return; hpsa_update_scsi_devices(h, h->scsi_host->host_no); spin_lock_irqsave(&h->scan_lock, flags); h->scan_finished = 1; /* mark scan as finished. */ wake_up_all(&h->scan_wait_queue); spin_unlock_irqrestore(&h->scan_lock, flags); } static int hpsa_scan_finished(struct Scsi_Host *sh, unsigned long elapsed_time) { struct ctlr_info *h = shost_to_hba(sh); unsigned long flags; int finished; spin_lock_irqsave(&h->scan_lock, flags); finished = h->scan_finished; spin_unlock_irqrestore(&h->scan_lock, flags); return finished; } static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) { struct ctlr_info *h = sdev_to_hba(sdev); if (reason != SCSI_QDEPTH_DEFAULT) return -ENOTSUPP; if (qdepth < 1) qdepth = 1; else if (qdepth > h->nr_cmds) qdepth = h->nr_cmds; scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); return sdev->queue_depth; } static void hpsa_unregister_scsi(struct ctlr_info *h) { /* we are being forcibly unloaded, and may not refuse. */ scsi_remove_host(h->scsi_host); scsi_host_put(h->scsi_host); h->scsi_host = NULL; } static int hpsa_register_scsi(struct ctlr_info *h) { struct Scsi_Host *sh; int error; sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); if (sh == NULL) goto fail; sh->io_port = 0; sh->n_io_port = 0; sh->this_id = -1; sh->max_channel = 3; sh->max_cmd_len = MAX_COMMAND_SIZE; sh->max_lun = HPSA_MAX_LUN; sh->max_id = HPSA_MAX_LUN; sh->can_queue = h->nr_cmds; sh->cmd_per_lun = h->nr_cmds; sh->sg_tablesize = h->maxsgentries; h->scsi_host = sh; sh->hostdata[0] = (unsigned long) h; sh->irq = h->intr[h->intr_mode]; sh->unique_id = sh->irq; error = scsi_add_host(sh, &h->pdev->dev); if (error) goto fail_host_put; scsi_scan_host(sh); return 0; fail_host_put: dev_err(&h->pdev->dev, "%s: scsi_add_host" " failed for controller %d\n", __func__, h->ctlr); scsi_host_put(sh); return error; fail: dev_err(&h->pdev->dev, "%s: scsi_host_alloc" " failed for controller %d\n", __func__, h->ctlr); return -ENOMEM; } static int wait_for_device_to_become_ready(struct ctlr_info *h, unsigned char lunaddr[]) { int rc = 0; int count = 0; int waittime = 1; /* seconds */ struct CommandList *c; c = cmd_special_alloc(h); if (!c) { dev_warn(&h->pdev->dev, "out of memory in " "wait_for_device_to_become_ready.\n"); return IO_ERROR; } /* Send test unit ready until device ready, or give up. */ while (count < HPSA_TUR_RETRY_LIMIT) { /* Wait for a bit. do this first, because if we send * the TUR right away, the reset will just abort it. */ msleep(1000 * waittime); count++; /* Increase wait time with each try, up to a point. */ if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) waittime = waittime * 2; /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); hpsa_scsi_do_simple_cmd_core(h, c); /* no unmap needed here because no data xfer. */ if (c->err_info->CommandStatus == CMD_SUCCESS) break; if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && (c->err_info->SenseInfo[2] == NO_SENSE || c->err_info->SenseInfo[2] == UNIT_ATTENTION)) break; dev_warn(&h->pdev->dev, "waiting %d secs " "for device to become ready.\n", waittime); rc = 1; /* device not ready. */ } if (rc) dev_warn(&h->pdev->dev, "giving up on device.\n"); else dev_warn(&h->pdev->dev, "device is ready.\n"); cmd_special_free(h, c); return rc; } /* Need at least one of these error handlers to keep ../scsi/hosts.c from * complaining. Doing a host- or bus-reset can't do anything good here. */ static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) { int rc; struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; /* find the controller to which the command to be aborted was sent */ h = sdev_to_hba(scsicmd->device); if (h == NULL) /* paranoia */ return FAILED; dev = scsicmd->device->hostdata; if (!dev) { dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " "device lookup failed.\n"); return FAILED; } dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", h->scsi_host->host_no, dev->bus, dev->target, dev->lun); /* send a reset to the SCSI LUN which the command was sent to */ rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN); if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) return SUCCESS; dev_warn(&h->pdev->dev, "resetting device failed.\n"); return FAILED; } static void swizzle_abort_tag(u8 *tag) { u8 original_tag[8]; memcpy(original_tag, tag, 8); tag[0] = original_tag[3]; tag[1] = original_tag[2]; tag[2] = original_tag[1]; tag[3] = original_tag[0]; tag[4] = original_tag[7]; tag[5] = original_tag[6]; tag[6] = original_tag[5]; tag[7] = original_tag[4]; } static void hpsa_get_tag(struct ctlr_info *h, struct CommandList *c, u32 *taglower, u32 *tagupper) { if (c->cmd_type == CMD_IOACCEL1) { struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) &h->ioaccel_cmd_pool[c->cmdindex]; *tagupper = cm1->Tag.upper; *taglower = cm1->Tag.lower; return; } if (c->cmd_type == CMD_IOACCEL2) { struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) &h->ioaccel2_cmd_pool[c->cmdindex]; *tagupper = cm2->Tag.upper; *taglower = cm2->Tag.lower; return; } *tagupper = c->Header.Tag.upper; *taglower = c->Header.Tag.lower; } static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, struct CommandList *abort, int swizzle) { int rc = IO_OK; struct CommandList *c; struct ErrorInfo *ei; u32 tagupper, taglower; c = cmd_special_alloc(h); if (c == NULL) { /* trouble... */ dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); return -ENOMEM; } /* fill_cmd can't fail here, no buffer to map */ (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG); if (swizzle) swizzle_abort_tag(&c->Request.CDB[4]); hpsa_scsi_do_simple_cmd_core(h, c); hpsa_get_tag(h, abort, &taglower, &tagupper); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", __func__, tagupper, taglower); /* no unmap needed here because no data xfer. */ ei = c->err_info; switch (ei->CommandStatus) { case CMD_SUCCESS: break; case CMD_UNABORTABLE: /* Very common, don't make noise. */ rc = -1; break; default: dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", __func__, tagupper, taglower); hpsa_scsi_interpret_error(c); rc = -1; break; } cmd_special_free(h, c); dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, abort->Header.Tag.upper, abort->Header.Tag.lower); return rc; } /* * hpsa_find_cmd_in_queue * * Used to determine whether a command (find) is still present * in queue_head. Optionally excludes the last element of queue_head. * * This is used to avoid unnecessary aborts. Commands in h->reqQ have * not yet been submitted, and so can be aborted by the driver without * sending an abort to the hardware. * * Returns pointer to command if found in queue, NULL otherwise. */ static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, struct scsi_cmnd *find, struct list_head *queue_head) { unsigned long flags; struct CommandList *c = NULL; /* ptr into cmpQ */ if (!find) return 0; spin_lock_irqsave(&h->lock, flags); list_for_each_entry(c, queue_head, list) { if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ continue; if (c->scsi_cmd == find) { spin_unlock_irqrestore(&h->lock, flags); return c; } } spin_unlock_irqrestore(&h->lock, flags); return NULL; } static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, u8 *tag, struct list_head *queue_head) { unsigned long flags; struct CommandList *c; spin_lock_irqsave(&h->lock, flags); list_for_each_entry(c, queue_head, list) { if (memcmp(&c->Header.Tag, tag, 8) != 0) continue; spin_unlock_irqrestore(&h->lock, flags); return c; } spin_unlock_irqrestore(&h->lock, flags); return NULL; } /* ioaccel2 path firmware cannot handle abort task requests. * Change abort requests to physical target reset, and send to the * address of the physical disk used for the ioaccel 2 command. * Return 0 on success (IO_OK) * -1 on failure */ static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, unsigned char *scsi3addr, struct CommandList *abort) { int rc = IO_OK; struct scsi_cmnd *scmd; /* scsi command within request being aborted */ struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ unsigned char *psa = &phys_scsi3addr[0]; /* Get a pointer to the hpsa logical device. */ scmd = (struct scsi_cmnd *) abort->scsi_cmd; dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); if (dev == NULL) { dev_warn(&h->pdev->dev, "Cannot abort: no device pointer for command.\n"); return -1; /* not abortable */ } if (!dev->offload_enabled) { dev_warn(&h->pdev->dev, "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); return -1; /* not abortable */ } /* Incoming scsi3addr is logical addr. We need physical disk addr. */ if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); return -1; /* not abortable */ } /* send the reset */ rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET); if (rc != 0) { dev_warn(&h->pdev->dev, "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", psa[0], psa[1], psa[2], psa[3], psa[4], psa[5], psa[6], psa[7]); return rc; /* failed to reset */ } /* wait for device to recover */ if (wait_for_device_to_become_ready(h, psa) != 0) { dev_warn(&h->pdev->dev, "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", psa[0], psa[1], psa[2], psa[3], psa[4], psa[5], psa[6], psa[7]); return -1; /* failed to recover */ } /* device recovered */ dev_info(&h->pdev->dev, "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", psa[0], psa[1], psa[2], psa[3], psa[4], psa[5], psa[6], psa[7]); return rc; /* success */ } /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to * tell which kind we're dealing with, so we send the abort both ways. There * shouldn't be any collisions between swizzled and unswizzled tags due to the * way we construct our tags but we check anyway in case the assumptions which * make this true someday become false. */ static int hpsa_send_abort_both_ways(struct ctlr_info *h, unsigned char *scsi3addr, struct CommandList *abort) { u8 swizzled_tag[8]; struct CommandList *c; int rc = 0, rc2 = 0; /* ioccelerator mode 2 commands should be aborted via the * accelerated path, since RAID path is unaware of these commands, * but underlying firmware can't handle abort TMF. * Change abort to physical device reset. */ if (abort->cmd_type == CMD_IOACCEL2) return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort); /* we do not expect to find the swizzled tag in our queue, but * check anyway just to be sure the assumptions which make this * the case haven't become wrong. */ memcpy(swizzled_tag, &abort->Request.CDB[4], 8); swizzle_abort_tag(swizzled_tag); c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); if (c != NULL) { dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); return hpsa_send_abort(h, scsi3addr, abort, 0); } rc = hpsa_send_abort(h, scsi3addr, abort, 0); /* if the command is still in our queue, we can't conclude that it was * aborted (it might have just completed normally) but in any case * we don't need to try to abort it another way. */ c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); if (c) rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); return rc && rc2; } /* Send an abort for the specified command. * If the device and controller support it, * send a task abort request. */ static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) { int i, rc; struct ctlr_info *h; struct hpsa_scsi_dev_t *dev; struct CommandList *abort; /* pointer to command to be aborted */ struct CommandList *found; struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ char msg[256]; /* For debug messaging. */ int ml = 0; u32 tagupper, taglower; /* Find the controller of the command to be aborted */ h = sdev_to_hba(sc->device); if (WARN(h == NULL, "ABORT REQUEST FAILED, Controller lookup failed.\n")) return FAILED; /* Check that controller supports some kind of task abort */ if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) return FAILED; memset(msg, 0, sizeof(msg)); ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ", h->scsi_host->host_no, sc->device->channel, sc->device->id, sc->device->lun); /* Find the device of the command to be aborted */ dev = sc->device->hostdata; if (!dev) { dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", msg); return FAILED; } /* Get SCSI command to be aborted */ abort = (struct CommandList *) sc->host_scribble; if (abort == NULL) { dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", msg); return FAILED; } hpsa_get_tag(h, abort, &taglower, &tagupper); ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); as = (struct scsi_cmnd *) abort->scsi_cmd; if (as != NULL) ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", as->cmnd[0], as->serial_number); dev_dbg(&h->pdev->dev, "%s\n", msg); dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", h->scsi_host->host_no, dev->bus, dev->target, dev->lun); /* Search reqQ to See if command is queued but not submitted, * if so, complete the command with aborted status and remove * it from the reqQ. */ found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); if (found) { found->err_info->CommandStatus = CMD_ABORTED; finish_cmd(found); dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", msg); return SUCCESS; } /* not in reqQ, if also not in cmpQ, must have already completed */ found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); if (!found) { dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n", msg); return SUCCESS; } /* * Command is in flight, or possibly already completed * by the firmware (but not to the scsi mid layer) but we can't * distinguish which. Send the abort down. */ rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); if (rc != 0) { dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", h->scsi_host->host_no, dev->bus, dev->target, dev->lun); return FAILED; } dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); /* If the abort(s) above completed and actually aborted the * command, then the command to be aborted should already be * completed. If not, wait around a bit more to see if they * manage to complete normally. */ #define ABORT_COMPLETE_WAIT_SECS 30 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); if (!found) return SUCCESS; msleep(100); } dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", msg, ABORT_COMPLETE_WAIT_SECS); return FAILED; } /* * For operations that cannot sleep, a command block is allocated at init, * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track * which ones are free or in use. Lock must be held when calling this. * cmd_free() is the complement. */ static struct CommandList *cmd_alloc(struct ctlr_info *h) { struct CommandList *c; int i; union u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; unsigned long flags; spin_lock_irqsave(&h->lock, flags); do { i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); if (i == h->nr_cmds) { spin_unlock_irqrestore(&h->lock, flags); return NULL; } } while (test_and_set_bit (i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); spin_unlock_irqrestore(&h->lock, flags); c = h->cmd_pool + i; memset(c, 0, sizeof(*c)); cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c); c->err_info = h->errinfo_pool + i; memset(c->err_info, 0, sizeof(*c->err_info)); err_dma_handle = h->errinfo_pool_dhandle + i * sizeof(*c->err_info); c->cmdindex = i; INIT_LIST_HEAD(&c->list); c->busaddr = (u32) cmd_dma_handle; temp64.val = (u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(*c->err_info); c->h = h; return c; } /* For operations that can wait for kmalloc to possibly sleep, * this routine can be called. Lock need not be held to call * cmd_special_alloc. cmd_special_free() is the complement. */ static struct CommandList *cmd_special_alloc(struct ctlr_info *h) { struct CommandList *c; union u64bit temp64; dma_addr_t cmd_dma_handle, err_dma_handle; c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); if (c == NULL) return NULL; memset(c, 0, sizeof(*c)); c->cmd_type = CMD_SCSI; c->cmdindex = -1; c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), &err_dma_handle); if (c->err_info == NULL) { pci_free_consistent(h->pdev, sizeof(*c), c, cmd_dma_handle); return NULL; } memset(c->err_info, 0, sizeof(*c->err_info)); INIT_LIST_HEAD(&c->list); c->busaddr = (u32) cmd_dma_handle; temp64.val = (u64) err_dma_handle; c->ErrDesc.Addr.lower = temp64.val32.lower; c->ErrDesc.Addr.upper = temp64.val32.upper; c->ErrDesc.Len = sizeof(*c->err_info); c->h = h; return c; } static void cmd_free(struct ctlr_info *h, struct CommandList *c) { int i; unsigned long flags; i = c - h->cmd_pool; spin_lock_irqsave(&h->lock, flags); clear_bit(i & (BITS_PER_LONG - 1), h->cmd_pool_bits + (i / BITS_PER_LONG)); spin_unlock_irqrestore(&h->lock, flags); } static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) { union u64bit temp64; temp64.val32.lower = c->ErrDesc.Addr.lower; temp64.val32.upper = c->ErrDesc.Addr.upper; pci_free_consistent(h->pdev, sizeof(*c->err_info), c->err_info, (dma_addr_t) temp64.val); pci_free_consistent(h->pdev, sizeof(*c), c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); } #ifdef CONFIG_COMPAT static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) { IOCTL32_Command_struct __user *arg32 = (IOCTL32_Command_struct __user *) arg; IOCTL_Command_struct arg64; IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; memset(&arg64, 0, sizeof(arg64)); err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, int cmd, void *arg) { BIG_IOCTL32_Command_struct __user *arg32 = (BIG_IOCTL32_Command_struct __user *) arg; BIG_IOCTL_Command_struct arg64; BIG_IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); int err; u32 cp; memset(&arg64, 0, sizeof(arg64)); err = 0; err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, sizeof(arg64.LUN_info)); err |= copy_from_user(&arg64.Request, &arg32->Request, sizeof(arg64.Request)); err |= copy_from_user(&arg64.error_info, &arg32->error_info, sizeof(arg64.error_info)); err |= get_user(arg64.buf_size, &arg32->buf_size); err |= get_user(arg64.malloc_size, &arg32->malloc_size); err |= get_user(cp, &arg32->buf); arg64.buf = compat_ptr(cp); err |= copy_to_user(p, &arg64, sizeof(arg64)); if (err) return -EFAULT; err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); if (err) return err; err |= copy_in_user(&arg32->error_info, &p->error_info, sizeof(arg32->error_info)); if (err) return -EFAULT; return err; } static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) { switch (cmd) { case CCISS_GETPCIINFO: case CCISS_GETINTINFO: case CCISS_SETINTINFO: case CCISS_GETNODENAME: case CCISS_SETNODENAME: case CCISS_GETHEARTBEAT: case CCISS_GETBUSTYPES: case CCISS_GETFIRMVER: case CCISS_GETDRIVVER: case CCISS_REVALIDVOLS: case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: case CCISS_RESCANDISK: case CCISS_GETLUNINFO: return hpsa_ioctl(dev, cmd, arg); case CCISS_PASSTHRU32: return hpsa_ioctl32_passthru(dev, cmd, arg); case CCISS_BIG_PASSTHRU32: return hpsa_ioctl32_big_passthru(dev, cmd, arg); default: return -ENOIOCTLCMD; } } #endif static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) { struct hpsa_pci_info pciinfo; if (!argp) return -EINVAL; pciinfo.domain = pci_domain_nr(h->pdev->bus); pciinfo.bus = h->pdev->bus->number; pciinfo.dev_fn = h->pdev->devfn; pciinfo.board_id = h->board_id; if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) return -EFAULT; return 0; } static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) { DriverVer_type DriverVer; unsigned char vmaj, vmin, vsubmin; int rc; rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", &vmaj, &vmin, &vsubmin); if (rc != 3) { dev_info(&h->pdev->dev, "driver version string '%s' " "unrecognized.", HPSA_DRIVER_VERSION); vmaj = 0; vmin = 0; vsubmin = 0; } DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; if (!argp) return -EINVAL; if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) return -EFAULT; return 0; } static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) { IOCTL_Command_struct iocommand; struct CommandList *c; char *buff = NULL; union u64bit temp64; int rc = 0; if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; if (copy_from_user(&iocommand, argp, sizeof(iocommand))) return -EFAULT; if ((iocommand.buf_size < 1) && (iocommand.Request.Type.Direction != XFER_NONE)) { return -EINVAL; } if (iocommand.buf_size > 0) { buff = kmalloc(iocommand.buf_size, GFP_KERNEL); if (buff == NULL) return -EFAULT; if (iocommand.Request.Type.Direction == XFER_WRITE) { /* Copy the data into the buffer we created */ if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { rc = -EFAULT; goto out_kfree; } } else { memset(buff, 0, iocommand.buf_size); } } c = cmd_special_alloc(h); if (c == NULL) { rc = -ENOMEM; goto out_kfree; } /* Fill in the command type */ c->cmd_type = CMD_IOCTL_PEND; /* Fill in Command Header */ c->Header.ReplyQueue = 0; /* unused in simple mode */ if (iocommand.buf_size > 0) { /* buffer to fill */ c->Header.SGList = 1; c->Header.SGTotal = 1; } else { /* no buffers to fill */ c->Header.SGList = 0; c->Header.SGTotal = 0; } memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); /* use the kernel address the cmd block for tag */ c->Header.Tag.lower = c->busaddr; /* Fill in Request block */ memcpy(&c->Request, &iocommand.Request, sizeof(c->Request)); /* Fill in the scatter gather information */ if (iocommand.buf_size > 0) { temp64.val = pci_map_single(h->pdev, buff, iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(&h->pdev->dev, temp64.val)) { c->SG[0].Addr.lower = 0; c->SG[0].Addr.upper = 0; c->SG[0].Len = 0; rc = -ENOMEM; goto out; } c->SG[0].Addr.lower = temp64.val32.lower; c->SG[0].Addr.upper = temp64.val32.upper; c->SG[0].Len = iocommand.buf_size; c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/ } hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); if (iocommand.buf_size > 0) hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(h, c); /* Copy the error information out */ memcpy(&iocommand.error_info, c->err_info, sizeof(iocommand.error_info)); if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { rc = -EFAULT; goto out; } if (iocommand.Request.Type.Direction == XFER_READ && iocommand.buf_size > 0) { /* Copy the data out of the buffer we created */ if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { rc = -EFAULT; goto out; } } out: cmd_special_free(h, c); out_kfree: kfree(buff); return rc; } static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) { BIG_IOCTL_Command_struct *ioc; struct CommandList *c; unsigned char **buff = NULL; int *buff_size = NULL; union u64bit temp64; BYTE sg_used = 0; int status = 0; int i; u32 left; u32 sz; BYTE __user *data_ptr; if (!argp) return -EINVAL; if (!capable(CAP_SYS_RAWIO)) return -EPERM; ioc = (BIG_IOCTL_Command_struct *) kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) { status = -ENOMEM; goto cleanup1; } if (copy_from_user(ioc, argp, sizeof(*ioc))) { status = -EFAULT; goto cleanup1; } if ((ioc->buf_size < 1) && (ioc->Request.Type.Direction != XFER_NONE)) { status = -EINVAL; goto cleanup1; } /* Check kmalloc limits using all SGs */ if (ioc->malloc_size > MAX_KMALLOC_SIZE) { status = -EINVAL; goto cleanup1; } if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { status = -EINVAL; goto cleanup1; } buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); if (!buff) { status = -ENOMEM; goto cleanup1; } buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); if (!buff_size) { status = -ENOMEM; goto cleanup1; } left = ioc->buf_size; data_ptr = ioc->buf; while (left) { sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; buff_size[sg_used] = sz; buff[sg_used] = kmalloc(sz, GFP_KERNEL); if (buff[sg_used] == NULL) { status = -ENOMEM; goto cleanup1; } if (ioc->Request.Type.Direction == XFER_WRITE) { if (copy_from_user(buff[sg_used], data_ptr, sz)) { status = -ENOMEM; goto cleanup1; } } else memset(buff[sg_used], 0, sz); left -= sz; data_ptr += sz; sg_used++; } c = cmd_special_alloc(h); if (c == NULL) { status = -ENOMEM; goto cleanup1; } c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; c->Header.SGList = c->Header.SGTotal = sg_used; memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); c->Header.Tag.lower = c->busaddr; memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); if (ioc->buf_size > 0) { int i; for (i = 0; i < sg_used; i++) { temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i], PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(&h->pdev->dev, temp64.val)) { c->SG[i].Addr.lower = 0; c->SG[i].Addr.upper = 0; c->SG[i].Len = 0; hpsa_pci_unmap(h->pdev, c, i, PCI_DMA_BIDIRECTIONAL); status = -ENOMEM; goto cleanup0; } c->SG[i].Addr.lower = temp64.val32.lower; c->SG[i].Addr.upper = temp64.val32.upper; c->SG[i].Len = buff_size[i]; c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST; } } hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); if (sg_used) hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); check_ioctl_unit_attention(h, c); /* Copy the error information out */ memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); if (copy_to_user(argp, ioc, sizeof(*ioc))) { status = -EFAULT; goto cleanup0; } if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { /* Copy the data out of the buffer we created */ BYTE __user *ptr = ioc->buf; for (i = 0; i < sg_used; i++) { if (copy_to_user(ptr, buff[i], buff_size[i])) { status = -EFAULT; goto cleanup0; } ptr += buff_size[i]; } } status = 0; cleanup0: cmd_special_free(h, c); cleanup1: if (buff) { for (i = 0; i < sg_used; i++) kfree(buff[i]); kfree(buff); } kfree(buff_size); kfree(ioc); return status; } static void check_ioctl_unit_attention(struct ctlr_info *h, struct CommandList *c) { if (c->err_info->CommandStatus == CMD_TARGET_STATUS && c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) (void) check_for_unit_attention(h, c); } static int increment_passthru_count(struct ctlr_info *h) { unsigned long flags; spin_lock_irqsave(&h->passthru_count_lock, flags); if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) { spin_unlock_irqrestore(&h->passthru_count_lock, flags); return -1; } h->passthru_count++; spin_unlock_irqrestore(&h->passthru_count_lock, flags); return 0; } static void decrement_passthru_count(struct ctlr_info *h) { unsigned long flags; spin_lock_irqsave(&h->passthru_count_lock, flags); if (h->passthru_count <= 0) { spin_unlock_irqrestore(&h->passthru_count_lock, flags); /* not expecting to get here. */ dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n"); return; } h->passthru_count--; spin_unlock_irqrestore(&h->passthru_count_lock, flags); } /* * ioctl */ static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) { struct ctlr_info *h; void __user *argp = (void __user *)arg; int rc; h = sdev_to_hba(dev); switch (cmd) { case CCISS_DEREGDISK: case CCISS_REGNEWDISK: case CCISS_REGNEWD: hpsa_scan_start(h->scsi_host); return 0; case CCISS_GETPCIINFO: return hpsa_getpciinfo_ioctl(h, argp); case CCISS_GETDRIVVER: return hpsa_getdrivver_ioctl(h, argp); case CCISS_PASSTHRU: if (increment_passthru_count(h)) return -EAGAIN; rc = hpsa_passthru_ioctl(h, argp); decrement_passthru_count(h); return rc; case CCISS_BIG_PASSTHRU: if (increment_passthru_count(h)) return -EAGAIN; rc = hpsa_big_passthru_ioctl(h, argp); decrement_passthru_count(h); return rc; default: return -ENOTTY; } } static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, u8 reset_type) { struct CommandList *c; c = cmd_alloc(h); if (!c) return -ENOMEM; /* fill_cmd can't fail here, no data buffer to map */ (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, RAID_CTLR_LUNID, TYPE_MSG); c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ c->waiting = NULL; enqueue_cmd_and_start_io(h, c); /* Don't wait for completion, the reset won't complete. Don't free * the command either. This is the last command we will send before * re-initializing everything, so it doesn't matter and won't leak. */ return 0; } static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, int cmd_type) { int pci_dir = XFER_NONE; struct CommandList *a; /* for commands to be aborted */ c->cmd_type = CMD_IOCTL_PEND; c->Header.ReplyQueue = 0; if (buff != NULL && size > 0) { c->Header.SGList = 1; c->Header.SGTotal = 1; } else { c->Header.SGList = 0; c->Header.SGTotal = 0; } c->Header.Tag.lower = c->busaddr; memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); c->Request.Type.Type = cmd_type; if (cmd_type == TYPE_CMD) { switch (cmd) { case HPSA_INQUIRY: /* are we trying to read a vital product page */ if (page_code != 0) { c->Request.CDB[1] = 0x01; c->Request.CDB[2] = page_code; } c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = HPSA_INQUIRY; c->Request.CDB[4] = size & 0xFF; break; case HPSA_REPORT_LOG: case HPSA_REPORT_PHYS: /* Talking to controller so It's a physical command mode = 00 target = 0. Nothing to write. */ c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; case HPSA_CACHE_FLUSH: c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; c->Request.CDB[0] = BMIC_WRITE; c->Request.CDB[6] = BMIC_CACHE_FLUSH; c->Request.CDB[7] = (size >> 8) & 0xFF; c->Request.CDB[8] = size & 0xFF; break; case TEST_UNIT_READY: c->Request.CDBLen = 6; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; break; case HPSA_GET_RAID_MAP: c->Request.CDBLen = 12; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_READ; c->Request.Timeout = 0; c->Request.CDB[0] = HPSA_CISS_READ; c->Request.CDB[1] = cmd; c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ c->Request.CDB[7] = (size >> 16) & 0xFF; c->Request.CDB[8] = (size >> 8) & 0xFF; c->Request.CDB[9] = size & 0xFF; break; default: dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); BUG(); return -1; } } else if (cmd_type == TYPE_MSG) { switch (cmd) { case HPSA_DEVICE_RESET_MSG: c->Request.CDBLen = 16; c->Request.Type.Type = 1; /* It is a MSG not a CMD */ c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_NONE; c->Request.Timeout = 0; /* Don't time out */ memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); c->Request.CDB[0] = cmd; c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; /* If bytes 4-7 are zero, it means reset the */ /* LunID device */ c->Request.CDB[4] = 0x00; c->Request.CDB[5] = 0x00; c->Request.CDB[6] = 0x00; c->Request.CDB[7] = 0x00; break; case HPSA_ABORT_MSG: a = buff; /* point to command to be aborted */ dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n", a->Header.Tag.upper, a->Header.Tag.lower, c->Header.Tag.upper, c->Header.Tag.lower); c->Request.CDBLen = 16; c->Request.Type.Type = TYPE_MSG; c->Request.Type.Attribute = ATTR_SIMPLE; c->Request.Type.Direction = XFER_WRITE; c->Request.Timeout = 0; /* Don't time out */ c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; c->Request.CDB[2] = 0x00; /* reserved */ c->Request.CDB[3] = 0x00; /* reserved */ /* Tag to abort goes in CDB[4]-CDB[11] */ c->Request.CDB[4] = a->Header.Tag.lower & 0xFF; c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF; c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF; c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF; c->Request.CDB[8] = a->Header.Tag.upper & 0xFF; c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF; c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF; c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF; c->Request.CDB[12] = 0x00; /* reserved */ c->Request.CDB[13] = 0x00; /* reserved */ c->Request.CDB[14] = 0x00; /* reserved */ c->Request.CDB[15] = 0x00; /* reserved */ break; default: dev_warn(&h->pdev->dev, "unknown message type %d\n", cmd); BUG(); } } else { dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); BUG(); } switch (c->Request.Type.Direction) { case XFER_READ: pci_dir = PCI_DMA_FROMDEVICE; break; case XFER_WRITE: pci_dir = PCI_DMA_TODEVICE; break; case XFER_NONE: pci_dir = PCI_DMA_NONE; break; default: pci_dir = PCI_DMA_BIDIRECTIONAL; } if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) return -1; return 0; } /* * Map (physical) PCI mem into (virtual) kernel space */ static void __iomem *remap_pci_mem(ulong base, ulong size) { ulong page_base = ((ulong) base) & PAGE_MASK; ulong page_offs = ((ulong) base) - page_base; void __iomem *page_remapped = ioremap_nocache(page_base, page_offs + size); return page_remapped ? (page_remapped + page_offs) : NULL; } /* Takes cmds off the submission queue and sends them to the hardware, * then puts them on the queue of cmds waiting for completion. */ static void start_io(struct ctlr_info *h) { struct CommandList *c; unsigned long flags; spin_lock_irqsave(&h->lock, flags); while (!list_empty(&h->reqQ)) { c = list_entry(h->reqQ.next, struct CommandList, list); /* can't do anything if fifo is full */ if ((h->access.fifo_full(h))) { h->fifo_recently_full = 1; dev_warn(&h->pdev->dev, "fifo full\n"); break; } h->fifo_recently_full = 0; /* Get the first entry from the Request Q */ removeQ(c); h->Qdepth--; /* Put job onto the completed Q */ addQ(&h->cmpQ, c); /* Must increment commands_outstanding before unlocking * and submitting to avoid race checking for fifo full * condition. */ h->commands_outstanding++; if (h->commands_outstanding > h->max_outstanding) h->max_outstanding = h->commands_outstanding; /* Tell the controller execute command */ spin_unlock_irqrestore(&h->lock, flags); h->access.submit_command(h, c); spin_lock_irqsave(&h->lock, flags); } spin_unlock_irqrestore(&h->lock, flags); } static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) { return h->access.command_completed(h, q); } static inline bool interrupt_pending(struct ctlr_info *h) { return h->access.intr_pending(h); } static inline long interrupt_not_for_us(struct ctlr_info *h) { return (h->access.intr_pending(h) == 0) || (h->interrupts_enabled == 0); } static inline int bad_tag(struct ctlr_info *h, u32 tag_index, u32 raw_tag) { if (unlikely(tag_index >= h->nr_cmds)) { dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); return 1; } return 0; } static inline void finish_cmd(struct CommandList *c) { unsigned long flags; int io_may_be_stalled = 0; struct ctlr_info *h = c->h; spin_lock_irqsave(&h->lock, flags); removeQ(c); /* * Check for possibly stalled i/o. * * If a fifo_full condition is encountered, requests will back up * in h->reqQ. This queue is only emptied out by start_io which is * only called when a new i/o request comes in. If no i/o's are * forthcoming, the i/o's in h->reqQ can get stuck. So we call * start_io from here if we detect such a danger. * * Normally, we shouldn't hit this case, but pounding on the * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if * commands_outstanding is low. We want to avoid calling * start_io from in here as much as possible, and esp. don't * want to get in a cycle where we call start_io every time * through here. */ if (unlikely(h->fifo_recently_full) && h->commands_outstanding < 5) io_may_be_stalled = 1; spin_unlock_irqrestore(&h->lock, flags); dial_up_lockup_detection_on_fw_flash_complete(c->h, c); if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI || c->cmd_type == CMD_IOACCEL2)) complete_scsi_command(c); else if (c->cmd_type == CMD_IOCTL_PEND) complete(c->waiting); if (unlikely(io_may_be_stalled)) start_io(h); } static inline u32 hpsa_tag_contains_index(u32 tag) { return tag & DIRECT_LOOKUP_BIT; } static inline u32 hpsa_tag_to_index(u32 tag) { return tag >> DIRECT_LOOKUP_SHIFT; } static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) { #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) #define HPSA_SIMPLE_ERROR_BITS 0x03 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) return tag & ~HPSA_SIMPLE_ERROR_BITS; return tag & ~HPSA_PERF_ERROR_BITS; } /* process completion of an indexed ("direct lookup") command */ static inline void process_indexed_cmd(struct ctlr_info *h, u32 raw_tag) { u32 tag_index; struct CommandList *c; tag_index = hpsa_tag_to_index(raw_tag); if (!bad_tag(h, tag_index, raw_tag)) { c = h->cmd_pool + tag_index; finish_cmd(c); } } /* process completion of a non-indexed command */ static inline void process_nonindexed_cmd(struct ctlr_info *h, u32 raw_tag) { u32 tag; struct CommandList *c = NULL; unsigned long flags; tag = hpsa_tag_discard_error_bits(h, raw_tag); spin_lock_irqsave(&h->lock, flags); list_for_each_entry(c, &h->cmpQ, list) { if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { spin_unlock_irqrestore(&h->lock, flags); finish_cmd(c); return; } } spin_unlock_irqrestore(&h->lock, flags); bad_tag(h, h->nr_cmds + 1, raw_tag); } /* Some controllers, like p400, will give us one interrupt * after a soft reset, even if we turned interrupts off. * Only need to check for this in the hpsa_xxx_discard_completions * functions. */ static int ignore_bogus_interrupt(struct ctlr_info *h) { if (likely(!reset_devices)) return 0; if (likely(h->interrupts_enabled)) return 0; dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " "(known firmware bug.) Ignoring.\n"); return 1; } /* * Convert &h->q[x] (passed to interrupt handlers) back to h. * Relies on (h-q[x] == x) being true for x such that * 0 <= x < MAX_REPLY_QUEUES. */ static struct ctlr_info *queue_to_hba(u8 *queue) { return container_of((queue - *queue), struct ctlr_info, q[0]); } static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u8 q = *(u8 *) queue; u32 raw_tag; if (ignore_bogus_interrupt(h)) return IRQ_NONE; if (interrupt_not_for_us(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); while (interrupt_pending(h)) { raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) raw_tag = next_command(h, q); } return IRQ_HANDLED; } static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u32 raw_tag; u8 q = *(u8 *) queue; if (ignore_bogus_interrupt(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) raw_tag = next_command(h, q); return IRQ_HANDLED; } static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) { struct ctlr_info *h = queue_to_hba((u8 *) queue); u32 raw_tag; u8 q = *(u8 *) queue; if (interrupt_not_for_us(h)) return IRQ_NONE; h->last_intr_timestamp = get_jiffies_64(); while (interrupt_pending(h)) { raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) { if (likely(hpsa_tag_contains_index(raw_tag))) process_indexed_cmd(h, raw_tag); else process_nonindexed_cmd(h, raw_tag); raw_tag = next_command(h, q); } } return IRQ_HANDLED; } static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) { struct ctlr_info *h = queue_to_hba(queue); u32 raw_tag; u8 q = *(u8 *) queue; h->last_intr_timestamp = get_jiffies_64(); raw_tag = get_next_completion(h, q); while (raw_tag != FIFO_EMPTY) { if (likely(hpsa_tag_contains_index(raw_tag))) process_indexed_cmd(h, raw_tag); else process_nonindexed_cmd(h, raw_tag); raw_tag = next_command(h, q); } return IRQ_HANDLED; } /* Send a message CDB to the firmware. Careful, this only works * in simple mode, not performant mode due to the tag lookup. * We only ever use this immediately after a controller reset. */ static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type) { struct Command { struct CommandListHeader CommandHeader; struct RequestBlock Request; struct ErrDescriptor ErrorDescriptor; }; struct Command *cmd; static const size_t cmd_sz = sizeof(*cmd) + sizeof(cmd->ErrorDescriptor); dma_addr_t paddr64; uint32_t paddr32, tag; void __iomem *vaddr; int i, err; vaddr = pci_ioremap_bar(pdev, 0); if (vaddr == NULL) return -ENOMEM; /* The Inbound Post Queue only accepts 32-bit physical addresses for the * CCISS commands, so they must be allocated from the lower 4GiB of * memory. */ err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { iounmap(vaddr); return -ENOMEM; } cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); if (cmd == NULL) { iounmap(vaddr); return -ENOMEM; } /* This must fit, because of the 32-bit consistent DMA mask. Also, * although there's no guarantee, we assume that the address is at * least 4-byte aligned (most likely, it's page-aligned). */ paddr32 = paddr64; cmd->CommandHeader.ReplyQueue = 0; cmd->CommandHeader.SGList = 0; cmd->CommandHeader.SGTotal = 0; cmd->CommandHeader.Tag.lower = paddr32; cmd->CommandHeader.Tag.upper = 0; memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); cmd->Request.CDBLen = 16; cmd->Request.Type.Type = TYPE_MSG; cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; cmd->Request.Type.Direction = XFER_NONE; cmd->Request.Timeout = 0; /* Don't time out */ cmd->Request.CDB[0] = opcode; cmd->Request.CDB[1] = type; memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); cmd->ErrorDescriptor.Addr.upper = 0; cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) break; msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); } iounmap(vaddr); /* we leak the DMA buffer here ... no choice since the controller could * still complete the command. */ if (i == HPSA_MSG_SEND_RETRY_LIMIT) { dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", opcode, type); return -ETIMEDOUT; } pci_free_consistent(pdev, cmd_sz, cmd, paddr64); if (tag & HPSA_ERROR_BIT) { dev_err(&pdev->dev, "controller message %02x:%02x failed\n", opcode, type); return -EIO; } dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", opcode, type); return 0; } #define hpsa_noop(p) hpsa_message(p, 3, 0) static int hpsa_controller_hard_reset(struct pci_dev *pdev, void * __iomem vaddr, u32 use_doorbell) { u16 pmcsr; int pos; if (use_doorbell) { /* For everything after the P600, the PCI power state method * of resetting the controller doesn't work, so we have this * other way using the doorbell register. */ dev_info(&pdev->dev, "using doorbell to reset controller\n"); writel(use_doorbell, vaddr + SA5_DOORBELL); /* PMC hardware guys tell us we need a 5 second delay after * doorbell reset and before any attempt to talk to the board * at all to ensure that this actually works and doesn't fall * over in some weird corner cases. */ msleep(5000); } else { /* Try to do it the PCI power state way */ /* Quoting from the Open CISS Specification: "The Power * Management Control/Status Register (CSR) controls the power * state of the device. The normal operating state is D0, * CSR=00h. The software off state is D3, CSR=03h. To reset * the controller, place the interface device in D3 then to D0, * this causes a secondary PCI reset which will reset the * controller." */ pos = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pos == 0) { dev_err(&pdev->dev, "hpsa_reset_controller: " "PCI PM not supported\n"); return -ENODEV; } dev_info(&pdev->dev, "using PCI PM to reset controller\n"); /* enter the D3hot power management state */ pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D3hot; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); msleep(500); /* enter the D0 power management state */ pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= PCI_D0; pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); /* * The P600 requires a small delay when changing states. * Otherwise we may think the board did not reset and we bail. * This for kdump only and is particular to the P600. */ msleep(500); } return 0; } static void init_driver_version(char *driver_version, int len) { memset(driver_version, 0, len); strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); } static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) { char *driver_version; int i, size = sizeof(cfgtable->driver_version); driver_version = kmalloc(size, GFP_KERNEL); if (!driver_version) return -ENOMEM; init_driver_version(driver_version, size); for (i = 0; i < size; i++) writeb(driver_version[i], &cfgtable->driver_version[i]); kfree(driver_version); return 0; } static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) { int i; for (i = 0; i < sizeof(cfgtable->driver_version); i++) driver_ver[i] = readb(&cfgtable->driver_version[i]); } static int controller_reset_failed(struct CfgTable __iomem *cfgtable) { char *driver_ver, *old_driver_ver; int rc, size = sizeof(cfgtable->driver_version); old_driver_ver = kmalloc(2 * size, GFP_KERNEL); if (!old_driver_ver) return -ENOMEM; driver_ver = old_driver_ver + size; /* After a reset, the 32 bytes of "driver version" in the cfgtable * should have been changed, otherwise we know the reset failed. */ init_driver_version(old_driver_ver, size); read_driver_ver_from_cfgtable(cfgtable, driver_ver); rc = !memcmp(driver_ver, old_driver_ver, size); kfree(old_driver_ver); return rc; } /* This does a hard reset of the controller using PCI power management * states or the using the doorbell register. */ static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; void __iomem *vaddr; unsigned long paddr; u32 misc_fw_support; int rc; struct CfgTable __iomem *cfgtable; u32 use_doorbell; u32 board_id; u16 command_register; /* For controllers as old as the P600, this is very nearly * the same thing as * * pci_save_state(pci_dev); * pci_set_power_state(pci_dev, PCI_D3hot); * pci_set_power_state(pci_dev, PCI_D0); * pci_restore_state(pci_dev); * * For controllers newer than the P600, the pci power state * method of resetting doesn't work so we have another way * using the doorbell register. */ rc = hpsa_lookup_board_id(pdev, &board_id); if (rc < 0 || !ctlr_is_resettable(board_id)) { dev_warn(&pdev->dev, "Not resetting device.\n"); return -ENODEV; } /* if controller is soft- but not hard resettable... */ if (!ctlr_is_hard_resettable(board_id)) return -ENOTSUPP; /* try soft reset later. */ /* Save the PCI command register */ pci_read_config_word(pdev, 4, &command_register); /* Turn the board off. This is so that later pci_restore_state() * won't turn the board on before the rest of config space is ready. */ pci_disable_device(pdev); pci_save_state(pdev); /* find the first memory BAR, so we can find the cfg table */ rc = hpsa_pci_find_memory_BAR(pdev, &paddr); if (rc) return rc; vaddr = remap_pci_mem(paddr, 0x250); if (!vaddr) return -ENOMEM; /* find cfgtable in order to check if reset via doorbell is supported */ rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) goto unmap_vaddr; cfgtable = remap_pci_mem(pci_resource_start(pdev, cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); if (!cfgtable) { rc = -ENOMEM; goto unmap_vaddr; } rc = write_driver_ver_to_cfgtable(cfgtable); if (rc) goto unmap_vaddr; /* If reset via doorbell register is supported, use that. * There are two such methods. Favor the newest method. */ misc_fw_support = readl(&cfgtable->misc_fw_support); use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; if (use_doorbell) { use_doorbell = DOORBELL_CTLR_RESET2; } else { use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; if (use_doorbell) { dev_warn(&pdev->dev, "Soft reset not supported. " "Firmware update is required.\n"); rc = -ENOTSUPP; /* try soft reset */ goto unmap_cfgtable; } } rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); if (rc) goto unmap_cfgtable; pci_restore_state(pdev); rc = pci_enable_device(pdev); if (rc) { dev_warn(&pdev->dev, "failed to enable device.\n"); goto unmap_cfgtable; } pci_write_config_word(pdev, 4, command_register); /* Some devices (notably the HP Smart Array 5i Controller) need a little pause here */ msleep(HPSA_POST_RESET_PAUSE_MSECS); rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); if (rc) { dev_warn(&pdev->dev, "failed waiting for board to become ready " "after hard reset\n"); goto unmap_cfgtable; } rc = controller_reset_failed(vaddr); if (rc < 0) goto unmap_cfgtable; if (rc) { dev_warn(&pdev->dev, "Unable to successfully reset " "controller. Will try soft reset.\n"); rc = -ENOTSUPP; } else { dev_info(&pdev->dev, "board ready after hard reset.\n"); } unmap_cfgtable: iounmap(cfgtable); unmap_vaddr: iounmap(vaddr); return rc; } /* * We cannot read the structure directly, for portability we must use * the io functions. * This is for debug only. */ static void print_cfg_table(struct device *dev, struct CfgTable *tb) { #ifdef HPSA_DEBUG int i; char temp_name[17]; dev_info(dev, "Controller Configuration information\n"); dev_info(dev, "------------------------------------\n"); for (i = 0; i < 4; i++) temp_name[i] = readb(&(tb->Signature[i])); temp_name[4] = '\0'; dev_info(dev, " Signature = %s\n", temp_name); dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); dev_info(dev, " Transport methods supported = 0x%x\n", readl(&(tb->TransportSupport))); dev_info(dev, " Transport methods active = 0x%x\n", readl(&(tb->TransportActive))); dev_info(dev, " Requested transport Method = 0x%x\n", readl(&(tb->HostWrite.TransportRequest))); dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", readl(&(tb->HostWrite.CoalIntDelay))); dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", readl(&(tb->HostWrite.CoalIntCount))); dev_info(dev, " Max outstanding commands = 0x%d\n", readl(&(tb->CmdsOutMax))); dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); for (i = 0; i < 16; i++) temp_name[i] = readb(&(tb->ServerName[i])); temp_name[16] = '\0'; dev_info(dev, " Server Name = %s\n", temp_name); dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat))); #endif /* HPSA_DEBUG */ } static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) { int i, offset, mem_type, bar_type; if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ return 0; offset = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) offset += 4; else { mem_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_MEM_TYPE_MASK; switch (mem_type) { case PCI_BASE_ADDRESS_MEM_TYPE_32: case PCI_BASE_ADDRESS_MEM_TYPE_1M: offset += 4; /* 32 bit */ break; case PCI_BASE_ADDRESS_MEM_TYPE_64: offset += 8; break; default: /* reserved in PCI 2.2 */ dev_warn(&pdev->dev, "base address is invalid\n"); return -1; break; } } if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) return i + 1; } return -1; } /* If MSI/MSI-X is supported by the kernel we will try to enable it on * controllers that are capable. If not, we use IO-APIC mode. */ static void hpsa_interrupt_mode(struct ctlr_info *h) { #ifdef CONFIG_PCI_MSI int err, i; struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; for (i = 0; i < MAX_REPLY_QUEUES; i++) { hpsa_msix_entries[i].vector = 0; hpsa_msix_entries[i].entry = i; } /* Some boards advertise MSI but don't really support it */ if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) goto default_int_mode; if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { dev_info(&h->pdev->dev, "MSIX\n"); h->msix_vector = MAX_REPLY_QUEUES; err = pci_enable_msix(h->pdev, hpsa_msix_entries, h->msix_vector); if (err > 0) { dev_warn(&h->pdev->dev, "only %d MSI-X vectors " "available\n", err); h->msix_vector = err; err = pci_enable_msix(h->pdev, hpsa_msix_entries, h->msix_vector); } if (!err) { for (i = 0; i < h->msix_vector; i++) h->intr[i] = hpsa_msix_entries[i].vector; return; } else { dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); h->msix_vector = 0; goto default_int_mode; } } if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { dev_info(&h->pdev->dev, "MSI\n"); if (!pci_enable_msi(h->pdev)) h->msi_vector = 1; else dev_warn(&h->pdev->dev, "MSI init failed\n"); } default_int_mode: #endif /* CONFIG_PCI_MSI */ /* if we get here we're going to use the default interrupt mode */ h->intr[h->intr_mode] = h->pdev->irq; } static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) { int i; u32 subsystem_vendor_id, subsystem_device_id; subsystem_vendor_id = pdev->subsystem_vendor; subsystem_device_id = pdev->subsystem_device; *board_id = ((subsystem_device_id << 16) & 0xffff0000) | subsystem_vendor_id; for (i = 0; i < ARRAY_SIZE(products); i++) if (*board_id == products[i].board_id) return i; if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || !hpsa_allow_any) { dev_warn(&pdev->dev, "unrecognized board ID: " "0x%08x, ignoring.\n", *board_id); return -ENODEV; } return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ } static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, unsigned long *memory_bar) { int i; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { /* addressing mode bits already removed */ *memory_bar = pci_resource_start(pdev, i); dev_dbg(&pdev->dev, "memory BAR = %lx\n", *memory_bar); return 0; } dev_warn(&pdev->dev, "no memory BAR found\n"); return -ENODEV; } static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, int wait_for_ready) { int i, iterations; u32 scratchpad; if (wait_for_ready) iterations = HPSA_BOARD_READY_ITERATIONS; else iterations = HPSA_BOARD_NOT_READY_ITERATIONS; for (i = 0; i < iterations; i++) { scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); if (wait_for_ready) { if (scratchpad == HPSA_FIRMWARE_READY) return 0; } else { if (scratchpad != HPSA_FIRMWARE_READY) return 0; } msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); } dev_warn(&pdev->dev, "board not ready, timed out.\n"); return -ENODEV; } static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, u64 *cfg_offset) { *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); *cfg_base_addr &= (u32) 0x0000ffff; *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); if (*cfg_base_addr_index == -1) { dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); return -ENODEV; } return 0; } static int hpsa_find_cfgtables(struct ctlr_info *h) { u64 cfg_offset; u32 cfg_base_addr; u64 cfg_base_addr_index; u32 trans_offset; int rc; rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); if (rc) return rc; h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); if (!h->cfgtable) return -ENOMEM; rc = write_driver_ver_to_cfgtable(h->cfgtable); if (rc) return rc; /* Find performant mode table. */ trans_offset = readl(&h->cfgtable->TransMethodOffset); h->transtable = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index)+cfg_offset+trans_offset, sizeof(*h->transtable)); if (!h->transtable) return -ENOMEM; return 0; } static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) { h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); /* Limit commands in memory limited kdump scenario. */ if (reset_devices && h->max_commands > 32) h->max_commands = 32; if (h->max_commands < 16) { dev_warn(&h->pdev->dev, "Controller reports " "max supported commands of %d, an obvious lie. " "Using 16. Ensure that firmware is up to date.\n", h->max_commands); h->max_commands = 16; } } /* Interrogate the hardware for some limits: * max commands, max SG elements without chaining, and with chaining, * SG chain block size, etc. */ static void hpsa_find_board_params(struct ctlr_info *h) { hpsa_get_max_perf_mode_cmds(h); h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); h->fw_support = readl(&(h->cfgtable->misc_fw_support)); /* * Limit in-command s/g elements to 32 save dma'able memory. * Howvever spec says if 0, use 31 */ h->max_cmd_sg_entries = 31; if (h->maxsgentries > 512) { h->max_cmd_sg_entries = 32; h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; h->maxsgentries--; /* save one for chain pointer */ } else { h->maxsgentries = 31; /* default to traditional values */ h->chainsize = 0; } /* Find out what task management functions are supported and cache */ h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); } static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) { if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); return false; } return true; } static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) { u32 driver_support; #ifdef CONFIG_X86 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ driver_support = readl(&(h->cfgtable->driver_support)); driver_support |= ENABLE_SCSI_PREFETCH; #endif driver_support |= ENABLE_UNIT_ATTN; writel(driver_support, &(h->cfgtable->driver_support)); } /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result * in a prefetch beyond physical memory. */ static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) { u32 dma_prefetch; if (h->board_id != 0x3225103C) return; dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); dma_prefetch |= 0x8000; writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); } static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) { int i; u32 doorbell_value; unsigned long flags; /* wait until the clear_event_notify bit 6 is cleared by controller. */ for (i = 0; i < MAX_CONFIG_WAIT; i++) { spin_lock_irqsave(&h->lock, flags); doorbell_value = readl(h->vaddr + SA5_DOORBELL); spin_unlock_irqrestore(&h->lock, flags); if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) break; /* delay and try again */ msleep(20); } } static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h) { int i; u32 doorbell_value; unsigned long flags; /* under certain very rare conditions, this can take awhile. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right * as we enter this code.) */ for (i = 0; i < MAX_CONFIG_WAIT; i++) { spin_lock_irqsave(&h->lock, flags); doorbell_value = readl(h->vaddr + SA5_DOORBELL); spin_unlock_irqrestore(&h->lock, flags); if (!(doorbell_value & CFGTBL_ChangeReq)) break; /* delay and try again */ usleep_range(10000, 20000); } } static int hpsa_enter_simple_mode(struct ctlr_info *h) { u32 trans_support; trans_support = readl(&(h->cfgtable->TransportSupport)); if (!(trans_support & SIMPLE_MODE)) return -ENOTSUPP; h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); /* Update the field, and then ring the doorbell */ writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); hpsa_wait_for_mode_change_ack(h); print_cfg_table(&h->pdev->dev, h->cfgtable); if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) goto error; h->transMethod = CFGTBL_Trans_Simple; return 0; error: dev_warn(&h->pdev->dev, "unable to get board into simple mode\n"); return -ENODEV; } static int hpsa_pci_init(struct ctlr_info *h) { int prod_index, err; prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); if (prod_index < 0) return -ENODEV; h->product_name = products[prod_index].product_name; h->access = *(products[prod_index].access); pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); err = pci_enable_device(h->pdev); if (err) { dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); return err; } /* Enable bus mastering (pci_disable_device may disable this) */ pci_set_master(h->pdev); err = pci_request_regions(h->pdev, HPSA); if (err) { dev_err(&h->pdev->dev, "cannot obtain PCI resources, aborting\n"); return err; } hpsa_interrupt_mode(h); err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); if (err) goto err_out_free_res; h->vaddr = remap_pci_mem(h->paddr, 0x250); if (!h->vaddr) { err = -ENOMEM; goto err_out_free_res; } err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); if (err) goto err_out_free_res; err = hpsa_find_cfgtables(h); if (err) goto err_out_free_res; hpsa_find_board_params(h); if (!hpsa_CISS_signature_present(h)) { err = -ENODEV; goto err_out_free_res; } hpsa_set_driver_support_bits(h); hpsa_p600_dma_prefetch_quirk(h); err = hpsa_enter_simple_mode(h); if (err) goto err_out_free_res; return 0; err_out_free_res: if (h->transtable) iounmap(h->transtable); if (h->cfgtable) iounmap(h->cfgtable); if (h->vaddr) iounmap(h->vaddr); pci_disable_device(h->pdev); pci_release_regions(h->pdev); return err; } static void hpsa_hba_inquiry(struct ctlr_info *h) { int rc; #define HBA_INQUIRY_BYTE_COUNT 64 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); if (!h->hba_inquiry_data) return; rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); if (rc != 0) { kfree(h->hba_inquiry_data); h->hba_inquiry_data = NULL; } } static int hpsa_init_reset_devices(struct pci_dev *pdev) { int rc, i; if (!reset_devices) return 0; /* Reset the controller with a PCI power-cycle or via doorbell */ rc = hpsa_kdump_hard_reset_controller(pdev); /* -ENOTSUPP here means we cannot reset the controller * but it's already (and still) up and running in * "performant mode". Or, it might be 640x, which can't reset * due to concerns about shared bbwc between 6402/6404 pair. */ if (rc == -ENOTSUPP) return rc; /* just try to do the kdump anyhow. */ if (rc) return -ENODEV; /* Now try to get the controller to respond to a no-op */ dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { if (hpsa_noop(pdev) == 0) break; else dev_warn(&pdev->dev, "no-op failed%s\n", (i < 11 ? "; re-trying" : "")); } return 0; } static int hpsa_allocate_cmd_pool(struct ctlr_info *h) { h->cmd_pool_bits = kzalloc( DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); h->cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->cmd_pool), &(h->cmd_pool_dhandle)); h->errinfo_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->errinfo_pool), &(h->errinfo_pool_dhandle)); if ((h->cmd_pool_bits == NULL) || (h->cmd_pool == NULL) || (h->errinfo_pool == NULL)) { dev_err(&h->pdev->dev, "out of memory in %s", __func__); return -ENOMEM; } return 0; } static void hpsa_free_cmd_pool(struct ctlr_info *h) { kfree(h->cmd_pool_bits); if (h->cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct CommandList), h->cmd_pool, h->cmd_pool_dhandle); if (h->ioaccel2_cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); if (h->errinfo_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct ErrorInfo), h->errinfo_pool, h->errinfo_pool_dhandle); if (h->ioaccel_cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct io_accel1_cmd), h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); } static int hpsa_request_irq(struct ctlr_info *h, irqreturn_t (*msixhandler)(int, void *), irqreturn_t (*intxhandler)(int, void *)) { int rc, i; /* * initialize h->q[x] = x so that interrupt handlers know which * queue to process. */ for (i = 0; i < MAX_REPLY_QUEUES; i++) h->q[i] = (u8) i; if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { /* If performant mode and MSI-X, use multiple reply queues */ for (i = 0; i < h->msix_vector; i++) rc = request_irq(h->intr[i], msixhandler, 0, h->devname, &h->q[i]); } else { /* Use single reply pool */ if (h->msix_vector > 0 || h->msi_vector) { rc = request_irq(h->intr[h->intr_mode], msixhandler, 0, h->devname, &h->q[h->intr_mode]); } else { rc = request_irq(h->intr[h->intr_mode], intxhandler, IRQF_SHARED, h->devname, &h->q[h->intr_mode]); } } if (rc) { dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", h->intr[h->intr_mode], h->devname); return -ENODEV; } return 0; } static int hpsa_kdump_soft_reset(struct ctlr_info *h) { if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER)) { dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); return -EIO; } dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); return -1; } dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { dev_warn(&h->pdev->dev, "Board failed to become ready " "after soft reset.\n"); return -1; } return 0; } static void free_irqs(struct ctlr_info *h) { int i; if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { /* Single reply queue, only one irq to free */ i = h->intr_mode; free_irq(h->intr[i], &h->q[i]); return; } for (i = 0; i < h->msix_vector; i++) free_irq(h->intr[i], &h->q[i]); } static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) { free_irqs(h); #ifdef CONFIG_PCI_MSI if (h->msix_vector) { if (h->pdev->msix_enabled) pci_disable_msix(h->pdev); } else if (h->msi_vector) { if (h->pdev->msi_enabled) pci_disable_msi(h->pdev); } #endif /* CONFIG_PCI_MSI */ } static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) { hpsa_free_irqs_and_disable_msix(h); hpsa_free_sg_chain_blocks(h); hpsa_free_cmd_pool(h); kfree(h->ioaccel1_blockFetchTable); kfree(h->blockFetchTable); pci_free_consistent(h->pdev, h->reply_pool_size, h->reply_pool, h->reply_pool_dhandle); if (h->vaddr) iounmap(h->vaddr); if (h->transtable) iounmap(h->transtable); if (h->cfgtable) iounmap(h->cfgtable); pci_release_regions(h->pdev); kfree(h); } /* Called when controller lockup detected. */ static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) { struct CommandList *c = NULL; assert_spin_locked(&h->lock); /* Mark all outstanding commands as failed and complete them. */ while (!list_empty(list)) { c = list_entry(list->next, struct CommandList, list); c->err_info->CommandStatus = CMD_HARDWARE_ERR; finish_cmd(c); } } static void controller_lockup_detected(struct ctlr_info *h) { unsigned long flags; h->access.set_intr_mask(h, HPSA_INTR_OFF); spin_lock_irqsave(&h->lock, flags); h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); spin_unlock_irqrestore(&h->lock, flags); dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", h->lockup_detected); pci_disable_device(h->pdev); spin_lock_irqsave(&h->lock, flags); fail_all_cmds_on_list(h, &h->cmpQ); fail_all_cmds_on_list(h, &h->reqQ); spin_unlock_irqrestore(&h->lock, flags); } static void detect_controller_lockup(struct ctlr_info *h) { u64 now; u32 heartbeat; unsigned long flags; now = get_jiffies_64(); /* If we've received an interrupt recently, we're ok. */ if (time_after64(h->last_intr_timestamp + (h->heartbeat_sample_interval), now)) return; /* * If we've already checked the heartbeat recently, we're ok. * This could happen if someone sends us a signal. We * otherwise don't care about signals in this thread. */ if (time_after64(h->last_heartbeat_timestamp + (h->heartbeat_sample_interval), now)) return; /* If heartbeat has not changed since we last looked, we're not ok. */ spin_lock_irqsave(&h->lock, flags); heartbeat = readl(&h->cfgtable->HeartBeat); spin_unlock_irqrestore(&h->lock, flags); if (h->last_heartbeat == heartbeat) { controller_lockup_detected(h); return; } /* We're ok. */ h->last_heartbeat = heartbeat; h->last_heartbeat_timestamp = now; } static int hpsa_kickoff_rescan(struct ctlr_info *h) { int i; char *event_type; /* Clear the driver-requested rescan flag */ h->drv_req_rescan = 0; /* Ask the controller to clear the events we're handling. */ if ((h->transMethod & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) && (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) event_type = "state change"; if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) event_type = "configuration change"; /* Stop sending new RAID offload reqs via the IO accelerator */ scsi_block_requests(h->scsi_host); for (i = 0; i < h->ndevices; i++) h->dev[i]->offload_enabled = 0; hpsa_drain_commands(h); /* Set 'accelerator path config change' bit */ dev_warn(&h->pdev->dev, "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", h->events, event_type); writel(h->events, &(h->cfgtable->clear_event_notify)); /* Set the "clear event notify field update" bit 6 */ writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); /* Wait until ctlr clears 'clear event notify field', bit 6 */ hpsa_wait_for_clear_event_notify_ack(h); scsi_unblock_requests(h->scsi_host); } else { /* Acknowledge controller notification events. */ writel(h->events, &(h->cfgtable->clear_event_notify)); writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); hpsa_wait_for_clear_event_notify_ack(h); #if 0 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); hpsa_wait_for_mode_change_ack(h); #endif } /* Something in the device list may have changed to trigger * the event, so do a rescan. */ hpsa_scan_start(h->scsi_host); /* release reference taken on scsi host in check_controller_events */ scsi_host_put(h->scsi_host); return 0; } /* Check a register on the controller to see if there are configuration * changes (added/changed/removed logical drives, etc.) which mean that * we should rescan the controller for devices. * Also check flag for driver-initiated rescan. * If either flag or controller event indicate rescan, add the controller * to the list of controllers needing to be rescanned, and gets a * reference to the associated scsi_host. */ static void hpsa_ctlr_needs_rescan(struct ctlr_info *h) { if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) return; h->events = readl(&(h->cfgtable->event_notify)); if (!h->events && !h->drv_req_rescan) return; /* * Take a reference on scsi host for the duration of the scan * Release in hpsa_kickoff_rescan(). No lock needed for scan_list * as only a single thread accesses this list. */ scsi_host_get(h->scsi_host); hpsa_kickoff_rescan(h); } static void hpsa_monitor_ctlr_worker(struct work_struct *work) { unsigned long flags; struct ctlr_info *h = container_of(to_delayed_work(work), struct ctlr_info, monitor_ctlr_work); detect_controller_lockup(h); if (h->lockup_detected) return; hpsa_ctlr_needs_rescan(h); spin_lock_irqsave(&h->lock, flags); if (h->remove_in_progress) { spin_unlock_irqrestore(&h->lock, flags); return; } schedule_delayed_work(&h->monitor_ctlr_work, h->heartbeat_sample_interval); spin_unlock_irqrestore(&h->lock, flags); } static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int dac, rc; struct ctlr_info *h; int try_soft_reset = 0; unsigned long flags; if (number_of_controllers == 0) printk(KERN_INFO DRIVER_NAME "\n"); rc = hpsa_init_reset_devices(pdev); if (rc) { if (rc != -ENOTSUPP) return rc; /* If the reset fails in a particular way (it has no way to do * a proper hard reset, so returns -ENOTSUPP) we can try to do * a soft reset once we get the controller configured up to the * point that it can accept a command. */ try_soft_reset = 1; rc = 0; } reinit_after_soft_reset: /* Command structures must be aligned on a 32-byte boundary because * the 5 lower bits of the address are used by the hardware. and by * the driver. See comments in hpsa.h for more info. */ #define COMMANDLIST_ALIGNMENT 128 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); h = kzalloc(sizeof(*h), GFP_KERNEL); if (!h) return -ENOMEM; h->pdev = pdev; h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; INIT_LIST_HEAD(&h->cmpQ); INIT_LIST_HEAD(&h->reqQ); spin_lock_init(&h->lock); spin_lock_init(&h->scan_lock); spin_lock_init(&h->passthru_count_lock); rc = hpsa_pci_init(h); if (rc != 0) goto clean1; sprintf(h->devname, HPSA "%d", number_of_controllers); h->ctlr = number_of_controllers; number_of_controllers++; /* configure PCI DMA stuff */ rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (rc == 0) { dac = 1; } else { rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc == 0) { dac = 0; } else { dev_err(&pdev->dev, "no suitable DMA available\n"); goto clean1; } } /* make sure the board interrupts are off */ h->access.set_intr_mask(h, HPSA_INTR_OFF); if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) goto clean2; dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", h->devname, pdev->device, h->intr[h->intr_mode], dac ? "" : " not"); if (hpsa_allocate_cmd_pool(h)) goto clean4; if (hpsa_allocate_sg_chain_blocks(h)) goto clean4; init_waitqueue_head(&h->scan_wait_queue); h->scan_finished = 1; /* no scan currently in progress */ pci_set_drvdata(pdev, h); h->ndevices = 0; h->scsi_host = NULL; spin_lock_init(&h->devlock); hpsa_put_ctlr_into_performant_mode(h); /* At this point, the controller is ready to take commands. * Now, if reset_devices and the hard reset didn't work, try * the soft reset and see if that works. */ if (try_soft_reset) { /* This is kind of gross. We may or may not get a completion * from the soft reset command, and if we do, then the value * from the fifo may or may not be valid. So, we wait 10 secs * after the reset throwing away any completions we get during * that time. Unregister the interrupt handler and register * fake ones to scoop up any residual completions. */ spin_lock_irqsave(&h->lock, flags); h->access.set_intr_mask(h, HPSA_INTR_OFF); spin_unlock_irqrestore(&h->lock, flags); free_irqs(h); rc = hpsa_request_irq(h, hpsa_msix_discard_completions, hpsa_intx_discard_completions); if (rc) { dev_warn(&h->pdev->dev, "Failed to request_irq after " "soft reset.\n"); goto clean4; } rc = hpsa_kdump_soft_reset(h); if (rc) /* Neither hard nor soft reset worked, we're hosed. */ goto clean4; dev_info(&h->pdev->dev, "Board READY.\n"); dev_info(&h->pdev->dev, "Waiting for stale completions to drain.\n"); h->access.set_intr_mask(h, HPSA_INTR_ON); msleep(10000); h->access.set_intr_mask(h, HPSA_INTR_OFF); rc = controller_reset_failed(h->cfgtable); if (rc) dev_info(&h->pdev->dev, "Soft reset appears to have failed.\n"); /* since the controller's reset, we have to go back and re-init * everything. Easiest to just forget what we've done and do it * all over again. */ hpsa_undo_allocations_after_kdump_soft_reset(h); try_soft_reset = 0; if (rc) /* don't go to clean4, we already unallocated */ return -ENODEV; goto reinit_after_soft_reset; } /* Enable Accelerated IO path at driver layer */ h->acciopath_status = 1; h->drv_req_rescan = 0; /* Turn the interrupts on so we can service requests */ h->access.set_intr_mask(h, HPSA_INTR_ON); hpsa_hba_inquiry(h); hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ /* Monitor the controller for firmware lockups */ h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); schedule_delayed_work(&h->monitor_ctlr_work, h->heartbeat_sample_interval); return 0; clean4: hpsa_free_sg_chain_blocks(h); hpsa_free_cmd_pool(h); free_irqs(h); clean2: clean1: kfree(h); return rc; } static void hpsa_flush_cache(struct ctlr_info *h) { char *flush_buf; struct CommandList *c; unsigned long flags; /* Don't bother trying to flush the cache if locked up */ spin_lock_irqsave(&h->lock, flags); if (unlikely(h->lockup_detected)) { spin_unlock_irqrestore(&h->lock, flags); return; } spin_unlock_irqrestore(&h->lock, flags); flush_buf = kzalloc(4, GFP_KERNEL); if (!flush_buf) return; c = cmd_special_alloc(h); if (!c) { dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); goto out_of_memory; } if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, RAID_CTLR_LUNID, TYPE_CMD)) { goto out; } hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); if (c->err_info->CommandStatus != 0) out: dev_warn(&h->pdev->dev, "error flushing cache on controller\n"); cmd_special_free(h, c); out_of_memory: kfree(flush_buf); } static void hpsa_shutdown(struct pci_dev *pdev) { struct ctlr_info *h; h = pci_get_drvdata(pdev); /* Turn board interrupts off and send the flush cache command * sendcmd will turn off interrupt, and send the flush... * To write all data in the battery backed cache to disks */ hpsa_flush_cache(h); h->access.set_intr_mask(h, HPSA_INTR_OFF); hpsa_free_irqs_and_disable_msix(h); } static void hpsa_free_device_info(struct ctlr_info *h) { int i; for (i = 0; i < h->ndevices; i++) kfree(h->dev[i]); } static void hpsa_remove_one(struct pci_dev *pdev) { struct ctlr_info *h; unsigned long flags; if (pci_get_drvdata(pdev) == NULL) { dev_err(&pdev->dev, "unable to remove device\n"); return; } h = pci_get_drvdata(pdev); /* Get rid of any controller monitoring work items */ spin_lock_irqsave(&h->lock, flags); h->remove_in_progress = 1; cancel_delayed_work(&h->monitor_ctlr_work); spin_unlock_irqrestore(&h->lock, flags); hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ hpsa_shutdown(pdev); iounmap(h->vaddr); iounmap(h->transtable); iounmap(h->cfgtable); hpsa_free_device_info(h); hpsa_free_sg_chain_blocks(h); pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct CommandList), h->cmd_pool, h->cmd_pool_dhandle); pci_free_consistent(h->pdev, h->nr_cmds * sizeof(struct ErrorInfo), h->errinfo_pool, h->errinfo_pool_dhandle); pci_free_consistent(h->pdev, h->reply_pool_size, h->reply_pool, h->reply_pool_dhandle); kfree(h->cmd_pool_bits); kfree(h->blockFetchTable); kfree(h->ioaccel1_blockFetchTable); kfree(h->ioaccel2_blockFetchTable); kfree(h->hba_inquiry_data); pci_disable_device(pdev); pci_release_regions(pdev); kfree(h); } static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, __attribute__((unused)) pm_message_t state) { return -ENOSYS; } static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) { return -ENOSYS; } static struct pci_driver hpsa_pci_driver = { .name = HPSA, .probe = hpsa_init_one, .remove = hpsa_remove_one, .id_table = hpsa_pci_device_id, /* id_table */ .shutdown = hpsa_shutdown, .suspend = hpsa_suspend, .resume = hpsa_resume, }; /* Fill in bucket_map[], given nsgs (the max number of * scatter gather elements supported) and bucket[], * which is an array of 8 integers. The bucket[] array * contains 8 different DMA transfer sizes (in 16 * byte increments) which the controller uses to fetch * commands. This function fills in bucket_map[], which * maps a given number of scatter gather elements to one of * the 8 DMA transfer sizes. The point of it is to allow the * controller to only do as much DMA as needed to fetch the * command, with the DMA transfer size encoded in the lower * bits of the command address. */ static void calc_bucket_map(int bucket[], int num_buckets, int nsgs, int min_blocks, int *bucket_map) { int i, j, b, size; /* Note, bucket_map must have nsgs+1 entries. */ for (i = 0; i <= nsgs; i++) { /* Compute size of a command with i SG entries */ size = i + min_blocks; b = num_buckets; /* Assume the biggest bucket */ /* Find the bucket that is just big enough */ for (j = 0; j < num_buckets; j++) { if (bucket[j] >= size) { b = j; break; } } /* for a command with i SG entries, use bucket b. */ bucket_map[i] = b; } } static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) { int i; unsigned long register_value; unsigned long transMethod = CFGTBL_Trans_Performant | (trans_support & CFGTBL_Trans_use_short_tags) | CFGTBL_Trans_enable_directed_msix | (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)); struct access_method access = SA5_performant_access; /* This is a bit complicated. There are 8 registers on * the controller which we write to to tell it 8 different * sizes of commands which there may be. It's a way of * reducing the DMA done to fetch each command. Encoded into * each command's tag are 3 bits which communicate to the controller * which of the eight sizes that command fits within. The size of * each command depends on how many scatter gather entries there are. * Each SG entry requires 16 bytes. The eight registers are programmed * with the number of 16-byte blocks a command of that size requires. * The smallest command possible requires 5 such 16 byte blocks. * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte * blocks. Note, this only extends to the SG entries contained * within the command block, and does not extend to chained blocks * of SG elements. bft[] contains the eight values we write to * the registers. They are not evenly distributed, but have more * sizes for small commands, and fewer sizes for larger commands. */ int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; #define MIN_IOACCEL2_BFT_ENTRY 5 #define HPSA_IOACCEL2_HEADER_SZ 4 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 16 * MIN_IOACCEL2_BFT_ENTRY); BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); /* 5 = 1 s/g entry or 4k * 6 = 2 s/g entry or 8k * 8 = 4 s/g entry or 16k * 10 = 6 s/g entry or 24k */ /* Controller spec: zero out this buffer. */ memset(h->reply_pool, 0, h->reply_pool_size); bft[7] = SG_ENTRIES_IN_CMD + 4; calc_bucket_map(bft, ARRAY_SIZE(bft), SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); for (i = 0; i < 8; i++) writel(bft[i], &h->transtable->BlockFetch[i]); /* size of controller ring buffer */ writel(h->max_commands, &h->transtable->RepQSize); writel(h->nreply_queues, &h->transtable->RepQCount); writel(0, &h->transtable->RepQCtrAddrLow32); writel(0, &h->transtable->RepQCtrAddrHigh32); for (i = 0; i < h->nreply_queues; i++) { writel(0, &h->transtable->RepQAddr[i].upper); writel(h->reply_pool_dhandle + (h->max_commands * sizeof(u64) * i), &h->transtable->RepQAddr[i].lower); } writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); /* * enable outbound interrupt coalescing in accelerator mode; */ if (trans_support & CFGTBL_Trans_io_accel1) { access = SA5_ioaccel_mode1_access; writel(10, &h->cfgtable->HostWrite.CoalIntDelay); writel(4, &h->cfgtable->HostWrite.CoalIntCount); } else { if (trans_support & CFGTBL_Trans_io_accel2) { access = SA5_ioaccel_mode2_access; writel(10, &h->cfgtable->HostWrite.CoalIntDelay); writel(4, &h->cfgtable->HostWrite.CoalIntCount); } } writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); hpsa_wait_for_mode_change_ack(h); register_value = readl(&(h->cfgtable->TransportActive)); if (!(register_value & CFGTBL_Trans_Performant)) { dev_warn(&h->pdev->dev, "unable to get board into" " performant mode\n"); return; } /* Change the access methods to the performant access methods */ h->access = access; h->transMethod = transMethod; if (!((trans_support & CFGTBL_Trans_io_accel1) || (trans_support & CFGTBL_Trans_io_accel2))) return; if (trans_support & CFGTBL_Trans_io_accel1) { /* Set up I/O accelerator mode */ for (i = 0; i < h->nreply_queues; i++) { writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); h->reply_queue[i].current_entry = readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); } bft[7] = h->ioaccel_maxsg + 8; calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, h->ioaccel1_blockFetchTable); /* initialize all reply queue entries to unused */ memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED, h->reply_pool_size); /* set all the constant fields in the accelerator command * frames once at init time to save CPU cycles later. */ for (i = 0; i < h->nr_cmds; i++) { struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; cp->function = IOACCEL1_FUNCTION_SCSIIO; cp->err_info = (u32) (h->errinfo_pool_dhandle + (i * sizeof(struct ErrorInfo))); cp->err_info_len = sizeof(struct ErrorInfo); cp->sgl_offset = IOACCEL1_SGLOFFSET; cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT; cp->timeout_sec = 0; cp->ReplyQueue = 0; cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) | DIRECT_LOOKUP_BIT; cp->Tag.upper = 0; cp->host_addr.lower = (u32) (h->ioaccel_cmd_pool_dhandle + (i * sizeof(struct io_accel1_cmd))); cp->host_addr.upper = 0; } } else if (trans_support & CFGTBL_Trans_io_accel2) { u64 cfg_offset, cfg_base_addr_index; u32 bft2_offset, cfg_base_addr; int rc; rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, &cfg_base_addr_index, &cfg_offset); BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 4, h->ioaccel2_blockFetchTable); bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); BUILD_BUG_ON(offsetof(struct CfgTable, io_accel_request_size_offset) != 0xb8); h->ioaccel2_bft2_regs = remap_pci_mem(pci_resource_start(h->pdev, cfg_base_addr_index) + cfg_offset + bft2_offset, ARRAY_SIZE(bft2) * sizeof(*h->ioaccel2_bft2_regs)); for (i = 0; i < ARRAY_SIZE(bft2); i++) writel(bft2[i], &h->ioaccel2_bft2_regs[i]); } writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); hpsa_wait_for_mode_change_ack(h); } static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h) { h->ioaccel_maxsg = readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; /* Command structures must be aligned on a 128-byte boundary * because the 7 lower bits of the address are used by the * hardware. */ #define IOACCEL1_COMMANDLIST_ALIGNMENT 128 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % IOACCEL1_COMMANDLIST_ALIGNMENT); h->ioaccel_cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), &(h->ioaccel_cmd_pool_dhandle)); h->ioaccel1_blockFetchTable = kmalloc(((h->ioaccel_maxsg + 1) * sizeof(u32)), GFP_KERNEL); if ((h->ioaccel_cmd_pool == NULL) || (h->ioaccel1_blockFetchTable == NULL)) goto clean_up; memset(h->ioaccel_cmd_pool, 0, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); return 0; clean_up: if (h->ioaccel_cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); kfree(h->ioaccel1_blockFetchTable); return 1; } static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h) { /* Allocate ioaccel2 mode command blocks and block fetch table */ h->ioaccel_maxsg = readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; #define IOACCEL2_COMMANDLIST_ALIGNMENT 128 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % IOACCEL2_COMMANDLIST_ALIGNMENT); h->ioaccel2_cmd_pool = pci_alloc_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), &(h->ioaccel2_cmd_pool_dhandle)); h->ioaccel2_blockFetchTable = kmalloc(((h->ioaccel_maxsg + 1) * sizeof(u32)), GFP_KERNEL); if ((h->ioaccel2_cmd_pool == NULL) || (h->ioaccel2_blockFetchTable == NULL)) goto clean_up; memset(h->ioaccel2_cmd_pool, 0, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); return 0; clean_up: if (h->ioaccel2_cmd_pool) pci_free_consistent(h->pdev, h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); kfree(h->ioaccel2_blockFetchTable); return 1; } static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) { u32 trans_support; unsigned long transMethod = CFGTBL_Trans_Performant | CFGTBL_Trans_use_short_tags; int i; if (hpsa_simple_mode) return; /* Check for I/O accelerator mode support */ if (trans_support & CFGTBL_Trans_io_accel1) { transMethod |= CFGTBL_Trans_io_accel1 | CFGTBL_Trans_enable_directed_msix; if (hpsa_alloc_ioaccel_cmd_and_bft(h)) goto clean_up; } else { if (trans_support & CFGTBL_Trans_io_accel2) { transMethod |= CFGTBL_Trans_io_accel2 | CFGTBL_Trans_enable_directed_msix; if (ioaccel2_alloc_cmds_and_bft(h)) goto clean_up; } } /* TODO, check that this next line h->nreply_queues is correct */ trans_support = readl(&(h->cfgtable->TransportSupport)); if (!(trans_support & PERFORMANT_MODE)) return; h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; hpsa_get_max_perf_mode_cmds(h); /* Performant mode ring buffer and supporting data structures */ h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues; h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, &(h->reply_pool_dhandle)); for (i = 0; i < h->nreply_queues; i++) { h->reply_queue[i].head = &h->reply_pool[h->max_commands * i]; h->reply_queue[i].size = h->max_commands; h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ h->reply_queue[i].current_entry = 0; } /* Need a block fetch table for performant mode */ h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * sizeof(u32)), GFP_KERNEL); if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL)) goto clean_up; hpsa_enter_performant_mode(h, trans_support); return; clean_up: if (h->reply_pool) pci_free_consistent(h->pdev, h->reply_pool_size, h->reply_pool, h->reply_pool_dhandle); kfree(h->blockFetchTable); } static void hpsa_drain_commands(struct ctlr_info *h) { int cmds_out; unsigned long flags; do { /* wait for all outstanding commands to drain out */ spin_lock_irqsave(&h->lock, flags); cmds_out = h->commands_outstanding; spin_unlock_irqrestore(&h->lock, flags); if (cmds_out <= 0) break; msleep(100); } while (1); } /* * This is it. Register the PCI driver information for the cards we control * the OS will call our registered routines when it finds one of our cards. */ static int __init hpsa_init(void) { return pci_register_driver(&hpsa_pci_driver); } static void __exit hpsa_cleanup(void) { pci_unregister_driver(&hpsa_pci_driver); } static void __attribute__((unused)) verify_offsets(void) { #define VERIFY_OFFSET(member, offset) \ BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) VERIFY_OFFSET(IU_type, 0); VERIFY_OFFSET(direction, 1); VERIFY_OFFSET(reply_queue, 2); /* VERIFY_OFFSET(reserved1, 3); */ VERIFY_OFFSET(scsi_nexus, 4); VERIFY_OFFSET(Tag, 8); VERIFY_OFFSET(cdb, 16); VERIFY_OFFSET(cciss_lun, 32); VERIFY_OFFSET(data_len, 40); VERIFY_OFFSET(cmd_priority_task_attr, 44); VERIFY_OFFSET(sg_count, 45); /* VERIFY_OFFSET(reserved3 */ VERIFY_OFFSET(err_ptr, 48); VERIFY_OFFSET(err_len, 56); /* VERIFY_OFFSET(reserved4 */ VERIFY_OFFSET(sg, 64); #undef VERIFY_OFFSET #define VERIFY_OFFSET(member, offset) \ BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) VERIFY_OFFSET(dev_handle, 0x00); VERIFY_OFFSET(reserved1, 0x02); VERIFY_OFFSET(function, 0x03); VERIFY_OFFSET(reserved2, 0x04); VERIFY_OFFSET(err_info, 0x0C); VERIFY_OFFSET(reserved3, 0x10); VERIFY_OFFSET(err_info_len, 0x12); VERIFY_OFFSET(reserved4, 0x13); VERIFY_OFFSET(sgl_offset, 0x14); VERIFY_OFFSET(reserved5, 0x15); VERIFY_OFFSET(transfer_len, 0x1C); VERIFY_OFFSET(reserved6, 0x20); VERIFY_OFFSET(io_flags, 0x24); VERIFY_OFFSET(reserved7, 0x26); VERIFY_OFFSET(LUN, 0x34); VERIFY_OFFSET(control, 0x3C); VERIFY_OFFSET(CDB, 0x40); VERIFY_OFFSET(reserved8, 0x50); VERIFY_OFFSET(host_context_flags, 0x60); VERIFY_OFFSET(timeout_sec, 0x62); VERIFY_OFFSET(ReplyQueue, 0x64); VERIFY_OFFSET(reserved9, 0x65); VERIFY_OFFSET(Tag, 0x68); VERIFY_OFFSET(host_addr, 0x70); VERIFY_OFFSET(CISS_LUN, 0x78); VERIFY_OFFSET(SG, 0x78 + 8); #undef VERIFY_OFFSET } module_init(hpsa_init); module_exit(hpsa_cleanup);