/* * Copyright (C) 2015 Matias Bjorling. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, * USA. * */ #include #define MAX_SYSBLKS 3 /* remember to update mapping scheme on change */ #define MAX_BLKS_PR_SYSBLK 2 /* 2 blks with 256 pages and 3000 erases * enables ~1.5M updates per sysblk unit */ struct sysblk_scan { /* A row is a collection of flash blocks for a system block. */ int nr_rows; int row; int act_blk[MAX_SYSBLKS]; int nr_ppas; struct ppa_addr ppas[MAX_SYSBLKS * MAX_BLKS_PR_SYSBLK];/* all sysblks */ }; static inline int scan_ppa_idx(int row, int blkid) { return (row * MAX_BLKS_PR_SYSBLK) + blkid; } void nvm_sysblk_to_cpu(struct nvm_sb_info *info, struct nvm_system_block *sb) { info->seqnr = be32_to_cpu(sb->seqnr); info->erase_cnt = be32_to_cpu(sb->erase_cnt); info->version = be16_to_cpu(sb->version); strncpy(info->mmtype, sb->mmtype, NVM_MMTYPE_LEN); info->fs_ppa.ppa = be64_to_cpu(sb->fs_ppa); } void nvm_cpu_to_sysblk(struct nvm_system_block *sb, struct nvm_sb_info *info) { sb->magic = cpu_to_be32(NVM_SYSBLK_MAGIC); sb->seqnr = cpu_to_be32(info->seqnr); sb->erase_cnt = cpu_to_be32(info->erase_cnt); sb->version = cpu_to_be16(info->version); strncpy(sb->mmtype, info->mmtype, NVM_MMTYPE_LEN); sb->fs_ppa = cpu_to_be64(info->fs_ppa.ppa); } static int nvm_setup_sysblks(struct nvm_dev *dev, struct ppa_addr *sysblk_ppas) { int nr_rows = min_t(int, MAX_SYSBLKS, dev->nr_chnls); int i; for (i = 0; i < nr_rows; i++) sysblk_ppas[i].ppa = 0; /* if possible, place sysblk at first channel, middle channel and last * channel of the device. If not, create only one or two sys blocks */ switch (dev->nr_chnls) { case 2: sysblk_ppas[1].g.ch = 1; /* fall-through */ case 1: sysblk_ppas[0].g.ch = 0; break; default: sysblk_ppas[0].g.ch = 0; sysblk_ppas[1].g.ch = dev->nr_chnls / 2; sysblk_ppas[2].g.ch = dev->nr_chnls - 1; break; } return nr_rows; } void nvm_setup_sysblk_scan(struct nvm_dev *dev, struct sysblk_scan *s, struct ppa_addr *sysblk_ppas) { memset(s, 0, sizeof(struct sysblk_scan)); s->nr_rows = nvm_setup_sysblks(dev, sysblk_ppas); } static int sysblk_get_free_blks(struct nvm_dev *dev, struct ppa_addr ppa, u8 *blks, int nr_blks, struct sysblk_scan *s) { struct ppa_addr *sppa; int i, blkid = 0; nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks); if (nr_blks < 0) return nr_blks; for (i = 0; i < nr_blks; i++) { if (blks[i] == NVM_BLK_T_HOST) return -EEXIST; if (blks[i] != NVM_BLK_T_FREE) continue; sppa = &s->ppas[scan_ppa_idx(s->row, blkid)]; sppa->g.ch = ppa.g.ch; sppa->g.lun = ppa.g.lun; sppa->g.blk = i; s->nr_ppas++; blkid++; pr_debug("nvm: use (%u %u %u) as sysblk\n", sppa->g.ch, sppa->g.lun, sppa->g.blk); if (blkid > MAX_BLKS_PR_SYSBLK - 1) return 0; } pr_err("nvm: sysblk failed get sysblk\n"); return -EINVAL; } static int sysblk_get_host_blks(struct nvm_dev *dev, struct ppa_addr ppa, u8 *blks, int nr_blks, struct sysblk_scan *s) { int i, nr_sysblk = 0; nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks); if (nr_blks < 0) return nr_blks; for (i = 0; i < nr_blks; i++) { if (blks[i] != NVM_BLK_T_HOST) continue; if (s->nr_ppas == MAX_BLKS_PR_SYSBLK * MAX_SYSBLKS) { pr_err("nvm: too many host blks\n"); return -EINVAL; } ppa.g.blk = i; s->ppas[scan_ppa_idx(s->row, nr_sysblk)] = ppa; s->nr_ppas++; nr_sysblk++; } return 0; } static int nvm_get_all_sysblks(struct nvm_dev *dev, struct sysblk_scan *s, struct ppa_addr *ppas, int get_free) { int i, nr_blks, ret = 0; u8 *blks; s->nr_ppas = 0; nr_blks = dev->blks_per_lun * dev->plane_mode; blks = kmalloc(nr_blks, GFP_KERNEL); if (!blks) return -ENOMEM; for (i = 0; i < s->nr_rows; i++) { s->row = i; ret = nvm_get_bb_tbl(dev, ppas[i], blks); if (ret) { pr_err("nvm: failed bb tbl for ppa (%u %u)\n", ppas[i].g.ch, ppas[i].g.blk); goto err_get; } if (get_free) ret = sysblk_get_free_blks(dev, ppas[i], blks, nr_blks, s); else ret = sysblk_get_host_blks(dev, ppas[i], blks, nr_blks, s); if (ret) goto err_get; } err_get: kfree(blks); return ret; } /* * scans a block for latest sysblk. * Returns: * 0 - newer sysblk not found. PPA is updated to latest page. * 1 - newer sysblk found and stored in *cur. PPA is updated to * next valid page. * <0- error. */ static int nvm_scan_block(struct nvm_dev *dev, struct ppa_addr *ppa, struct nvm_system_block *sblk) { struct nvm_system_block *cur; int pg, ret, found = 0; /* the full buffer for a flash page is allocated. Only the first of it * contains the system block information */ cur = kmalloc(dev->pfpg_size, GFP_KERNEL); if (!cur) return -ENOMEM; /* perform linear scan through the block */ for (pg = 0; pg < dev->lps_per_blk; pg++) { ppa->g.pg = ppa_to_slc(dev, pg); ret = nvm_submit_ppa(dev, ppa, 1, NVM_OP_PREAD, NVM_IO_SLC_MODE, cur, dev->pfpg_size); if (ret) { if (ret == NVM_RSP_ERR_EMPTYPAGE) { pr_debug("nvm: sysblk scan empty ppa (%u %u %u %u)\n", ppa->g.ch, ppa->g.lun, ppa->g.blk, ppa->g.pg); break; } pr_err("nvm: read failed (%x) for ppa (%u %u %u %u)", ret, ppa->g.ch, ppa->g.lun, ppa->g.blk, ppa->g.pg); break; /* if we can't read a page, continue to the * next blk */ } if (be32_to_cpu(cur->magic) != NVM_SYSBLK_MAGIC) { pr_debug("nvm: scan break for ppa (%u %u %u %u)\n", ppa->g.ch, ppa->g.lun, ppa->g.blk, ppa->g.pg); break; /* last valid page already found */ } if (be32_to_cpu(cur->seqnr) < be32_to_cpu(sblk->seqnr)) continue; memcpy(sblk, cur, sizeof(struct nvm_system_block)); found = 1; } kfree(cur); return found; } static int nvm_set_bb_tbl(struct nvm_dev *dev, struct sysblk_scan *s, int type) { struct nvm_rq rqd; int ret; if (s->nr_ppas > dev->ops->max_phys_sect) { pr_err("nvm: unable to update all sysblocks atomically\n"); return -EINVAL; } memset(&rqd, 0, sizeof(struct nvm_rq)); nvm_set_rqd_ppalist(dev, &rqd, s->ppas, s->nr_ppas); nvm_generic_to_addr_mode(dev, &rqd); ret = dev->ops->set_bb_tbl(dev, &rqd, type); nvm_free_rqd_ppalist(dev, &rqd); if (ret) { pr_err("nvm: sysblk failed bb mark\n"); return -EINVAL; } return 0; } static int nvm_write_and_verify(struct nvm_dev *dev, struct nvm_sb_info *info, struct sysblk_scan *s) { struct nvm_system_block nvmsb; void *buf; int i, sect, ret = 0; struct ppa_addr *ppas; nvm_cpu_to_sysblk(&nvmsb, info); buf = kzalloc(dev->pfpg_size, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, &nvmsb, sizeof(struct nvm_system_block)); ppas = kcalloc(dev->sec_per_pg, sizeof(struct ppa_addr), GFP_KERNEL); if (!ppas) { ret = -ENOMEM; goto err; } /* Write and verify */ for (i = 0; i < s->nr_rows; i++) { ppas[0] = s->ppas[scan_ppa_idx(i, s->act_blk[i])]; pr_debug("nvm: writing sysblk to ppa (%u %u %u %u)\n", ppas[0].g.ch, ppas[0].g.lun, ppas[0].g.blk, ppas[0].g.pg); /* Expand to all sectors within a flash page */ if (dev->sec_per_pg > 1) { for (sect = 1; sect < dev->sec_per_pg; sect++) { ppas[sect].ppa = ppas[0].ppa; ppas[sect].g.sec = sect; } } ret = nvm_submit_ppa(dev, ppas, dev->sec_per_pg, NVM_OP_PWRITE, NVM_IO_SLC_MODE, buf, dev->pfpg_size); if (ret) { pr_err("nvm: sysblk failed program (%u %u %u)\n", ppas[0].g.ch, ppas[0].g.lun, ppas[0].g.blk); break; } ret = nvm_submit_ppa(dev, ppas, dev->sec_per_pg, NVM_OP_PREAD, NVM_IO_SLC_MODE, buf, dev->pfpg_size); if (ret) { pr_err("nvm: sysblk failed read (%u %u %u)\n", ppas[0].g.ch, ppas[0].g.lun, ppas[0].g.blk); break; } if (memcmp(buf, &nvmsb, sizeof(struct nvm_system_block))) { pr_err("nvm: sysblk failed verify (%u %u %u)\n", ppas[0].g.ch, ppas[0].g.lun, ppas[0].g.blk); ret = -EINVAL; break; } } kfree(ppas); err: kfree(buf); return ret; } static int nvm_prepare_new_sysblks(struct nvm_dev *dev, struct sysblk_scan *s) { int i, ret; unsigned long nxt_blk; struct ppa_addr *ppa; for (i = 0; i < s->nr_rows; i++) { nxt_blk = (s->act_blk[i] + 1) % MAX_BLKS_PR_SYSBLK; ppa = &s->ppas[scan_ppa_idx(i, nxt_blk)]; ppa->g.pg = ppa_to_slc(dev, 0); ret = nvm_erase_ppa(dev, ppa, 1); if (ret) return ret; s->act_blk[i] = nxt_blk; } return 0; } int nvm_get_sysblock(struct nvm_dev *dev, struct nvm_sb_info *info) { struct ppa_addr sysblk_ppas[MAX_SYSBLKS]; struct sysblk_scan s; struct nvm_system_block *cur; int i, j, found = 0; int ret = -ENOMEM; /* * 1. setup sysblk locations * 2. get bad block list * 3. filter on host-specific (type 3) * 4. iterate through all and find the highest seq nr. * 5. return superblock information */ if (!dev->ops->get_bb_tbl) return -EINVAL; nvm_setup_sysblk_scan(dev, &s, sysblk_ppas); mutex_lock(&dev->mlock); ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0); if (ret) goto err_sysblk; /* no sysblocks initialized */ if (!s.nr_ppas) goto err_sysblk; cur = kzalloc(sizeof(struct nvm_system_block), GFP_KERNEL); if (!cur) goto err_sysblk; /* find the latest block across all sysblocks */ for (i = 0; i < s.nr_rows; i++) { for (j = 0; j < MAX_BLKS_PR_SYSBLK; j++) { struct ppa_addr ppa = s.ppas[scan_ppa_idx(i, j)]; ret = nvm_scan_block(dev, &ppa, cur); if (ret > 0) found = 1; else if (ret < 0) break; } } nvm_sysblk_to_cpu(info, cur); kfree(cur); err_sysblk: mutex_unlock(&dev->mlock); if (found) return 1; return ret; } int nvm_update_sysblock(struct nvm_dev *dev, struct nvm_sb_info *new) { /* 1. for each latest superblock * 2. if room * a. write new flash page entry with the updated information * 3. if no room * a. find next available block on lun (linear search) * if none, continue to next lun * if none at all, report error. also report that it wasn't * possible to write to all superblocks. * c. write data to block. */ struct ppa_addr sysblk_ppas[MAX_SYSBLKS]; struct sysblk_scan s; struct nvm_system_block *cur; int i, j, ppaidx, found = 0; int ret = -ENOMEM; if (!dev->ops->get_bb_tbl) return -EINVAL; nvm_setup_sysblk_scan(dev, &s, sysblk_ppas); mutex_lock(&dev->mlock); ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0); if (ret) goto err_sysblk; cur = kzalloc(sizeof(struct nvm_system_block), GFP_KERNEL); if (!cur) goto err_sysblk; /* Get the latest sysblk for each sysblk row */ for (i = 0; i < s.nr_rows; i++) { found = 0; for (j = 0; j < MAX_BLKS_PR_SYSBLK; j++) { ppaidx = scan_ppa_idx(i, j); ret = nvm_scan_block(dev, &s.ppas[ppaidx], cur); if (ret > 0) { s.act_blk[i] = j; found = 1; } else if (ret < 0) break; } } if (!found) { pr_err("nvm: no valid sysblks found to update\n"); ret = -EINVAL; goto err_cur; } /* * All sysblocks found. Check that they have same page id in their flash * blocks */ for (i = 1; i < s.nr_rows; i++) { struct ppa_addr l = s.ppas[scan_ppa_idx(0, s.act_blk[0])]; struct ppa_addr r = s.ppas[scan_ppa_idx(i, s.act_blk[i])]; if (l.g.pg != r.g.pg) { pr_err("nvm: sysblks not on same page. Previous update failed.\n"); ret = -EINVAL; goto err_cur; } } /* * Check that there haven't been another update to the seqnr since we * began */ if ((new->seqnr - 1) != be32_to_cpu(cur->seqnr)) { pr_err("nvm: seq is not sequential\n"); ret = -EINVAL; goto err_cur; } /* * When all pages in a block has been written, a new block is selected * and writing is performed on the new block. */ if (s.ppas[scan_ppa_idx(0, s.act_blk[0])].g.pg == dev->lps_per_blk - 1) { ret = nvm_prepare_new_sysblks(dev, &s); if (ret) goto err_cur; } ret = nvm_write_and_verify(dev, new, &s); err_cur: kfree(cur); err_sysblk: mutex_unlock(&dev->mlock); return ret; } int nvm_init_sysblock(struct nvm_dev *dev, struct nvm_sb_info *info) { struct ppa_addr sysblk_ppas[MAX_SYSBLKS]; struct sysblk_scan s; int ret; /* * 1. select master blocks and select first available blks * 2. get bad block list * 3. mark MAX_SYSBLKS block as host-based device allocated. * 4. write and verify data to block */ if (!dev->ops->get_bb_tbl || !dev->ops->set_bb_tbl) return -EINVAL; if (!(dev->mccap & NVM_ID_CAP_SLC) || !dev->lps_per_blk) { pr_err("nvm: memory does not support SLC access\n"); return -EINVAL; } /* Index all sysblocks and mark them as host-driven */ nvm_setup_sysblk_scan(dev, &s, sysblk_ppas); mutex_lock(&dev->mlock); ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 1); if (ret) goto err_mark; ret = nvm_set_bb_tbl(dev, &s, NVM_BLK_T_HOST); if (ret) goto err_mark; /* Write to the first block of each row */ ret = nvm_write_and_verify(dev, info, &s); err_mark: mutex_unlock(&dev->mlock); return ret; } struct factory_blks { struct nvm_dev *dev; int flags; unsigned long *blks; }; static int factory_nblks(int nblks) { /* Round up to nearest BITS_PER_LONG */ return (nblks + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1); } static unsigned int factory_blk_offset(struct nvm_dev *dev, int ch, int lun) { int nblks = factory_nblks(dev->blks_per_lun); return ((ch * dev->luns_per_chnl * nblks) + (lun * nblks)) / BITS_PER_LONG; } static int nvm_factory_blks(struct nvm_dev *dev, struct ppa_addr ppa, u8 *blks, int nr_blks, struct factory_blks *f) { int i, lunoff; nr_blks = nvm_bb_tbl_fold(dev, blks, nr_blks); if (nr_blks < 0) return nr_blks; lunoff = factory_blk_offset(dev, ppa.g.ch, ppa.g.lun); /* non-set bits correspond to the block must be erased */ for (i = 0; i < nr_blks; i++) { switch (blks[i]) { case NVM_BLK_T_FREE: if (f->flags & NVM_FACTORY_ERASE_ONLY_USER) set_bit(i, &f->blks[lunoff]); break; case NVM_BLK_T_HOST: if (!(f->flags & NVM_FACTORY_RESET_HOST_BLKS)) set_bit(i, &f->blks[lunoff]); break; case NVM_BLK_T_GRWN_BAD: if (!(f->flags & NVM_FACTORY_RESET_GRWN_BBLKS)) set_bit(i, &f->blks[lunoff]); break; default: set_bit(i, &f->blks[lunoff]); break; } } return 0; } static int nvm_fact_get_blks(struct nvm_dev *dev, struct ppa_addr *erase_list, int max_ppas, struct factory_blks *f) { struct ppa_addr ppa; int ch, lun, blkid, idx, done = 0, ppa_cnt = 0; unsigned long *offset; while (!done) { done = 1; nvm_for_each_lun_ppa(dev, ppa, ch, lun) { idx = factory_blk_offset(dev, ch, lun); offset = &f->blks[idx]; blkid = find_first_zero_bit(offset, dev->blks_per_lun); if (blkid >= dev->blks_per_lun) continue; set_bit(blkid, offset); ppa.g.blk = blkid; pr_debug("nvm: erase ppa (%u %u %u)\n", ppa.g.ch, ppa.g.lun, ppa.g.blk); erase_list[ppa_cnt] = ppa; ppa_cnt++; done = 0; if (ppa_cnt == max_ppas) return ppa_cnt; } } return ppa_cnt; } static int nvm_fact_select_blks(struct nvm_dev *dev, struct factory_blks *f) { struct ppa_addr ppa; int ch, lun, nr_blks, ret; u8 *blks; nr_blks = dev->blks_per_lun * dev->plane_mode; blks = kmalloc(nr_blks, GFP_KERNEL); if (!blks) return -ENOMEM; nvm_for_each_lun_ppa(dev, ppa, ch, lun) { ret = nvm_get_bb_tbl(dev, ppa, blks); if (ret) pr_err("nvm: failed bb tbl for ch%u lun%u\n", ppa.g.ch, ppa.g.blk); ret = nvm_factory_blks(dev, ppa, blks, nr_blks, f); if (ret) return ret; } kfree(blks); return 0; } int nvm_dev_factory(struct nvm_dev *dev, int flags) { struct factory_blks f; struct ppa_addr *ppas; int ppa_cnt, ret = -ENOMEM; int max_ppas = dev->ops->max_phys_sect / dev->nr_planes; struct ppa_addr sysblk_ppas[MAX_SYSBLKS]; struct sysblk_scan s; f.blks = kzalloc(factory_nblks(dev->blks_per_lun) * dev->nr_luns, GFP_KERNEL); if (!f.blks) return ret; ppas = kcalloc(max_ppas, sizeof(struct ppa_addr), GFP_KERNEL); if (!ppas) goto err_blks; f.dev = dev; f.flags = flags; /* create list of blks to be erased */ ret = nvm_fact_select_blks(dev, &f); if (ret) goto err_ppas; /* continue to erase until list of blks until empty */ while ((ppa_cnt = nvm_fact_get_blks(dev, ppas, max_ppas, &f)) > 0) nvm_erase_ppa(dev, ppas, ppa_cnt); /* mark host reserved blocks free */ if (flags & NVM_FACTORY_RESET_HOST_BLKS) { nvm_setup_sysblk_scan(dev, &s, sysblk_ppas); mutex_lock(&dev->mlock); ret = nvm_get_all_sysblks(dev, &s, sysblk_ppas, 0); if (!ret) ret = nvm_set_bb_tbl(dev, &s, NVM_BLK_T_FREE); mutex_unlock(&dev->mlock); } err_ppas: kfree(ppas); err_blks: kfree(f.blks); return ret; } EXPORT_SYMBOL(nvm_dev_factory);