// SPDX-License-Identifier: GPL-2.0-only /* * kexec.c - kexec_load system call * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/mm.h> #include <linux/file.h> #include <linux/security.h> #include <linux/kexec.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/syscalls.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include "kexec_internal.h" static int copy_user_segment_list(struct kimage *image, unsigned long nr_segments, struct kexec_segment __user *segments) { int ret; size_t segment_bytes; /* Read in the segments */ image->nr_segments = nr_segments; segment_bytes = nr_segments * sizeof(*segments); ret = copy_from_user(image->segment, segments, segment_bytes); if (ret) ret = -EFAULT; return ret; } static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags) { int ret; struct kimage *image; bool kexec_on_panic = flags & KEXEC_ON_CRASH; if (kexec_on_panic) { /* Verify we have a valid entry point */ if ((entry < phys_to_boot_phys(crashk_res.start)) || (entry > phys_to_boot_phys(crashk_res.end))) return -EADDRNOTAVAIL; } /* Allocate and initialize a controlling structure */ image = do_kimage_alloc_init(); if (!image) return -ENOMEM; image->start = entry; ret = copy_user_segment_list(image, nr_segments, segments); if (ret) goto out_free_image; if (kexec_on_panic) { /* Enable special crash kernel control page alloc policy. */ image->control_page = crashk_res.start; image->type = KEXEC_TYPE_CRASH; } ret = sanity_check_segment_list(image); if (ret) goto out_free_image; /* * Find a location for the control code buffer, and add it * the vector of segments so that it's pages will also be * counted as destination pages. */ ret = -ENOMEM; image->control_code_page = kimage_alloc_control_pages(image, get_order(KEXEC_CONTROL_PAGE_SIZE)); if (!image->control_code_page) { pr_err("Could not allocate control_code_buffer\n"); goto out_free_image; } if (!kexec_on_panic) { image->swap_page = kimage_alloc_control_pages(image, 0); if (!image->swap_page) { pr_err("Could not allocate swap buffer\n"); goto out_free_control_pages; } } *rimage = image; return 0; out_free_control_pages: kimage_free_page_list(&image->control_pages); out_free_image: kfree(image); return ret; } static int do_kexec_load(unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags) { struct kimage **dest_image, *image; unsigned long i; int ret; if (flags & KEXEC_ON_CRASH) { dest_image = &kexec_crash_image; if (kexec_crash_image) arch_kexec_unprotect_crashkres(); } else { dest_image = &kexec_image; } if (nr_segments == 0) { /* Uninstall image */ kimage_free(xchg(dest_image, NULL)); return 0; } if (flags & KEXEC_ON_CRASH) { /* * Loading another kernel to switch to if this one * crashes. Free any current crash dump kernel before * we corrupt it. */ kimage_free(xchg(&kexec_crash_image, NULL)); } ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags); if (ret) return ret; if (flags & KEXEC_PRESERVE_CONTEXT) image->preserve_context = 1; ret = machine_kexec_prepare(image); if (ret) goto out; /* * Some architecture(like S390) may touch the crash memory before * machine_kexec_prepare(), we must copy vmcoreinfo data after it. */ ret = kimage_crash_copy_vmcoreinfo(image); if (ret) goto out; for (i = 0; i < nr_segments; i++) { ret = kimage_load_segment(image, &image->segment[i]); if (ret) goto out; } kimage_terminate(image); /* Install the new kernel and uninstall the old */ image = xchg(dest_image, image); out: if ((flags & KEXEC_ON_CRASH) && kexec_crash_image) arch_kexec_protect_crashkres(); kimage_free(image); return ret; } /* * Exec Kernel system call: for obvious reasons only root may call it. * * This call breaks up into three pieces. * - A generic part which loads the new kernel from the current * address space, and very carefully places the data in the * allocated pages. * * - A generic part that interacts with the kernel and tells all of * the devices to shut down. Preventing on-going dmas, and placing * the devices in a consistent state so a later kernel can * reinitialize them. * * - A machine specific part that includes the syscall number * and then copies the image to it's final destination. And * jumps into the image at entry. * * kexec does not sync, or unmount filesystems so if you need * that to happen you need to do that yourself. */ static inline int kexec_load_check(unsigned long nr_segments, unsigned long flags) { int result; /* We only trust the superuser with rebooting the system. */ if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) return -EPERM; /* Permit LSMs and IMA to fail the kexec */ result = security_kernel_load_data(LOADING_KEXEC_IMAGE); if (result < 0) return result; /* * Verify we have a legal set of flags * This leaves us room for future extensions. */ if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) return -EINVAL; /* Put an artificial cap on the number * of segments passed to kexec_load. */ if (nr_segments > KEXEC_SEGMENT_MAX) return -EINVAL; return 0; } SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, struct kexec_segment __user *, segments, unsigned long, flags) { int result; result = kexec_load_check(nr_segments, flags); if (result) return result; /* Verify we are on the appropriate architecture */ if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) return -EINVAL; /* Because we write directly to the reserved memory * region when loading crash kernels we need a mutex here to * prevent multiple crash kernels from attempting to load * simultaneously, and to prevent a crash kernel from loading * over the top of a in use crash kernel. * * KISS: always take the mutex. */ if (!mutex_trylock(&kexec_mutex)) return -EBUSY; result = do_kexec_load(entry, nr_segments, segments, flags); mutex_unlock(&kexec_mutex); return result; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, compat_ulong_t, nr_segments, struct compat_kexec_segment __user *, segments, compat_ulong_t, flags) { struct compat_kexec_segment in; struct kexec_segment out, __user *ksegments; unsigned long i, result; result = kexec_load_check(nr_segments, flags); if (result) return result; /* Don't allow clients that don't understand the native * architecture to do anything. */ if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) return -EINVAL; ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); for (i = 0; i < nr_segments; i++) { result = copy_from_user(&in, &segments[i], sizeof(in)); if (result) return -EFAULT; out.buf = compat_ptr(in.buf); out.bufsz = in.bufsz; out.mem = in.mem; out.memsz = in.memsz; result = copy_to_user(&ksegments[i], &out, sizeof(out)); if (result) return -EFAULT; } /* Because we write directly to the reserved memory * region when loading crash kernels we need a mutex here to * prevent multiple crash kernels from attempting to load * simultaneously, and to prevent a crash kernel from loading * over the top of a in use crash kernel. * * KISS: always take the mutex. */ if (!mutex_trylock(&kexec_mutex)) return -EBUSY; result = do_kexec_load(entry, nr_segments, ksegments, flags); mutex_unlock(&kexec_mutex); return result; } #endif