/* * linux/net/sunrpc/svcsock.c * * These are the RPC server socket internals. * * The server scheduling algorithm does not always distribute the load * evenly when servicing a single client. May need to modify the * svc_xprt_enqueue procedure... * * TCP support is largely untested and may be a little slow. The problem * is that we currently do two separate recvfrom's, one for the 4-byte * record length, and the second for the actual record. This could possibly * be improved by always reading a minimum size of around 100 bytes and * tucking any superfluous bytes away in a temporary store. Still, that * leaves write requests out in the rain. An alternative may be to peek at * the first skb in the queue, and if it matches the next TCP sequence * number, to extract the record marker. Yuck. * * Copyright (C) 1995, 1996 Olaf Kirch */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RPCDBG_FACILITY RPCDBG_SVCXPRT static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, int *errp, int flags); static void svc_udp_data_ready(struct sock *, int); static int svc_udp_recvfrom(struct svc_rqst *); static int svc_udp_sendto(struct svc_rqst *); static void svc_sock_detach(struct svc_xprt *); static void svc_tcp_sock_detach(struct svc_xprt *); static void svc_sock_free(struct svc_xprt *); static struct svc_xprt *svc_create_socket(struct svc_serv *, int, struct net *, struct sockaddr *, int, int); #ifdef CONFIG_DEBUG_LOCK_ALLOC static struct lock_class_key svc_key[2]; static struct lock_class_key svc_slock_key[2]; static void svc_reclassify_socket(struct socket *sock) { struct sock *sk = sock->sk; BUG_ON(sock_owned_by_user(sk)); switch (sk->sk_family) { case AF_INET: sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD", &svc_slock_key[0], "sk_xprt.xpt_lock-AF_INET-NFSD", &svc_key[0]); break; case AF_INET6: sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD", &svc_slock_key[1], "sk_xprt.xpt_lock-AF_INET6-NFSD", &svc_key[1]); break; default: BUG(); } } #else static void svc_reclassify_socket(struct socket *sock) { } #endif /* * Release an skbuff after use */ static void svc_release_skb(struct svc_rqst *rqstp) { struct sk_buff *skb = rqstp->rq_xprt_ctxt; if (skb) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); rqstp->rq_xprt_ctxt = NULL; dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); skb_free_datagram_locked(svsk->sk_sk, skb); } } union svc_pktinfo_u { struct in_pktinfo pkti; struct in6_pktinfo pkti6; }; #define SVC_PKTINFO_SPACE \ CMSG_SPACE(sizeof(union svc_pktinfo_u)) static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); switch (svsk->sk_sk->sk_family) { case AF_INET: { struct in_pktinfo *pki = CMSG_DATA(cmh); cmh->cmsg_level = SOL_IP; cmh->cmsg_type = IP_PKTINFO; pki->ipi_ifindex = 0; pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr; cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); } break; case AF_INET6: { struct in6_pktinfo *pki = CMSG_DATA(cmh); cmh->cmsg_level = SOL_IPV6; cmh->cmsg_type = IPV6_PKTINFO; pki->ipi6_ifindex = 0; ipv6_addr_copy(&pki->ipi6_addr, &rqstp->rq_daddr.addr6); cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); } break; } } /* * send routine intended to be shared by the fore- and back-channel */ int svc_send_common(struct socket *sock, struct xdr_buf *xdr, struct page *headpage, unsigned long headoffset, struct page *tailpage, unsigned long tailoffset) { int result; int size; struct page **ppage = xdr->pages; size_t base = xdr->page_base; unsigned int pglen = xdr->page_len; unsigned int flags = MSG_MORE; int slen; int len = 0; slen = xdr->len; /* send head */ if (slen == xdr->head[0].iov_len) flags = 0; len = kernel_sendpage(sock, headpage, headoffset, xdr->head[0].iov_len, flags); if (len != xdr->head[0].iov_len) goto out; slen -= xdr->head[0].iov_len; if (slen == 0) goto out; /* send page data */ size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; while (pglen > 0) { if (slen == size) flags = 0; result = kernel_sendpage(sock, *ppage, base, size, flags); if (result > 0) len += result; if (result != size) goto out; slen -= size; pglen -= size; size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; base = 0; ppage++; } /* send tail */ if (xdr->tail[0].iov_len) { result = kernel_sendpage(sock, tailpage, tailoffset, xdr->tail[0].iov_len, 0); if (result > 0) len += result; } out: return len; } /* * Generic sendto routine */ static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct socket *sock = svsk->sk_sock; union { struct cmsghdr hdr; long all[SVC_PKTINFO_SPACE / sizeof(long)]; } buffer; struct cmsghdr *cmh = &buffer.hdr; int len = 0; unsigned long tailoff; unsigned long headoff; RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); if (rqstp->rq_prot == IPPROTO_UDP) { struct msghdr msg = { .msg_name = &rqstp->rq_addr, .msg_namelen = rqstp->rq_addrlen, .msg_control = cmh, .msg_controllen = sizeof(buffer), .msg_flags = MSG_MORE, }; svc_set_cmsg_data(rqstp, cmh); if (sock_sendmsg(sock, &msg, 0) < 0) goto out; } tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1); headoff = 0; len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff, rqstp->rq_respages[0], tailoff); out: dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n", svsk, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf))); return len; } /* * Report socket names for nfsdfs */ static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining) { const struct sock *sk = svsk->sk_sk; const char *proto_name = sk->sk_protocol == IPPROTO_UDP ? "udp" : "tcp"; int len; switch (sk->sk_family) { case PF_INET: len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n", proto_name, &inet_sk(sk)->inet_rcv_saddr, inet_sk(sk)->inet_num); break; case PF_INET6: len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n", proto_name, &inet6_sk(sk)->rcv_saddr, inet_sk(sk)->inet_num); break; default: len = snprintf(buf, remaining, "*unknown-%d*\n", sk->sk_family); } if (len >= remaining) { *buf = '\0'; return -ENAMETOOLONG; } return len; } /** * svc_sock_names - construct a list of listener names in a string * @serv: pointer to RPC service * @buf: pointer to a buffer to fill in with socket names * @buflen: size of the buffer to be filled * @toclose: pointer to '\0'-terminated C string containing the name * of a listener to be closed * * Fills in @buf with a '\n'-separated list of names of listener * sockets. If @toclose is not NULL, the socket named by @toclose * is closed, and is not included in the output list. * * Returns positive length of the socket name string, or a negative * errno value on error. */ int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen, const char *toclose) { struct svc_sock *svsk, *closesk = NULL; int len = 0; if (!serv) return 0; spin_lock_bh(&serv->sv_lock); list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) { int onelen = svc_one_sock_name(svsk, buf + len, buflen - len); if (onelen < 0) { len = onelen; break; } if (toclose && strcmp(toclose, buf + len) == 0) closesk = svsk; else len += onelen; } spin_unlock_bh(&serv->sv_lock); if (closesk) /* Should unregister with portmap, but you cannot * unregister just one protocol... */ svc_close_xprt(&closesk->sk_xprt); else if (toclose) return -ENOENT; return len; } EXPORT_SYMBOL_GPL(svc_sock_names); /* * Check input queue length */ static int svc_recv_available(struct svc_sock *svsk) { struct socket *sock = svsk->sk_sock; int avail, err; err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail); return (err >= 0)? avail : err; } /* * Generic recvfrom routine. */ static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct msghdr msg = { .msg_flags = MSG_DONTWAIT, }; int len; rqstp->rq_xprt_hlen = 0; len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen, msg.msg_flags); dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", svsk, iov[0].iov_base, iov[0].iov_len, len); return len; } /* * Set socket snd and rcv buffer lengths */ static void svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv) { #if 0 mm_segment_t oldfs; oldfs = get_fs(); set_fs(KERNEL_DS); sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, (char*)&snd, sizeof(snd)); sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, (char*)&rcv, sizeof(rcv)); #else /* sock_setsockopt limits use to sysctl_?mem_max, * which isn't acceptable. Until that is made conditional * on not having CAP_SYS_RESOURCE or similar, we go direct... * DaveM said I could! */ lock_sock(sock->sk); sock->sk->sk_sndbuf = snd * 2; sock->sk->sk_rcvbuf = rcv * 2; sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; sock->sk->sk_write_space(sock->sk); release_sock(sock->sk); #endif } /* * INET callback when data has been received on the socket. */ static void svc_udp_data_ready(struct sock *sk, int count) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; if (svsk) { dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", svsk, sk, count, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); svc_xprt_enqueue(&svsk->sk_xprt); } if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) wake_up_interruptible(sk_sleep(sk)); } /* * INET callback when space is newly available on the socket. */ static void svc_write_space(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); if (svsk) { dprintk("svc: socket %p(inet %p), write_space busy=%d\n", svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags)); svc_xprt_enqueue(&svsk->sk_xprt); } if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) { dprintk("RPC svc_write_space: someone sleeping on %p\n", svsk); wake_up_interruptible(sk_sleep(sk)); } } static void svc_tcp_write_space(struct sock *sk) { struct socket *sock = sk->sk_socket; if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock) clear_bit(SOCK_NOSPACE, &sock->flags); svc_write_space(sk); } /* * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo */ static int svc_udp_get_dest_address4(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct in_pktinfo *pki = CMSG_DATA(cmh); if (cmh->cmsg_type != IP_PKTINFO) return 0; rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr; return 1; } /* * See net/ipv6/datagram.c : datagram_recv_ctl */ static int svc_udp_get_dest_address6(struct svc_rqst *rqstp, struct cmsghdr *cmh) { struct in6_pktinfo *pki = CMSG_DATA(cmh); if (cmh->cmsg_type != IPV6_PKTINFO) return 0; ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr); return 1; } /* * Copy the UDP datagram's destination address to the rqstp structure. * The 'destination' address in this case is the address to which the * peer sent the datagram, i.e. our local address. For multihomed * hosts, this can change from msg to msg. Note that only the IP * address changes, the port number should remain the same. */ static int svc_udp_get_dest_address(struct svc_rqst *rqstp, struct cmsghdr *cmh) { switch (cmh->cmsg_level) { case SOL_IP: return svc_udp_get_dest_address4(rqstp, cmh); case SOL_IPV6: return svc_udp_get_dest_address6(rqstp, cmh); } return 0; } /* * Receive a datagram from a UDP socket. */ static int svc_udp_recvfrom(struct svc_rqst *rqstp) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = svsk->sk_xprt.xpt_server; struct sk_buff *skb; union { struct cmsghdr hdr; long all[SVC_PKTINFO_SPACE / sizeof(long)]; } buffer; struct cmsghdr *cmh = &buffer.hdr; struct msghdr msg = { .msg_name = svc_addr(rqstp), .msg_control = cmh, .msg_controllen = sizeof(buffer), .msg_flags = MSG_DONTWAIT, }; size_t len; int err; if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) /* udp sockets need large rcvbuf as all pending * requests are still in that buffer. sndbuf must * also be large enough that there is enough space * for one reply per thread. We count all threads * rather than threads in a particular pool, which * provides an upper bound on the number of threads * which will access the socket. */ svc_sock_setbufsize(svsk->sk_sock, (serv->sv_nrthreads+3) * serv->sv_max_mesg, (serv->sv_nrthreads+3) * serv->sv_max_mesg); clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); skb = NULL; err = kernel_recvmsg(svsk->sk_sock, &msg, NULL, 0, 0, MSG_PEEK | MSG_DONTWAIT); if (err >= 0) skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err); if (skb == NULL) { if (err != -EAGAIN) { /* possibly an icmp error */ dprintk("svc: recvfrom returned error %d\n", -err); set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); } return -EAGAIN; } len = svc_addr_len(svc_addr(rqstp)); if (len == 0) return -EAFNOSUPPORT; rqstp->rq_addrlen = len; if (skb->tstamp.tv64 == 0) { skb->tstamp = ktime_get_real(); /* Don't enable netstamp, sunrpc doesn't need that much accuracy */ } svsk->sk_sk->sk_stamp = skb->tstamp; set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */ len = skb->len - sizeof(struct udphdr); rqstp->rq_arg.len = len; rqstp->rq_prot = IPPROTO_UDP; if (!svc_udp_get_dest_address(rqstp, cmh)) { if (net_ratelimit()) printk(KERN_WARNING "svc: received unknown control message %d/%d; " "dropping RPC reply datagram\n", cmh->cmsg_level, cmh->cmsg_type); skb_free_datagram_locked(svsk->sk_sk, skb); return 0; } if (skb_is_nonlinear(skb)) { /* we have to copy */ local_bh_disable(); if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { local_bh_enable(); /* checksum error */ skb_free_datagram_locked(svsk->sk_sk, skb); return 0; } local_bh_enable(); skb_free_datagram_locked(svsk->sk_sk, skb); } else { /* we can use it in-place */ rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr); rqstp->rq_arg.head[0].iov_len = len; if (skb_checksum_complete(skb)) { skb_free_datagram_locked(svsk->sk_sk, skb); return 0; } rqstp->rq_xprt_ctxt = skb; } rqstp->rq_arg.page_base = 0; if (len <= rqstp->rq_arg.head[0].iov_len) { rqstp->rq_arg.head[0].iov_len = len; rqstp->rq_arg.page_len = 0; rqstp->rq_respages = rqstp->rq_pages+1; } else { rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; rqstp->rq_respages = rqstp->rq_pages + 1 + DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE); } if (serv->sv_stats) serv->sv_stats->netudpcnt++; return len; } static int svc_udp_sendto(struct svc_rqst *rqstp) { int error; error = svc_sendto(rqstp, &rqstp->rq_res); if (error == -ECONNREFUSED) /* ICMP error on earlier request. */ error = svc_sendto(rqstp, &rqstp->rq_res); return error; } static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp) { } static int svc_udp_has_wspace(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = xprt->xpt_server; unsigned long required; /* * Set the SOCK_NOSPACE flag before checking the available * sock space. */ set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg; if (required*2 > sock_wspace(svsk->sk_sk)) return 0; clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); return 1; } static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt) { BUG(); return NULL; } static struct svc_xprt *svc_udp_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags); } static struct svc_xprt_ops svc_udp_ops = { .xpo_create = svc_udp_create, .xpo_recvfrom = svc_udp_recvfrom, .xpo_sendto = svc_udp_sendto, .xpo_release_rqst = svc_release_skb, .xpo_detach = svc_sock_detach, .xpo_free = svc_sock_free, .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr, .xpo_has_wspace = svc_udp_has_wspace, .xpo_accept = svc_udp_accept, }; static struct svc_xprt_class svc_udp_class = { .xcl_name = "udp", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_udp_ops, .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP, }; static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv) { int err, level, optname, one = 1; svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv); clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); svsk->sk_sk->sk_data_ready = svc_udp_data_ready; svsk->sk_sk->sk_write_space = svc_write_space; /* initialise setting must have enough space to * receive and respond to one request. * svc_udp_recvfrom will re-adjust if necessary */ svc_sock_setbufsize(svsk->sk_sock, 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); /* data might have come in before data_ready set up */ set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); /* make sure we get destination address info */ switch (svsk->sk_sk->sk_family) { case AF_INET: level = SOL_IP; optname = IP_PKTINFO; break; case AF_INET6: level = SOL_IPV6; optname = IPV6_RECVPKTINFO; break; default: BUG(); } err = kernel_setsockopt(svsk->sk_sock, level, optname, (char *)&one, sizeof(one)); dprintk("svc: kernel_setsockopt returned %d\n", err); } /* * A data_ready event on a listening socket means there's a connection * pending. Do not use state_change as a substitute for it. */ static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; dprintk("svc: socket %p TCP (listen) state change %d\n", sk, sk->sk_state); /* * This callback may called twice when a new connection * is established as a child socket inherits everything * from a parent LISTEN socket. * 1) data_ready method of the parent socket will be called * when one of child sockets become ESTABLISHED. * 2) data_ready method of the child socket may be called * when it receives data before the socket is accepted. * In case of 2, we should ignore it silently. */ if (sk->sk_state == TCP_LISTEN) { if (svsk) { set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); svc_xprt_enqueue(&svsk->sk_xprt); } else printk("svc: socket %p: no user data\n", sk); } if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) wake_up_interruptible_all(sk_sleep(sk)); } /* * A state change on a connected socket means it's dying or dead. */ static void svc_tcp_state_change(struct sock *sk) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", sk, sk->sk_state, sk->sk_user_data); if (!svsk) printk("svc: socket %p: no user data\n", sk); else { set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); svc_xprt_enqueue(&svsk->sk_xprt); } if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) wake_up_interruptible_all(sk_sleep(sk)); } static void svc_tcp_data_ready(struct sock *sk, int count) { struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; dprintk("svc: socket %p TCP data ready (svsk %p)\n", sk, sk->sk_user_data); if (svsk) { set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); svc_xprt_enqueue(&svsk->sk_xprt); } if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) wake_up_interruptible(sk_sleep(sk)); } /* * Accept a TCP connection */ static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct sockaddr_storage addr; struct sockaddr *sin = (struct sockaddr *) &addr; struct svc_serv *serv = svsk->sk_xprt.xpt_server; struct socket *sock = svsk->sk_sock; struct socket *newsock; struct svc_sock *newsvsk; int err, slen; RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); if (!sock) return NULL; clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); err = kernel_accept(sock, &newsock, O_NONBLOCK); if (err < 0) { if (err == -ENOMEM) printk(KERN_WARNING "%s: no more sockets!\n", serv->sv_name); else if (err != -EAGAIN && net_ratelimit()) printk(KERN_WARNING "%s: accept failed (err %d)!\n", serv->sv_name, -err); return NULL; } set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); err = kernel_getpeername(newsock, sin, &slen); if (err < 0) { if (net_ratelimit()) printk(KERN_WARNING "%s: peername failed (err %d)!\n", serv->sv_name, -err); goto failed; /* aborted connection or whatever */ } /* Ideally, we would want to reject connections from unauthorized * hosts here, but when we get encryption, the IP of the host won't * tell us anything. For now just warn about unpriv connections. */ if (!svc_port_is_privileged(sin)) { dprintk(KERN_WARNING "%s: connect from unprivileged port: %s\n", serv->sv_name, __svc_print_addr(sin, buf, sizeof(buf))); } dprintk("%s: connect from %s\n", serv->sv_name, __svc_print_addr(sin, buf, sizeof(buf))); /* make sure that a write doesn't block forever when * low on memory */ newsock->sk->sk_sndtimeo = HZ*30; if (!(newsvsk = svc_setup_socket(serv, newsock, &err, (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY)))) goto failed; svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen); err = kernel_getsockname(newsock, sin, &slen); if (unlikely(err < 0)) { dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err); slen = offsetof(struct sockaddr, sa_data); } svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen); if (serv->sv_stats) serv->sv_stats->nettcpconn++; return &newsvsk->sk_xprt; failed: sock_release(newsock); return NULL; } /* * Receive data. * If we haven't gotten the record length yet, get the next four bytes. * Otherwise try to gobble up as much as possible up to the complete * record length. */ static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp) { struct svc_serv *serv = svsk->sk_xprt.xpt_server; int len; if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags)) /* sndbuf needs to have room for one request * per thread, otherwise we can stall even when the * network isn't a bottleneck. * * We count all threads rather than threads in a * particular pool, which provides an upper bound * on the number of threads which will access the socket. * * rcvbuf just needs to be able to hold a few requests. * Normally they will be removed from the queue * as soon a a complete request arrives. */ svc_sock_setbufsize(svsk->sk_sock, (serv->sv_nrthreads+3) * serv->sv_max_mesg, 3 * serv->sv_max_mesg); clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) { int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen; struct kvec iov; iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; iov.iov_len = want; if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) goto error; svsk->sk_tcplen += len; if (len < want) { dprintk("svc: short recvfrom while reading record " "length (%d of %d)\n", len, want); goto err_again; /* record header not complete */ } svsk->sk_reclen = ntohl(svsk->sk_reclen); if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) { /* FIXME: technically, a record can be fragmented, * and non-terminal fragments will not have the top * bit set in the fragment length header. * But apparently no known nfs clients send fragmented * records. */ if (net_ratelimit()) printk(KERN_NOTICE "RPC: multiple fragments " "per record not supported\n"); goto err_delete; } svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK; dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); if (svsk->sk_reclen > serv->sv_max_mesg) { if (net_ratelimit()) printk(KERN_NOTICE "RPC: " "fragment too large: 0x%08lx\n", (unsigned long)svsk->sk_reclen); goto err_delete; } } /* Check whether enough data is available */ len = svc_recv_available(svsk); if (len < 0) goto error; if (len < svsk->sk_reclen) { dprintk("svc: incomplete TCP record (%d of %d)\n", len, svsk->sk_reclen); goto err_again; /* record not complete */ } len = svsk->sk_reclen; set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); return len; error: if (len == -EAGAIN) dprintk("RPC: TCP recv_record got EAGAIN\n"); return len; err_delete: set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); err_again: return -EAGAIN; } static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp, struct rpc_rqst **reqpp, struct kvec *vec) { struct rpc_rqst *req = NULL; u32 *p; u32 xid; u32 calldir; int len; len = svc_recvfrom(rqstp, vec, 1, 8); if (len < 0) goto error; p = (u32 *)rqstp->rq_arg.head[0].iov_base; xid = *p++; calldir = *p; if (calldir == 0) { /* REQUEST is the most common case */ vec[0] = rqstp->rq_arg.head[0]; } else { /* REPLY */ if (svsk->sk_bc_xprt) req = xprt_lookup_rqst(svsk->sk_bc_xprt, xid); if (!req) { printk(KERN_NOTICE "%s: Got unrecognized reply: " "calldir 0x%x sk_bc_xprt %p xid %08x\n", __func__, ntohl(calldir), svsk->sk_bc_xprt, xid); vec[0] = rqstp->rq_arg.head[0]; goto out; } memcpy(&req->rq_private_buf, &req->rq_rcv_buf, sizeof(struct xdr_buf)); /* copy the xid and call direction */ memcpy(req->rq_private_buf.head[0].iov_base, rqstp->rq_arg.head[0].iov_base, 8); vec[0] = req->rq_private_buf.head[0]; } out: vec[0].iov_base += 8; vec[0].iov_len -= 8; len = svsk->sk_reclen - 8; error: *reqpp = req; return len; } /* * Receive data from a TCP socket. */ static int svc_tcp_recvfrom(struct svc_rqst *rqstp) { struct svc_sock *svsk = container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = svsk->sk_xprt.xpt_server; int len; struct kvec *vec; int pnum, vlen; struct rpc_rqst *req = NULL; dprintk("svc: tcp_recv %p data %d conn %d close %d\n", svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags), test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags), test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)); len = svc_tcp_recv_record(svsk, rqstp); if (len < 0) goto error; vec = rqstp->rq_vec; vec[0] = rqstp->rq_arg.head[0]; vlen = PAGE_SIZE; /* * We have enough data for the whole tcp record. Let's try and read the * first 8 bytes to get the xid and the call direction. We can use this * to figure out if this is a call or a reply to a callback. If * sk_reclen is < 8 (xid and calldir), then this is a malformed packet. * In that case, don't bother with the calldir and just read the data. * It will be rejected in svc_process. */ if (len >= 8) { len = svc_process_calldir(svsk, rqstp, &req, vec); if (len < 0) goto err_again; vlen -= 8; } pnum = 1; while (vlen < len) { vec[pnum].iov_base = (req) ? page_address(req->rq_private_buf.pages[pnum - 1]) : page_address(rqstp->rq_pages[pnum]); vec[pnum].iov_len = PAGE_SIZE; pnum++; vlen += PAGE_SIZE; } rqstp->rq_respages = &rqstp->rq_pages[pnum]; /* Now receive data */ len = svc_recvfrom(rqstp, vec, pnum, len); if (len < 0) goto err_again; /* * Account for the 8 bytes we read earlier */ len += 8; if (req) { xprt_complete_rqst(req->rq_task, len); len = 0; goto out; } dprintk("svc: TCP complete record (%d bytes)\n", len); rqstp->rq_arg.len = len; rqstp->rq_arg.page_base = 0; if (len <= rqstp->rq_arg.head[0].iov_len) { rqstp->rq_arg.head[0].iov_len = len; rqstp->rq_arg.page_len = 0; } else { rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; } rqstp->rq_xprt_ctxt = NULL; rqstp->rq_prot = IPPROTO_TCP; out: /* Reset TCP read info */ svsk->sk_reclen = 0; svsk->sk_tcplen = 0; svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt); if (serv->sv_stats) serv->sv_stats->nettcpcnt++; return len; err_again: if (len == -EAGAIN) { dprintk("RPC: TCP recvfrom got EAGAIN\n"); return len; } error: if (len != -EAGAIN) { printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", svsk->sk_xprt.xpt_server->sv_name, -len); set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); } return -EAGAIN; } /* * Send out data on TCP socket. */ static int svc_tcp_sendto(struct svc_rqst *rqstp) { struct xdr_buf *xbufp = &rqstp->rq_res; int sent; __be32 reclen; /* Set up the first element of the reply kvec. * Any other kvecs that may be in use have been taken * care of by the server implementation itself. */ reclen = htonl(0x80000000|((xbufp->len ) - 4)); memcpy(xbufp->head[0].iov_base, &reclen, 4); if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags)) return -ENOTCONN; sent = svc_sendto(rqstp, &rqstp->rq_res); if (sent != xbufp->len) { printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes " "- shutting down socket\n", rqstp->rq_xprt->xpt_server->sv_name, (sent<0)?"got error":"sent only", sent, xbufp->len); set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags); svc_xprt_enqueue(rqstp->rq_xprt); sent = -EAGAIN; } return sent; } /* * Setup response header. TCP has a 4B record length field. */ static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp) { struct kvec *resv = &rqstp->rq_res.head[0]; /* tcp needs a space for the record length... */ svc_putnl(resv, 0); } static int svc_tcp_has_wspace(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct svc_serv *serv = svsk->sk_xprt.xpt_server; int required; if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) return 1; required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg; if (sk_stream_wspace(svsk->sk_sk) >= required) return 1; set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); return 0; } static struct svc_xprt *svc_tcp_create(struct svc_serv *serv, struct net *net, struct sockaddr *sa, int salen, int flags) { return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags); } static struct svc_xprt_ops svc_tcp_ops = { .xpo_create = svc_tcp_create, .xpo_recvfrom = svc_tcp_recvfrom, .xpo_sendto = svc_tcp_sendto, .xpo_release_rqst = svc_release_skb, .xpo_detach = svc_tcp_sock_detach, .xpo_free = svc_sock_free, .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr, .xpo_has_wspace = svc_tcp_has_wspace, .xpo_accept = svc_tcp_accept, }; static struct svc_xprt_class svc_tcp_class = { .xcl_name = "tcp", .xcl_owner = THIS_MODULE, .xcl_ops = &svc_tcp_ops, .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP, }; void svc_init_xprt_sock(void) { svc_reg_xprt_class(&svc_tcp_class); svc_reg_xprt_class(&svc_udp_class); } void svc_cleanup_xprt_sock(void) { svc_unreg_xprt_class(&svc_tcp_class); svc_unreg_xprt_class(&svc_udp_class); } static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv) { struct sock *sk = svsk->sk_sk; svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv); set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags); if (sk->sk_state == TCP_LISTEN) { dprintk("setting up TCP socket for listening\n"); set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags); sk->sk_data_ready = svc_tcp_listen_data_ready; set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags); } else { dprintk("setting up TCP socket for reading\n"); sk->sk_state_change = svc_tcp_state_change; sk->sk_data_ready = svc_tcp_data_ready; sk->sk_write_space = svc_tcp_write_space; svsk->sk_reclen = 0; svsk->sk_tcplen = 0; tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; /* initialise setting must have enough space to * receive and respond to one request. * svc_tcp_recvfrom will re-adjust if necessary */ svc_sock_setbufsize(svsk->sk_sock, 3 * svsk->sk_xprt.xpt_server->sv_max_mesg, 3 * svsk->sk_xprt.xpt_server->sv_max_mesg); set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); if (sk->sk_state != TCP_ESTABLISHED) set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags); } } void svc_sock_update_bufs(struct svc_serv *serv) { /* * The number of server threads has changed. Update * rcvbuf and sndbuf accordingly on all sockets */ struct svc_sock *svsk; spin_lock_bh(&serv->sv_lock); list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); list_for_each_entry(svsk, &serv->sv_tempsocks, sk_xprt.xpt_list) set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags); spin_unlock_bh(&serv->sv_lock); } EXPORT_SYMBOL_GPL(svc_sock_update_bufs); /* * Initialize socket for RPC use and create svc_sock struct * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. */ static struct svc_sock *svc_setup_socket(struct svc_serv *serv, struct socket *sock, int *errp, int flags) { struct svc_sock *svsk; struct sock *inet; int pmap_register = !(flags & SVC_SOCK_ANONYMOUS); dprintk("svc: svc_setup_socket %p\n", sock); if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) { *errp = -ENOMEM; return NULL; } inet = sock->sk; /* Register socket with portmapper */ if (*errp >= 0 && pmap_register) *errp = svc_register(serv, inet->sk_family, inet->sk_protocol, ntohs(inet_sk(inet)->inet_sport)); if (*errp < 0) { kfree(svsk); return NULL; } inet->sk_user_data = svsk; svsk->sk_sock = sock; svsk->sk_sk = inet; svsk->sk_ostate = inet->sk_state_change; svsk->sk_odata = inet->sk_data_ready; svsk->sk_owspace = inet->sk_write_space; /* Initialize the socket */ if (sock->type == SOCK_DGRAM) svc_udp_init(svsk, serv); else svc_tcp_init(svsk, serv); dprintk("svc: svc_setup_socket created %p (inet %p)\n", svsk, svsk->sk_sk); return svsk; } /** * svc_addsock - add a listener socket to an RPC service * @serv: pointer to RPC service to which to add a new listener * @fd: file descriptor of the new listener * @name_return: pointer to buffer to fill in with name of listener * @len: size of the buffer * * Fills in socket name and returns positive length of name if successful. * Name is terminated with '\n'. On error, returns a negative errno * value. */ int svc_addsock(struct svc_serv *serv, const int fd, char *name_return, const size_t len) { int err = 0; struct socket *so = sockfd_lookup(fd, &err); struct svc_sock *svsk = NULL; if (!so) return err; if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6)) err = -EAFNOSUPPORT; else if (so->sk->sk_protocol != IPPROTO_TCP && so->sk->sk_protocol != IPPROTO_UDP) err = -EPROTONOSUPPORT; else if (so->state > SS_UNCONNECTED) err = -EISCONN; else { if (!try_module_get(THIS_MODULE)) err = -ENOENT; else svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS); if (svsk) { struct sockaddr_storage addr; struct sockaddr *sin = (struct sockaddr *)&addr; int salen; if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0) svc_xprt_set_local(&svsk->sk_xprt, sin, salen); clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags); spin_lock_bh(&serv->sv_lock); list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks); spin_unlock_bh(&serv->sv_lock); svc_xprt_received(&svsk->sk_xprt); err = 0; } else module_put(THIS_MODULE); } if (err) { sockfd_put(so); return err; } return svc_one_sock_name(svsk, name_return, len); } EXPORT_SYMBOL_GPL(svc_addsock); /* * Create socket for RPC service. */ static struct svc_xprt *svc_create_socket(struct svc_serv *serv, int protocol, struct net *net, struct sockaddr *sin, int len, int flags) { struct svc_sock *svsk; struct socket *sock; int error; int type; struct sockaddr_storage addr; struct sockaddr *newsin = (struct sockaddr *)&addr; int newlen; int family; int val; RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]); dprintk("svc: svc_create_socket(%s, %d, %s)\n", serv->sv_program->pg_name, protocol, __svc_print_addr(sin, buf, sizeof(buf))); if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { printk(KERN_WARNING "svc: only UDP and TCP " "sockets supported\n"); return ERR_PTR(-EINVAL); } type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; switch (sin->sa_family) { case AF_INET6: family = PF_INET6; break; case AF_INET: family = PF_INET; break; default: return ERR_PTR(-EINVAL); } error = __sock_create(net, family, type, protocol, &sock, 1); if (error < 0) return ERR_PTR(error); svc_reclassify_socket(sock); /* * If this is an PF_INET6 listener, we want to avoid * getting requests from IPv4 remotes. Those should * be shunted to a PF_INET listener via rpcbind. */ val = 1; if (family == PF_INET6) kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY, (char *)&val, sizeof(val)); if (type == SOCK_STREAM) sock->sk->sk_reuse = 1; /* allow address reuse */ error = kernel_bind(sock, sin, len); if (error < 0) goto bummer; newlen = len; error = kernel_getsockname(sock, newsin, &newlen); if (error < 0) goto bummer; if (protocol == IPPROTO_TCP) { if ((error = kernel_listen(sock, 64)) < 0) goto bummer; } if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) { svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen); return (struct svc_xprt *)svsk; } bummer: dprintk("svc: svc_create_socket error = %d\n", -error); sock_release(sock); return ERR_PTR(error); } /* * Detach the svc_sock from the socket so that no * more callbacks occur. */ static void svc_sock_detach(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); struct sock *sk = svsk->sk_sk; dprintk("svc: svc_sock_detach(%p)\n", svsk); /* put back the old socket callbacks */ sk->sk_state_change = svsk->sk_ostate; sk->sk_data_ready = svsk->sk_odata; sk->sk_write_space = svsk->sk_owspace; if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) wake_up_interruptible(sk_sleep(sk)); } /* * Disconnect the socket, and reset the callbacks */ static void svc_tcp_sock_detach(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk); svc_sock_detach(xprt); if (!test_bit(XPT_LISTENER, &xprt->xpt_flags)) kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR); } /* * Free the svc_sock's socket resources and the svc_sock itself. */ static void svc_sock_free(struct svc_xprt *xprt) { struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt); dprintk("svc: svc_sock_free(%p)\n", svsk); if (svsk->sk_sock->file) sockfd_put(svsk->sk_sock); else sock_release(svsk->sk_sock); kfree(svsk); } /* * Create a svc_xprt. * * For internal use only (e.g. nfsv4.1 backchannel). * Callers should typically use the xpo_create() method. */ struct svc_xprt *svc_sock_create(struct svc_serv *serv, int prot) { struct svc_sock *svsk; struct svc_xprt *xprt = NULL; dprintk("svc: %s\n", __func__); svsk = kzalloc(sizeof(*svsk), GFP_KERNEL); if (!svsk) goto out; xprt = &svsk->sk_xprt; if (prot == IPPROTO_TCP) svc_xprt_init(&svc_tcp_class, xprt, serv); else if (prot == IPPROTO_UDP) svc_xprt_init(&svc_udp_class, xprt, serv); else BUG(); out: dprintk("svc: %s return %p\n", __func__, xprt); return xprt; } EXPORT_SYMBOL_GPL(svc_sock_create); /* * Destroy a svc_sock. */ void svc_sock_destroy(struct svc_xprt *xprt) { if (xprt) kfree(container_of(xprt, struct svc_sock, sk_xprt)); } EXPORT_SYMBOL_GPL(svc_sock_destroy);