/* * SuperH Timer Support - CMT * * Copyright (C) 2008 Magnus Damm * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sh_cmt_priv; struct sh_cmt_channel { struct sh_cmt_priv *cmt; unsigned long flags; unsigned long match_value; unsigned long next_match_value; unsigned long max_match_value; unsigned long rate; raw_spinlock_t lock; struct clock_event_device ced; struct clocksource cs; unsigned long total_cycles; bool cs_enabled; }; struct sh_cmt_priv { struct platform_device *pdev; void __iomem *mapbase; void __iomem *mapbase_str; struct clk *clk; struct sh_cmt_channel channel; unsigned long width; /* 16 or 32 bit version of hardware block */ unsigned long overflow_bit; unsigned long clear_bits; /* callbacks for CMSTR and CMCSR access */ unsigned long (*read_control)(void __iomem *base, unsigned long offs); void (*write_control)(void __iomem *base, unsigned long offs, unsigned long value); /* callbacks for CMCNT and CMCOR access */ unsigned long (*read_count)(void __iomem *base, unsigned long offs); void (*write_count)(void __iomem *base, unsigned long offs, unsigned long value); }; /* Examples of supported CMT timer register layouts and I/O access widths: * * "16-bit counter and 16-bit control" as found on sh7263: * CMSTR 0xfffec000 16-bit * CMCSR 0xfffec002 16-bit * CMCNT 0xfffec004 16-bit * CMCOR 0xfffec006 16-bit * * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740: * CMSTR 0xffca0000 16-bit * CMCSR 0xffca0060 16-bit * CMCNT 0xffca0064 32-bit * CMCOR 0xffca0068 32-bit * * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790: * CMSTR 0xffca0500 32-bit * CMCSR 0xffca0510 32-bit * CMCNT 0xffca0514 32-bit * CMCOR 0xffca0518 32-bit */ static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs) { return ioread16(base + (offs << 1)); } static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs) { return ioread32(base + (offs << 2)); } static void sh_cmt_write16(void __iomem *base, unsigned long offs, unsigned long value) { iowrite16(value, base + (offs << 1)); } static void sh_cmt_write32(void __iomem *base, unsigned long offs, unsigned long value) { iowrite32(value, base + (offs << 2)); } #define CMCSR 0 /* channel register */ #define CMCNT 1 /* channel register */ #define CMCOR 2 /* channel register */ static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch) { return ch->cmt->read_control(ch->cmt->mapbase_str, 0); } static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) { return ch->cmt->read_control(ch->cmt->mapbase, CMCSR); } static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) { return ch->cmt->read_count(ch->cmt->mapbase, CMCNT); } static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, unsigned long value) { ch->cmt->write_control(ch->cmt->mapbase_str, 0, value); } static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, unsigned long value) { ch->cmt->write_control(ch->cmt->mapbase, CMCSR, value); } static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, unsigned long value) { ch->cmt->write_count(ch->cmt->mapbase, CMCNT, value); } static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, unsigned long value) { ch->cmt->write_count(ch->cmt->mapbase, CMCOR, value); } static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch, int *has_wrapped) { unsigned long v1, v2, v3; int o1, o2; o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->overflow_bit; /* Make sure the timer value is stable. Stolen from acpi_pm.c */ do { o2 = o1; v1 = sh_cmt_read_cmcnt(ch); v2 = sh_cmt_read_cmcnt(ch); v3 = sh_cmt_read_cmcnt(ch); o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->overflow_bit; } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); *has_wrapped = o1; return v2; } static DEFINE_RAW_SPINLOCK(sh_cmt_lock); static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) { struct sh_timer_config *cfg = ch->cmt->pdev->dev.platform_data; unsigned long flags, value; /* start stop register shared by multiple timer channels */ raw_spin_lock_irqsave(&sh_cmt_lock, flags); value = sh_cmt_read_cmstr(ch); if (start) value |= 1 << cfg->timer_bit; else value &= ~(1 << cfg->timer_bit); sh_cmt_write_cmstr(ch, value); raw_spin_unlock_irqrestore(&sh_cmt_lock, flags); } static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate) { int k, ret; pm_runtime_get_sync(&ch->cmt->pdev->dev); dev_pm_syscore_device(&ch->cmt->pdev->dev, true); /* enable clock */ ret = clk_enable(ch->cmt->clk); if (ret) { dev_err(&ch->cmt->pdev->dev, "cannot enable clock\n"); goto err0; } /* make sure channel is disabled */ sh_cmt_start_stop_ch(ch, 0); /* configure channel, periodic mode and maximum timeout */ if (ch->cmt->width == 16) { *rate = clk_get_rate(ch->cmt->clk) / 512; sh_cmt_write_cmcsr(ch, 0x43); } else { *rate = clk_get_rate(ch->cmt->clk) / 8; sh_cmt_write_cmcsr(ch, 0x01a4); } sh_cmt_write_cmcor(ch, 0xffffffff); sh_cmt_write_cmcnt(ch, 0); /* * According to the sh73a0 user's manual, as CMCNT can be operated * only by the RCLK (Pseudo 32 KHz), there's one restriction on * modifying CMCNT register; two RCLK cycles are necessary before * this register is either read or any modification of the value * it holds is reflected in the LSI's actual operation. * * While at it, we're supposed to clear out the CMCNT as of this * moment, so make sure it's processed properly here. This will * take RCLKx2 at maximum. */ for (k = 0; k < 100; k++) { if (!sh_cmt_read_cmcnt(ch)) break; udelay(1); } if (sh_cmt_read_cmcnt(ch)) { dev_err(&ch->cmt->pdev->dev, "cannot clear CMCNT\n"); ret = -ETIMEDOUT; goto err1; } /* enable channel */ sh_cmt_start_stop_ch(ch, 1); return 0; err1: /* stop clock */ clk_disable(ch->cmt->clk); err0: return ret; } static void sh_cmt_disable(struct sh_cmt_channel *ch) { /* disable channel */ sh_cmt_start_stop_ch(ch, 0); /* disable interrupts in CMT block */ sh_cmt_write_cmcsr(ch, 0); /* stop clock */ clk_disable(ch->cmt->clk); dev_pm_syscore_device(&ch->cmt->pdev->dev, false); pm_runtime_put(&ch->cmt->pdev->dev); } /* private flags */ #define FLAG_CLOCKEVENT (1 << 0) #define FLAG_CLOCKSOURCE (1 << 1) #define FLAG_REPROGRAM (1 << 2) #define FLAG_SKIPEVENT (1 << 3) #define FLAG_IRQCONTEXT (1 << 4) static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, int absolute) { unsigned long new_match; unsigned long value = ch->next_match_value; unsigned long delay = 0; unsigned long now = 0; int has_wrapped; now = sh_cmt_get_counter(ch, &has_wrapped); ch->flags |= FLAG_REPROGRAM; /* force reprogram */ if (has_wrapped) { /* we're competing with the interrupt handler. * -> let the interrupt handler reprogram the timer. * -> interrupt number two handles the event. */ ch->flags |= FLAG_SKIPEVENT; return; } if (absolute) now = 0; do { /* reprogram the timer hardware, * but don't save the new match value yet. */ new_match = now + value + delay; if (new_match > ch->max_match_value) new_match = ch->max_match_value; sh_cmt_write_cmcor(ch, new_match); now = sh_cmt_get_counter(ch, &has_wrapped); if (has_wrapped && (new_match > ch->match_value)) { /* we are changing to a greater match value, * so this wrap must be caused by the counter * matching the old value. * -> first interrupt reprograms the timer. * -> interrupt number two handles the event. */ ch->flags |= FLAG_SKIPEVENT; break; } if (has_wrapped) { /* we are changing to a smaller match value, * so the wrap must be caused by the counter * matching the new value. * -> save programmed match value. * -> let isr handle the event. */ ch->match_value = new_match; break; } /* be safe: verify hardware settings */ if (now < new_match) { /* timer value is below match value, all good. * this makes sure we won't miss any match events. * -> save programmed match value. * -> let isr handle the event. */ ch->match_value = new_match; break; } /* the counter has reached a value greater * than our new match value. and since the * has_wrapped flag isn't set we must have * programmed a too close event. * -> increase delay and retry. */ if (delay) delay <<= 1; else delay = 1; if (!delay) dev_warn(&ch->cmt->pdev->dev, "too long delay\n"); } while (delay); } static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) { if (delta > ch->max_match_value) dev_warn(&ch->cmt->pdev->dev, "delta out of range\n"); ch->next_match_value = delta; sh_cmt_clock_event_program_verify(ch, 0); } static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) { unsigned long flags; raw_spin_lock_irqsave(&ch->lock, flags); __sh_cmt_set_next(ch, delta); raw_spin_unlock_irqrestore(&ch->lock, flags); } static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) { struct sh_cmt_channel *ch = dev_id; /* clear flags */ sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & ch->cmt->clear_bits); /* update clock source counter to begin with if enabled * the wrap flag should be cleared by the timer specific * isr before we end up here. */ if (ch->flags & FLAG_CLOCKSOURCE) ch->total_cycles += ch->match_value + 1; if (!(ch->flags & FLAG_REPROGRAM)) ch->next_match_value = ch->max_match_value; ch->flags |= FLAG_IRQCONTEXT; if (ch->flags & FLAG_CLOCKEVENT) { if (!(ch->flags & FLAG_SKIPEVENT)) { if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) { ch->next_match_value = ch->max_match_value; ch->flags |= FLAG_REPROGRAM; } ch->ced.event_handler(&ch->ced); } } ch->flags &= ~FLAG_SKIPEVENT; if (ch->flags & FLAG_REPROGRAM) { ch->flags &= ~FLAG_REPROGRAM; sh_cmt_clock_event_program_verify(ch, 1); if (ch->flags & FLAG_CLOCKEVENT) if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN) || (ch->match_value == ch->next_match_value)) ch->flags &= ~FLAG_REPROGRAM; } ch->flags &= ~FLAG_IRQCONTEXT; return IRQ_HANDLED; } static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) { int ret = 0; unsigned long flags; raw_spin_lock_irqsave(&ch->lock, flags); if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) ret = sh_cmt_enable(ch, &ch->rate); if (ret) goto out; ch->flags |= flag; /* setup timeout if no clockevent */ if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT))) __sh_cmt_set_next(ch, ch->max_match_value); out: raw_spin_unlock_irqrestore(&ch->lock, flags); return ret; } static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) { unsigned long flags; unsigned long f; raw_spin_lock_irqsave(&ch->lock, flags); f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); ch->flags &= ~flag; if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) sh_cmt_disable(ch); /* adjust the timeout to maximum if only clocksource left */ if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) __sh_cmt_set_next(ch, ch->max_match_value); raw_spin_unlock_irqrestore(&ch->lock, flags); } static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) { return container_of(cs, struct sh_cmt_channel, cs); } static cycle_t sh_cmt_clocksource_read(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); unsigned long flags, raw; unsigned long value; int has_wrapped; raw_spin_lock_irqsave(&ch->lock, flags); value = ch->total_cycles; raw = sh_cmt_get_counter(ch, &has_wrapped); if (unlikely(has_wrapped)) raw += ch->match_value + 1; raw_spin_unlock_irqrestore(&ch->lock, flags); return value + raw; } static int sh_cmt_clocksource_enable(struct clocksource *cs) { int ret; struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); WARN_ON(ch->cs_enabled); ch->total_cycles = 0; ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); if (!ret) { __clocksource_updatefreq_hz(cs, ch->rate); ch->cs_enabled = true; } return ret; } static void sh_cmt_clocksource_disable(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); WARN_ON(!ch->cs_enabled); sh_cmt_stop(ch, FLAG_CLOCKSOURCE); ch->cs_enabled = false; } static void sh_cmt_clocksource_suspend(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); sh_cmt_stop(ch, FLAG_CLOCKSOURCE); pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); } static void sh_cmt_clocksource_resume(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); sh_cmt_start(ch, FLAG_CLOCKSOURCE); } static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, char *name, unsigned long rating) { struct clocksource *cs = &ch->cs; cs->name = name; cs->rating = rating; cs->read = sh_cmt_clocksource_read; cs->enable = sh_cmt_clocksource_enable; cs->disable = sh_cmt_clocksource_disable; cs->suspend = sh_cmt_clocksource_suspend; cs->resume = sh_cmt_clocksource_resume; cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8); cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; dev_info(&ch->cmt->pdev->dev, "used as clock source\n"); /* Register with dummy 1 Hz value, gets updated in ->enable() */ clocksource_register_hz(cs, 1); return 0; } static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) { return container_of(ced, struct sh_cmt_channel, ced); } static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) { struct clock_event_device *ced = &ch->ced; sh_cmt_start(ch, FLAG_CLOCKEVENT); /* TODO: calculate good shift from rate and counter bit width */ ced->shift = 32; ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift); ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); if (periodic) sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1); else sh_cmt_set_next(ch, ch->max_match_value); } static void sh_cmt_clock_event_mode(enum clock_event_mode mode, struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); /* deal with old setting first */ switch (ced->mode) { case CLOCK_EVT_MODE_PERIODIC: case CLOCK_EVT_MODE_ONESHOT: sh_cmt_stop(ch, FLAG_CLOCKEVENT); break; default: break; } switch (mode) { case CLOCK_EVT_MODE_PERIODIC: dev_info(&ch->cmt->pdev->dev, "used for periodic clock events\n"); sh_cmt_clock_event_start(ch, 1); break; case CLOCK_EVT_MODE_ONESHOT: dev_info(&ch->cmt->pdev->dev, "used for oneshot clock events\n"); sh_cmt_clock_event_start(ch, 0); break; case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_UNUSED: sh_cmt_stop(ch, FLAG_CLOCKEVENT); break; default: break; } } static int sh_cmt_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT); if (likely(ch->flags & FLAG_IRQCONTEXT)) ch->next_match_value = delta - 1; else sh_cmt_set_next(ch, delta - 1); return 0; } static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev); clk_unprepare(ch->cmt->clk); } static void sh_cmt_clock_event_resume(struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); clk_prepare(ch->cmt->clk); pm_genpd_syscore_poweron(&ch->cmt->pdev->dev); } static void sh_cmt_register_clockevent(struct sh_cmt_channel *ch, char *name, unsigned long rating) { struct clock_event_device *ced = &ch->ced; memset(ced, 0, sizeof(*ced)); ced->name = name; ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features |= CLOCK_EVT_FEAT_ONESHOT; ced->rating = rating; ced->cpumask = cpumask_of(0); ced->set_next_event = sh_cmt_clock_event_next; ced->set_mode = sh_cmt_clock_event_mode; ced->suspend = sh_cmt_clock_event_suspend; ced->resume = sh_cmt_clock_event_resume; dev_info(&ch->cmt->pdev->dev, "used for clock events\n"); clockevents_register_device(ced); } static int sh_cmt_register(struct sh_cmt_channel *ch, char *name, unsigned long clockevent_rating, unsigned long clocksource_rating) { if (clockevent_rating) sh_cmt_register_clockevent(ch, name, clockevent_rating); if (clocksource_rating) sh_cmt_register_clocksource(ch, name, clocksource_rating); return 0; } static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev) { struct sh_timer_config *cfg = pdev->dev.platform_data; struct sh_cmt_channel *ch = &p->channel; struct resource *res, *res2; int irq, ret; ret = -ENXIO; memset(p, 0, sizeof(*p)); p->pdev = pdev; if (!cfg) { dev_err(&p->pdev->dev, "missing platform data\n"); goto err0; } res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&p->pdev->dev, "failed to get I/O memory\n"); goto err0; } /* optional resource for the shared timer start/stop register */ res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1); irq = platform_get_irq(p->pdev, 0); if (irq < 0) { dev_err(&p->pdev->dev, "failed to get irq\n"); goto err0; } /* map memory, let mapbase point to our channel */ p->mapbase = ioremap_nocache(res->start, resource_size(res)); if (p->mapbase == NULL) { dev_err(&p->pdev->dev, "failed to remap I/O memory\n"); goto err0; } /* map second resource for CMSTR */ p->mapbase_str = ioremap_nocache(res2 ? res2->start : res->start - cfg->channel_offset, res2 ? resource_size(res2) : 2); if (p->mapbase_str == NULL) { dev_err(&p->pdev->dev, "failed to remap I/O second memory\n"); goto err1; } /* get hold of clock */ p->clk = clk_get(&p->pdev->dev, "cmt_fck"); if (IS_ERR(p->clk)) { dev_err(&p->pdev->dev, "cannot get clock\n"); ret = PTR_ERR(p->clk); goto err2; } ret = clk_prepare(p->clk); if (ret < 0) goto err3; if (res2 && (resource_size(res2) == 4)) { /* assume both CMSTR and CMCSR to be 32-bit */ p->read_control = sh_cmt_read32; p->write_control = sh_cmt_write32; } else { p->read_control = sh_cmt_read16; p->write_control = sh_cmt_write16; } if (resource_size(res) == 6) { p->width = 16; p->read_count = sh_cmt_read16; p->write_count = sh_cmt_write16; p->overflow_bit = 0x80; p->clear_bits = ~0x80; } else { p->width = 32; p->read_count = sh_cmt_read32; p->write_count = sh_cmt_write32; p->overflow_bit = 0x8000; p->clear_bits = ~0xc000; } if (p->width == (sizeof(ch->max_match_value) * 8)) ch->max_match_value = ~0; else ch->max_match_value = (1 << p->width) - 1; ch->cmt = p; ch->match_value = ch->max_match_value; raw_spin_lock_init(&ch->lock); ret = sh_cmt_register(ch, (char *)dev_name(&p->pdev->dev), cfg->clockevent_rating, cfg->clocksource_rating); if (ret) { dev_err(&p->pdev->dev, "registration failed\n"); goto err4; } ch->cs_enabled = false; ret = request_irq(irq, sh_cmt_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&p->pdev->dev), ch); if (ret) { dev_err(&p->pdev->dev, "failed to request irq %d\n", irq); goto err4; } platform_set_drvdata(pdev, p); return 0; err4: clk_unprepare(p->clk); err3: clk_put(p->clk); err2: iounmap(p->mapbase_str); err1: iounmap(p->mapbase); err0: return ret; } static int sh_cmt_probe(struct platform_device *pdev) { struct sh_cmt_priv *p = platform_get_drvdata(pdev); struct sh_timer_config *cfg = pdev->dev.platform_data; int ret; if (!is_early_platform_device(pdev)) { pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); } if (p) { dev_info(&pdev->dev, "kept as earlytimer\n"); goto out; } p = kmalloc(sizeof(*p), GFP_KERNEL); if (p == NULL) { dev_err(&pdev->dev, "failed to allocate driver data\n"); return -ENOMEM; } ret = sh_cmt_setup(p, pdev); if (ret) { kfree(p); pm_runtime_idle(&pdev->dev); return ret; } if (is_early_platform_device(pdev)) return 0; out: if (cfg->clockevent_rating || cfg->clocksource_rating) pm_runtime_irq_safe(&pdev->dev); else pm_runtime_idle(&pdev->dev); return 0; } static int sh_cmt_remove(struct platform_device *pdev) { return -EBUSY; /* cannot unregister clockevent and clocksource */ } static struct platform_driver sh_cmt_device_driver = { .probe = sh_cmt_probe, .remove = sh_cmt_remove, .driver = { .name = "sh_cmt", } }; static int __init sh_cmt_init(void) { return platform_driver_register(&sh_cmt_device_driver); } static void __exit sh_cmt_exit(void) { platform_driver_unregister(&sh_cmt_device_driver); } early_platform_init("earlytimer", &sh_cmt_device_driver); subsys_initcall(sh_cmt_init); module_exit(sh_cmt_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("SuperH CMT Timer Driver"); MODULE_LICENSE("GPL v2");