/* md.c : Multiple Devices driver for Linux Copyright (C) 1998, 1999, 2000 Ingo Molnar completely rewritten, based on the MD driver code from Marc Zyngier Changes: - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar - RAID-6 extensions by H. Peter Anvin - boot support for linear and striped mode by Harald Hoyer - kerneld support by Boris Tobotras - kmod support by: Cyrus Durgin - RAID0 bugfixes: Mark Anthony Lisher - Devfs support by Richard Gooch - lots of fixes and improvements to the RAID1/RAID5 and generic RAID code (such as request based resynchronization): Neil Brown . - persistent bitmap code Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "md.h" #include "bitmap.h" #ifndef MODULE static void autostart_arrays(int part); #endif /* pers_list is a list of registered personalities protected * by pers_lock. * pers_lock does extra service to protect accesses to * mddev->thread when the mutex cannot be held. */ static LIST_HEAD(pers_list); static DEFINE_SPINLOCK(pers_lock); static void md_print_devices(void); static DECLARE_WAIT_QUEUE_HEAD(resync_wait); static struct workqueue_struct *md_wq; static struct workqueue_struct *md_misc_wq; #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } /* * Default number of read corrections we'll attempt on an rdev * before ejecting it from the array. We divide the read error * count by 2 for every hour elapsed between read errors. */ #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 /* * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' * is 1000 KB/sec, so the extra system load does not show up that much. * Increase it if you want to have more _guaranteed_ speed. Note that * the RAID driver will use the maximum available bandwidth if the IO * subsystem is idle. There is also an 'absolute maximum' reconstruction * speed limit - in case reconstruction slows down your system despite * idle IO detection. * * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. * or /sys/block/mdX/md/sync_speed_{min,max} */ static int sysctl_speed_limit_min = 1000; static int sysctl_speed_limit_max = 200000; static inline int speed_min(struct mddev *mddev) { return mddev->sync_speed_min ? mddev->sync_speed_min : sysctl_speed_limit_min; } static inline int speed_max(struct mddev *mddev) { return mddev->sync_speed_max ? mddev->sync_speed_max : sysctl_speed_limit_max; } static struct ctl_table_header *raid_table_header; static ctl_table raid_table[] = { { .procname = "speed_limit_min", .data = &sysctl_speed_limit_min, .maxlen = sizeof(int), .mode = S_IRUGO|S_IWUSR, .proc_handler = proc_dointvec, }, { .procname = "speed_limit_max", .data = &sysctl_speed_limit_max, .maxlen = sizeof(int), .mode = S_IRUGO|S_IWUSR, .proc_handler = proc_dointvec, }, { } }; static ctl_table raid_dir_table[] = { { .procname = "raid", .maxlen = 0, .mode = S_IRUGO|S_IXUGO, .child = raid_table, }, { } }; static ctl_table raid_root_table[] = { { .procname = "dev", .maxlen = 0, .mode = 0555, .child = raid_dir_table, }, { } }; static const struct block_device_operations md_fops; static int start_readonly; /* bio_clone_mddev * like bio_clone, but with a local bio set */ static void mddev_bio_destructor(struct bio *bio) { struct mddev *mddev, **mddevp; mddevp = (void*)bio; mddev = mddevp[-1]; bio_free(bio, mddev->bio_set); } struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, struct mddev *mddev) { struct bio *b; struct mddev **mddevp; if (!mddev || !mddev->bio_set) return bio_alloc(gfp_mask, nr_iovecs); b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); if (!b) return NULL; mddevp = (void*)b; mddevp[-1] = mddev; b->bi_destructor = mddev_bio_destructor; return b; } EXPORT_SYMBOL_GPL(bio_alloc_mddev); struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, struct mddev *mddev) { struct bio *b; struct mddev **mddevp; if (!mddev || !mddev->bio_set) return bio_clone(bio, gfp_mask); b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, mddev->bio_set); if (!b) return NULL; mddevp = (void*)b; mddevp[-1] = mddev; b->bi_destructor = mddev_bio_destructor; __bio_clone(b, bio); if (bio_integrity(bio)) { int ret; ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); if (ret < 0) { bio_put(b); return NULL; } } return b; } EXPORT_SYMBOL_GPL(bio_clone_mddev); void md_trim_bio(struct bio *bio, int offset, int size) { /* 'bio' is a cloned bio which we need to trim to match * the given offset and size. * This requires adjusting bi_sector, bi_size, and bi_io_vec */ int i; struct bio_vec *bvec; int sofar = 0; size <<= 9; if (offset == 0 && size == bio->bi_size) return; bio->bi_sector += offset; bio->bi_size = size; offset <<= 9; clear_bit(BIO_SEG_VALID, &bio->bi_flags); while (bio->bi_idx < bio->bi_vcnt && bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { /* remove this whole bio_vec */ offset -= bio->bi_io_vec[bio->bi_idx].bv_len; bio->bi_idx++; } if (bio->bi_idx < bio->bi_vcnt) { bio->bi_io_vec[bio->bi_idx].bv_offset += offset; bio->bi_io_vec[bio->bi_idx].bv_len -= offset; } /* avoid any complications with bi_idx being non-zero*/ if (bio->bi_idx) { memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); bio->bi_vcnt -= bio->bi_idx; bio->bi_idx = 0; } /* Make sure vcnt and last bv are not too big */ bio_for_each_segment(bvec, bio, i) { if (sofar + bvec->bv_len > size) bvec->bv_len = size - sofar; if (bvec->bv_len == 0) { bio->bi_vcnt = i; break; } sofar += bvec->bv_len; } } EXPORT_SYMBOL_GPL(md_trim_bio); /* * We have a system wide 'event count' that is incremented * on any 'interesting' event, and readers of /proc/mdstat * can use 'poll' or 'select' to find out when the event * count increases. * * Events are: * start array, stop array, error, add device, remove device, * start build, activate spare */ static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); static atomic_t md_event_count; void md_new_event(struct mddev *mddev) { atomic_inc(&md_event_count); wake_up(&md_event_waiters); } EXPORT_SYMBOL_GPL(md_new_event); /* Alternate version that can be called from interrupts * when calling sysfs_notify isn't needed. */ static void md_new_event_inintr(struct mddev *mddev) { atomic_inc(&md_event_count); wake_up(&md_event_waiters); } /* * Enables to iterate over all existing md arrays * all_mddevs_lock protects this list. */ static LIST_HEAD(all_mddevs); static DEFINE_SPINLOCK(all_mddevs_lock); /* * iterates through all used mddevs in the system. * We take care to grab the all_mddevs_lock whenever navigating * the list, and to always hold a refcount when unlocked. * Any code which breaks out of this loop while own * a reference to the current mddev and must mddev_put it. */ #define for_each_mddev(_mddev,_tmp) \ \ for (({ spin_lock(&all_mddevs_lock); \ _tmp = all_mddevs.next; \ _mddev = NULL;}); \ ({ if (_tmp != &all_mddevs) \ mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ spin_unlock(&all_mddevs_lock); \ if (_mddev) mddev_put(_mddev); \ _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ _tmp != &all_mddevs;}); \ ({ spin_lock(&all_mddevs_lock); \ _tmp = _tmp->next;}) \ ) /* Rather than calling directly into the personality make_request function, * IO requests come here first so that we can check if the device is * being suspended pending a reconfiguration. * We hold a refcount over the call to ->make_request. By the time that * call has finished, the bio has been linked into some internal structure * and so is visible to ->quiesce(), so we don't need the refcount any more. */ static void md_make_request(struct request_queue *q, struct bio *bio) { const int rw = bio_data_dir(bio); struct mddev *mddev = q->queuedata; int cpu; unsigned int sectors; if (mddev == NULL || mddev->pers == NULL || !mddev->ready) { bio_io_error(bio); return; } smp_rmb(); /* Ensure implications of 'active' are visible */ rcu_read_lock(); if (mddev->suspended) { DEFINE_WAIT(__wait); for (;;) { prepare_to_wait(&mddev->sb_wait, &__wait, TASK_UNINTERRUPTIBLE); if (!mddev->suspended) break; rcu_read_unlock(); schedule(); rcu_read_lock(); } finish_wait(&mddev->sb_wait, &__wait); } atomic_inc(&mddev->active_io); rcu_read_unlock(); /* * save the sectors now since our bio can * go away inside make_request */ sectors = bio_sectors(bio); mddev->pers->make_request(mddev, bio); cpu = part_stat_lock(); part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); part_stat_unlock(); if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) wake_up(&mddev->sb_wait); } /* mddev_suspend makes sure no new requests are submitted * to the device, and that any requests that have been submitted * are completely handled. * Once ->stop is called and completes, the module will be completely * unused. */ void mddev_suspend(struct mddev *mddev) { BUG_ON(mddev->suspended); mddev->suspended = 1; synchronize_rcu(); wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); mddev->pers->quiesce(mddev, 1); } EXPORT_SYMBOL_GPL(mddev_suspend); void mddev_resume(struct mddev *mddev) { mddev->suspended = 0; wake_up(&mddev->sb_wait); mddev->pers->quiesce(mddev, 0); md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ } EXPORT_SYMBOL_GPL(mddev_resume); int mddev_congested(struct mddev *mddev, int bits) { return mddev->suspended; } EXPORT_SYMBOL(mddev_congested); /* * Generic flush handling for md */ static void md_end_flush(struct bio *bio, int err) { struct md_rdev *rdev = bio->bi_private; struct mddev *mddev = rdev->mddev; rdev_dec_pending(rdev, mddev); if (atomic_dec_and_test(&mddev->flush_pending)) { /* The pre-request flush has finished */ queue_work(md_wq, &mddev->flush_work); } bio_put(bio); } static void md_submit_flush_data(struct work_struct *ws); static void submit_flushes(struct work_struct *ws) { struct mddev *mddev = container_of(ws, struct mddev, flush_work); struct md_rdev *rdev; INIT_WORK(&mddev->flush_work, md_submit_flush_data); atomic_set(&mddev->flush_pending, 1); rcu_read_lock(); rdev_for_each_rcu(rdev, mddev) if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags)) { /* Take two references, one is dropped * when request finishes, one after * we reclaim rcu_read_lock */ struct bio *bi; atomic_inc(&rdev->nr_pending); atomic_inc(&rdev->nr_pending); rcu_read_unlock(); bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev); bi->bi_end_io = md_end_flush; bi->bi_private = rdev; bi->bi_bdev = rdev->bdev; atomic_inc(&mddev->flush_pending); submit_bio(WRITE_FLUSH, bi); rcu_read_lock(); rdev_dec_pending(rdev, mddev); } rcu_read_unlock(); if (atomic_dec_and_test(&mddev->flush_pending)) queue_work(md_wq, &mddev->flush_work); } static void md_submit_flush_data(struct work_struct *ws) { struct mddev *mddev = container_of(ws, struct mddev, flush_work); struct bio *bio = mddev->flush_bio; if (bio->bi_size == 0) /* an empty barrier - all done */ bio_endio(bio, 0); else { bio->bi_rw &= ~REQ_FLUSH; mddev->pers->make_request(mddev, bio); } mddev->flush_bio = NULL; wake_up(&mddev->sb_wait); } void md_flush_request(struct mddev *mddev, struct bio *bio) { spin_lock_irq(&mddev->write_lock); wait_event_lock_irq(mddev->sb_wait, !mddev->flush_bio, mddev->write_lock, /*nothing*/); mddev->flush_bio = bio; spin_unlock_irq(&mddev->write_lock); INIT_WORK(&mddev->flush_work, submit_flushes); queue_work(md_wq, &mddev->flush_work); } EXPORT_SYMBOL(md_flush_request); /* Support for plugging. * This mirrors the plugging support in request_queue, but does not * require having a whole queue or request structures. * We allocate an md_plug_cb for each md device and each thread it gets * plugged on. This links tot the private plug_handle structure in the * personality data where we keep a count of the number of outstanding * plugs so other code can see if a plug is active. */ struct md_plug_cb { struct blk_plug_cb cb; struct mddev *mddev; }; static void plugger_unplug(struct blk_plug_cb *cb) { struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb); if (atomic_dec_and_test(&mdcb->mddev->plug_cnt)) md_wakeup_thread(mdcb->mddev->thread); kfree(mdcb); } /* Check that an unplug wakeup will come shortly. * If not, wakeup the md thread immediately */ int mddev_check_plugged(struct mddev *mddev) { struct blk_plug *plug = current->plug; struct md_plug_cb *mdcb; if (!plug) return 0; list_for_each_entry(mdcb, &plug->cb_list, cb.list) { if (mdcb->cb.callback == plugger_unplug && mdcb->mddev == mddev) { /* Already on the list, move to top */ if (mdcb != list_first_entry(&plug->cb_list, struct md_plug_cb, cb.list)) list_move(&mdcb->cb.list, &plug->cb_list); return 1; } } /* Not currently on the callback list */ mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC); if (!mdcb) return 0; mdcb->mddev = mddev; mdcb->cb.callback = plugger_unplug; atomic_inc(&mddev->plug_cnt); list_add(&mdcb->cb.list, &plug->cb_list); return 1; } EXPORT_SYMBOL_GPL(mddev_check_plugged); static inline struct mddev *mddev_get(struct mddev *mddev) { atomic_inc(&mddev->active); return mddev; } static void mddev_delayed_delete(struct work_struct *ws); static void mddev_put(struct mddev *mddev) { struct bio_set *bs = NULL; if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) return; if (!mddev->raid_disks && list_empty(&mddev->disks) && mddev->ctime == 0 && !mddev->hold_active) { /* Array is not configured at all, and not held active, * so destroy it */ list_del_init(&mddev->all_mddevs); bs = mddev->bio_set; mddev->bio_set = NULL; if (mddev->gendisk) { /* We did a probe so need to clean up. Call * queue_work inside the spinlock so that * flush_workqueue() after mddev_find will * succeed in waiting for the work to be done. */ INIT_WORK(&mddev->del_work, mddev_delayed_delete); queue_work(md_misc_wq, &mddev->del_work); } else kfree(mddev); } spin_unlock(&all_mddevs_lock); if (bs) bioset_free(bs); } void mddev_init(struct mddev *mddev) { mutex_init(&mddev->open_mutex); mutex_init(&mddev->reconfig_mutex); mutex_init(&mddev->bitmap_info.mutex); INIT_LIST_HEAD(&mddev->disks); INIT_LIST_HEAD(&mddev->all_mddevs); init_timer(&mddev->safemode_timer); atomic_set(&mddev->active, 1); atomic_set(&mddev->openers, 0); atomic_set(&mddev->active_io, 0); atomic_set(&mddev->plug_cnt, 0); spin_lock_init(&mddev->write_lock); atomic_set(&mddev->flush_pending, 0); init_waitqueue_head(&mddev->sb_wait); init_waitqueue_head(&mddev->recovery_wait); mddev->reshape_position = MaxSector; mddev->resync_min = 0; mddev->resync_max = MaxSector; mddev->level = LEVEL_NONE; } EXPORT_SYMBOL_GPL(mddev_init); static struct mddev * mddev_find(dev_t unit) { struct mddev *mddev, *new = NULL; if (unit && MAJOR(unit) != MD_MAJOR) unit &= ~((1<unit == unit) { mddev_get(mddev); spin_unlock(&all_mddevs_lock); kfree(new); return mddev; } if (new) { list_add(&new->all_mddevs, &all_mddevs); spin_unlock(&all_mddevs_lock); new->hold_active = UNTIL_IOCTL; return new; } } else if (new) { /* find an unused unit number */ static int next_minor = 512; int start = next_minor; int is_free = 0; int dev = 0; while (!is_free) { dev = MKDEV(MD_MAJOR, next_minor); next_minor++; if (next_minor > MINORMASK) next_minor = 0; if (next_minor == start) { /* Oh dear, all in use. */ spin_unlock(&all_mddevs_lock); kfree(new); return NULL; } is_free = 1; list_for_each_entry(mddev, &all_mddevs, all_mddevs) if (mddev->unit == dev) { is_free = 0; break; } } new->unit = dev; new->md_minor = MINOR(dev); new->hold_active = UNTIL_STOP; list_add(&new->all_mddevs, &all_mddevs); spin_unlock(&all_mddevs_lock); return new; } spin_unlock(&all_mddevs_lock); new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; new->unit = unit; if (MAJOR(unit) == MD_MAJOR) new->md_minor = MINOR(unit); else new->md_minor = MINOR(unit) >> MdpMinorShift; mddev_init(new); goto retry; } static inline int mddev_lock(struct mddev * mddev) { return mutex_lock_interruptible(&mddev->reconfig_mutex); } static inline int mddev_is_locked(struct mddev *mddev) { return mutex_is_locked(&mddev->reconfig_mutex); } static inline int mddev_trylock(struct mddev * mddev) { return mutex_trylock(&mddev->reconfig_mutex); } static struct attribute_group md_redundancy_group; static void mddev_unlock(struct mddev * mddev) { if (mddev->to_remove) { /* These cannot be removed under reconfig_mutex as * an access to the files will try to take reconfig_mutex * while holding the file unremovable, which leads to * a deadlock. * So hold set sysfs_active while the remove in happeing, * and anything else which might set ->to_remove or my * otherwise change the sysfs namespace will fail with * -EBUSY if sysfs_active is still set. * We set sysfs_active under reconfig_mutex and elsewhere * test it under the same mutex to ensure its correct value * is seen. */ struct attribute_group *to_remove = mddev->to_remove; mddev->to_remove = NULL; mddev->sysfs_active = 1; mutex_unlock(&mddev->reconfig_mutex); if (mddev->kobj.sd) { if (to_remove != &md_redundancy_group) sysfs_remove_group(&mddev->kobj, to_remove); if (mddev->pers == NULL || mddev->pers->sync_request == NULL) { sysfs_remove_group(&mddev->kobj, &md_redundancy_group); if (mddev->sysfs_action) sysfs_put(mddev->sysfs_action); mddev->sysfs_action = NULL; } } mddev->sysfs_active = 0; } else mutex_unlock(&mddev->reconfig_mutex); /* As we've dropped the mutex we need a spinlock to * make sure the thread doesn't disappear */ spin_lock(&pers_lock); md_wakeup_thread(mddev->thread); spin_unlock(&pers_lock); } static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) { struct md_rdev *rdev; rdev_for_each(rdev, mddev) if (rdev->desc_nr == nr) return rdev; return NULL; } static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev) { struct md_rdev *rdev; rdev_for_each(rdev, mddev) if (rdev->bdev->bd_dev == dev) return rdev; return NULL; } static struct md_personality *find_pers(int level, char *clevel) { struct md_personality *pers; list_for_each_entry(pers, &pers_list, list) { if (level != LEVEL_NONE && pers->level == level) return pers; if (strcmp(pers->name, clevel)==0) return pers; } return NULL; } /* return the offset of the super block in 512byte sectors */ static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) { sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; return MD_NEW_SIZE_SECTORS(num_sectors); } static int alloc_disk_sb(struct md_rdev * rdev) { if (rdev->sb_page) MD_BUG(); rdev->sb_page = alloc_page(GFP_KERNEL); if (!rdev->sb_page) { printk(KERN_ALERT "md: out of memory.\n"); return -ENOMEM; } return 0; } static void free_disk_sb(struct md_rdev * rdev) { if (rdev->sb_page) { put_page(rdev->sb_page); rdev->sb_loaded = 0; rdev->sb_page = NULL; rdev->sb_start = 0; rdev->sectors = 0; } if (rdev->bb_page) { put_page(rdev->bb_page); rdev->bb_page = NULL; } } static void super_written(struct bio *bio, int error) { struct md_rdev *rdev = bio->bi_private; struct mddev *mddev = rdev->mddev; if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { printk("md: super_written gets error=%d, uptodate=%d\n", error, test_bit(BIO_UPTODATE, &bio->bi_flags)); WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); md_error(mddev, rdev); } if (atomic_dec_and_test(&mddev->pending_writes)) wake_up(&mddev->sb_wait); bio_put(bio); } void md_super_write(struct mddev *mddev, struct md_rdev *rdev, sector_t sector, int size, struct page *page) { /* write first size bytes of page to sector of rdev * Increment mddev->pending_writes before returning * and decrement it on completion, waking up sb_wait * if zero is reached. * If an error occurred, call md_error */ struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; bio->bi_sector = sector; bio_add_page(bio, page, size, 0); bio->bi_private = rdev; bio->bi_end_io = super_written; atomic_inc(&mddev->pending_writes); submit_bio(WRITE_FLUSH_FUA, bio); } void md_super_wait(struct mddev *mddev) { /* wait for all superblock writes that were scheduled to complete */ DEFINE_WAIT(wq); for(;;) { prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); if (atomic_read(&mddev->pending_writes)==0) break; schedule(); } finish_wait(&mddev->sb_wait, &wq); } static void bi_complete(struct bio *bio, int error) { complete((struct completion*)bio->bi_private); } int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, struct page *page, int rw, bool metadata_op) { struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); struct completion event; int ret; rw |= REQ_SYNC; bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev; if (metadata_op) bio->bi_sector = sector + rdev->sb_start; else bio->bi_sector = sector + rdev->data_offset; bio_add_page(bio, page, size, 0); init_completion(&event); bio->bi_private = &event; bio->bi_end_io = bi_complete; submit_bio(rw, bio); wait_for_completion(&event); ret = test_bit(BIO_UPTODATE, &bio->bi_flags); bio_put(bio); return ret; } EXPORT_SYMBOL_GPL(sync_page_io); static int read_disk_sb(struct md_rdev * rdev, int size) { char b[BDEVNAME_SIZE]; if (!rdev->sb_page) { MD_BUG(); return -EINVAL; } if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) goto fail; rdev->sb_loaded = 1; return 0; fail: printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", bdevname(rdev->bdev,b)); return -EINVAL; } static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) { return sb1->set_uuid0 == sb2->set_uuid0 && sb1->set_uuid1 == sb2->set_uuid1 && sb1->set_uuid2 == sb2->set_uuid2 && sb1->set_uuid3 == sb2->set_uuid3; } static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) { int ret; mdp_super_t *tmp1, *tmp2; tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); if (!tmp1 || !tmp2) { ret = 0; printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); goto abort; } *tmp1 = *sb1; *tmp2 = *sb2; /* * nr_disks is not constant */ tmp1->nr_disks = 0; tmp2->nr_disks = 0; ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); abort: kfree(tmp1); kfree(tmp2); return ret; } static u32 md_csum_fold(u32 csum) { csum = (csum & 0xffff) + (csum >> 16); return (csum & 0xffff) + (csum >> 16); } static unsigned int calc_sb_csum(mdp_super_t * sb) { u64 newcsum = 0; u32 *sb32 = (u32*)sb; int i; unsigned int disk_csum, csum; disk_csum = sb->sb_csum; sb->sb_csum = 0; for (i = 0; i < MD_SB_BYTES/4 ; i++) newcsum += sb32[i]; csum = (newcsum & 0xffffffff) + (newcsum>>32); #ifdef CONFIG_ALPHA /* This used to use csum_partial, which was wrong for several * reasons including that different results are returned on * different architectures. It isn't critical that we get exactly * the same return value as before (we always csum_fold before * testing, and that removes any differences). However as we * know that csum_partial always returned a 16bit value on * alphas, do a fold to maximise conformity to previous behaviour. */ sb->sb_csum = md_csum_fold(disk_csum); #else sb->sb_csum = disk_csum; #endif return csum; } /* * Handle superblock details. * We want to be able to handle multiple superblock formats * so we have a common interface to them all, and an array of * different handlers. * We rely on user-space to write the initial superblock, and support * reading and updating of superblocks. * Interface methods are: * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) * loads and validates a superblock on dev. * if refdev != NULL, compare superblocks on both devices * Return: * 0 - dev has a superblock that is compatible with refdev * 1 - dev has a superblock that is compatible and newer than refdev * so dev should be used as the refdev in future * -EINVAL superblock incompatible or invalid * -othererror e.g. -EIO * * int validate_super(struct mddev *mddev, struct md_rdev *dev) * Verify that dev is acceptable into mddev. * The first time, mddev->raid_disks will be 0, and data from * dev should be merged in. Subsequent calls check that dev * is new enough. Return 0 or -EINVAL * * void sync_super(struct mddev *mddev, struct md_rdev *dev) * Update the superblock for rdev with data in mddev * This does not write to disc. * */ struct super_type { char *name; struct module *owner; int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version); int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev); void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev); unsigned long long (*rdev_size_change)(struct md_rdev *rdev, sector_t num_sectors); }; /* * Check that the given mddev has no bitmap. * * This function is called from the run method of all personalities that do not * support bitmaps. It prints an error message and returns non-zero if mddev * has a bitmap. Otherwise, it returns 0. * */ int md_check_no_bitmap(struct mddev *mddev) { if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) return 0; printk(KERN_ERR "%s: bitmaps are not supported for %s\n", mdname(mddev), mddev->pers->name); return 1; } EXPORT_SYMBOL(md_check_no_bitmap); /* * load_super for 0.90.0 */ static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) { char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdp_super_t *sb; int ret; /* * Calculate the position of the superblock (512byte sectors), * it's at the end of the disk. * * It also happens to be a multiple of 4Kb. */ rdev->sb_start = calc_dev_sboffset(rdev); ret = read_disk_sb(rdev, MD_SB_BYTES); if (ret) return ret; ret = -EINVAL; bdevname(rdev->bdev, b); sb = page_address(rdev->sb_page); if (sb->md_magic != MD_SB_MAGIC) { printk(KERN_ERR "md: invalid raid superblock magic on %s\n", b); goto abort; } if (sb->major_version != 0 || sb->minor_version < 90 || sb->minor_version > 91) { printk(KERN_WARNING "Bad version number %d.%d on %s\n", sb->major_version, sb->minor_version, b); goto abort; } if (sb->raid_disks <= 0) goto abort; if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { printk(KERN_WARNING "md: invalid superblock checksum on %s\n", b); goto abort; } rdev->preferred_minor = sb->md_minor; rdev->data_offset = 0; rdev->sb_size = MD_SB_BYTES; rdev->badblocks.shift = -1; if (sb->level == LEVEL_MULTIPATH) rdev->desc_nr = -1; else rdev->desc_nr = sb->this_disk.number; if (!refdev) { ret = 1; } else { __u64 ev1, ev2; mdp_super_t *refsb = page_address(refdev->sb_page); if (!uuid_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has different UUID to %s\n", b, bdevname(refdev->bdev,b2)); goto abort; } if (!sb_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has same UUID" " but different superblock to %s\n", b, bdevname(refdev->bdev, b2)); goto abort; } ev1 = md_event(sb); ev2 = md_event(refsb); if (ev1 > ev2) ret = 1; else ret = 0; } rdev->sectors = rdev->sb_start; /* Limit to 4TB as metadata cannot record more than that */ if (rdev->sectors >= (2ULL << 32)) rdev->sectors = (2ULL << 32) - 2; if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) /* "this cannot possibly happen" ... */ ret = -EINVAL; abort: return ret; } /* * validate_super for 0.90.0 */ static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) { mdp_disk_t *desc; mdp_super_t *sb = page_address(rdev->sb_page); __u64 ev1 = md_event(sb); rdev->raid_disk = -1; clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); if (mddev->raid_disks == 0) { mddev->major_version = 0; mddev->minor_version = sb->minor_version; mddev->patch_version = sb->patch_version; mddev->external = 0; mddev->chunk_sectors = sb->chunk_size >> 9; mddev->ctime = sb->ctime; mddev->utime = sb->utime; mddev->level = sb->level; mddev->clevel[0] = 0; mddev->layout = sb->layout; mddev->raid_disks = sb->raid_disks; mddev->dev_sectors = ((sector_t)sb->size) * 2; mddev->events = ev1; mddev->bitmap_info.offset = 0; mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; if (mddev->minor_version >= 91) { mddev->reshape_position = sb->reshape_position; mddev->delta_disks = sb->delta_disks; mddev->new_level = sb->new_level; mddev->new_layout = sb->new_layout; mddev->new_chunk_sectors = sb->new_chunk >> 9; } else { mddev->reshape_position = MaxSector; mddev->delta_disks = 0; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; } if (sb->state & (1<recovery_cp = MaxSector; else { if (sb->events_hi == sb->cp_events_hi && sb->events_lo == sb->cp_events_lo) { mddev->recovery_cp = sb->recovery_cp; } else mddev->recovery_cp = 0; } memcpy(mddev->uuid+0, &sb->set_uuid0, 4); memcpy(mddev->uuid+4, &sb->set_uuid1, 4); memcpy(mddev->uuid+8, &sb->set_uuid2, 4); memcpy(mddev->uuid+12,&sb->set_uuid3, 4); mddev->max_disks = MD_SB_DISKS; if (sb->state & (1<bitmap_info.file == NULL) mddev->bitmap_info.offset = mddev->bitmap_info.default_offset; } else if (mddev->pers == NULL) { /* Insist on good event counter while assembling, except * for spares (which don't need an event count) */ ++ev1; if (sb->disks[rdev->desc_nr].state & ( (1<events) return -EINVAL; } else if (mddev->bitmap) { /* if adding to array with a bitmap, then we can accept an * older device ... but not too old. */ if (ev1 < mddev->bitmap->events_cleared) return 0; } else { if (ev1 < mddev->events) /* just a hot-add of a new device, leave raid_disk at -1 */ return 0; } if (mddev->level != LEVEL_MULTIPATH) { desc = sb->disks + rdev->desc_nr; if (desc->state & (1<flags); else if (desc->state & (1<raid_disk < mddev->raid_disks */) { set_bit(In_sync, &rdev->flags); rdev->raid_disk = desc->raid_disk; } else if (desc->state & (1<minor_version >= 91) { rdev->recovery_offset = 0; rdev->raid_disk = desc->raid_disk; } } if (desc->state & (1<flags); } else /* MULTIPATH are always insync */ set_bit(In_sync, &rdev->flags); return 0; } /* * sync_super for 0.90.0 */ static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) { mdp_super_t *sb; struct md_rdev *rdev2; int next_spare = mddev->raid_disks; /* make rdev->sb match mddev data.. * * 1/ zero out disks * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); * 3/ any empty disks < next_spare become removed * * disks[0] gets initialised to REMOVED because * we cannot be sure from other fields if it has * been initialised or not. */ int i; int active=0, working=0,failed=0,spare=0,nr_disks=0; rdev->sb_size = MD_SB_BYTES; sb = page_address(rdev->sb_page); memset(sb, 0, sizeof(*sb)); sb->md_magic = MD_SB_MAGIC; sb->major_version = mddev->major_version; sb->patch_version = mddev->patch_version; sb->gvalid_words = 0; /* ignored */ memcpy(&sb->set_uuid0, mddev->uuid+0, 4); memcpy(&sb->set_uuid1, mddev->uuid+4, 4); memcpy(&sb->set_uuid2, mddev->uuid+8, 4); memcpy(&sb->set_uuid3, mddev->uuid+12,4); sb->ctime = mddev->ctime; sb->level = mddev->level; sb->size = mddev->dev_sectors / 2; sb->raid_disks = mddev->raid_disks; sb->md_minor = mddev->md_minor; sb->not_persistent = 0; sb->utime = mddev->utime; sb->state = 0; sb->events_hi = (mddev->events>>32); sb->events_lo = (u32)mddev->events; if (mddev->reshape_position == MaxSector) sb->minor_version = 90; else { sb->minor_version = 91; sb->reshape_position = mddev->reshape_position; sb->new_level = mddev->new_level; sb->delta_disks = mddev->delta_disks; sb->new_layout = mddev->new_layout; sb->new_chunk = mddev->new_chunk_sectors << 9; } mddev->minor_version = sb->minor_version; if (mddev->in_sync) { sb->recovery_cp = mddev->recovery_cp; sb->cp_events_hi = (mddev->events>>32); sb->cp_events_lo = (u32)mddev->events; if (mddev->recovery_cp == MaxSector) sb->state = (1<< MD_SB_CLEAN); } else sb->recovery_cp = 0; sb->layout = mddev->layout; sb->chunk_size = mddev->chunk_sectors << 9; if (mddev->bitmap && mddev->bitmap_info.file == NULL) sb->state |= (1<disks[0].state = (1<flags); if (rdev2->raid_disk >= 0 && sb->minor_version >= 91) /* we have nowhere to store the recovery_offset, * but if it is not below the reshape_position, * we can piggy-back on that. */ is_active = 1; if (rdev2->raid_disk < 0 || test_bit(Faulty, &rdev2->flags)) is_active = 0; if (is_active) desc_nr = rdev2->raid_disk; else desc_nr = next_spare++; rdev2->desc_nr = desc_nr; d = &sb->disks[rdev2->desc_nr]; nr_disks++; d->number = rdev2->desc_nr; d->major = MAJOR(rdev2->bdev->bd_dev); d->minor = MINOR(rdev2->bdev->bd_dev); if (is_active) d->raid_disk = rdev2->raid_disk; else d->raid_disk = rdev2->desc_nr; /* compatibility */ if (test_bit(Faulty, &rdev2->flags)) d->state = (1<state = (1<flags)) d->state |= (1<state = 0; spare++; working++; } if (test_bit(WriteMostly, &rdev2->flags)) d->state |= (1<raid_disks ; i++) { mdp_disk_t *d = &sb->disks[i]; if (d->state == 0 && d->number == 0) { d->number = i; d->raid_disk = i; d->state = (1<state |= (1<nr_disks = nr_disks; sb->active_disks = active; sb->working_disks = working; sb->failed_disks = failed; sb->spare_disks = spare; sb->this_disk = sb->disks[rdev->desc_nr]; sb->sb_csum = calc_sb_csum(sb); } /* * rdev_size_change for 0.90.0 */ static unsigned long long super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) { if (num_sectors && num_sectors < rdev->mddev->dev_sectors) return 0; /* component must fit device */ if (rdev->mddev->bitmap_info.offset) return 0; /* can't move bitmap */ rdev->sb_start = calc_dev_sboffset(rdev); if (!num_sectors || num_sectors > rdev->sb_start) num_sectors = rdev->sb_start; /* Limit to 4TB as metadata cannot record more than that. * 4TB == 2^32 KB, or 2*2^32 sectors. */ if (num_sectors >= (2ULL << 32)) num_sectors = (2ULL << 32) - 2; md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); md_super_wait(rdev->mddev); return num_sectors; } /* * version 1 superblock */ static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) { __le32 disk_csum; u32 csum; unsigned long long newcsum; int size = 256 + le32_to_cpu(sb->max_dev)*2; __le32 *isuper = (__le32*)sb; int i; disk_csum = sb->sb_csum; sb->sb_csum = 0; newcsum = 0; for (i=0; size>=4; size -= 4 ) newcsum += le32_to_cpu(*isuper++); if (size == 2) newcsum += le16_to_cpu(*(__le16*) isuper); csum = (newcsum & 0xffffffff) + (newcsum >> 32); sb->sb_csum = disk_csum; return cpu_to_le32(csum); } static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, int acknowledged); static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) { struct mdp_superblock_1 *sb; int ret; sector_t sb_start; char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; int bmask; /* * Calculate the position of the superblock in 512byte sectors. * It is always aligned to a 4K boundary and * depeding on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(minor_version) { case 0: sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; sb_start -= 8*2; sb_start &= ~(sector_t)(4*2-1); break; case 1: sb_start = 0; break; case 2: sb_start = 8; break; default: return -EINVAL; } rdev->sb_start = sb_start; /* superblock is rarely larger than 1K, but it can be larger, * and it is safe to read 4k, so we do that */ ret = read_disk_sb(rdev, 4096); if (ret) return ret; sb = page_address(rdev->sb_page); if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || sb->major_version != cpu_to_le32(1) || le32_to_cpu(sb->max_dev) > (4096-256)/2 || le64_to_cpu(sb->super_offset) != rdev->sb_start || (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) return -EINVAL; if (calc_sb_1_csum(sb) != sb->sb_csum) { printk("md: invalid superblock checksum on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } if (le64_to_cpu(sb->data_size) < 10) { printk("md: data_size too small on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } rdev->preferred_minor = 0xffff; rdev->data_offset = le64_to_cpu(sb->data_offset); atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; if (rdev->sb_size & bmask) rdev->sb_size = (rdev->sb_size | bmask) + 1; if (minor_version && rdev->data_offset < sb_start + (rdev->sb_size/512)) return -EINVAL; if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) rdev->desc_nr = -1; else rdev->desc_nr = le32_to_cpu(sb->dev_number); if (!rdev->bb_page) { rdev->bb_page = alloc_page(GFP_KERNEL); if (!rdev->bb_page) return -ENOMEM; } if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && rdev->badblocks.count == 0) { /* need to load the bad block list. * Currently we limit it to one page. */ s32 offset; sector_t bb_sector; u64 *bbp; int i; int sectors = le16_to_cpu(sb->bblog_size); if (sectors > (PAGE_SIZE / 512)) return -EINVAL; offset = le32_to_cpu(sb->bblog_offset); if (offset == 0) return -EINVAL; bb_sector = (long long)offset; if (!sync_page_io(rdev, bb_sector, sectors << 9, rdev->bb_page, READ, true)) return -EIO; bbp = (u64 *)page_address(rdev->bb_page); rdev->badblocks.shift = sb->bblog_shift; for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { u64 bb = le64_to_cpu(*bbp); int count = bb & (0x3ff); u64 sector = bb >> 10; sector <<= sb->bblog_shift; count <<= sb->bblog_shift; if (bb + 1 == 0) break; if (md_set_badblocks(&rdev->badblocks, sector, count, 1) == 0) return -EINVAL; } } else if (sb->bblog_offset == 0) rdev->badblocks.shift = -1; if (!refdev) { ret = 1; } else { __u64 ev1, ev2; struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || sb->level != refsb->level || sb->layout != refsb->layout || sb->chunksize != refsb->chunksize) { printk(KERN_WARNING "md: %s has strangely different" " superblock to %s\n", bdevname(rdev->bdev,b), bdevname(refdev->bdev,b2)); return -EINVAL; } ev1 = le64_to_cpu(sb->events); ev2 = le64_to_cpu(refsb->events); if (ev1 > ev2) ret = 1; else ret = 0; } if (minor_version) rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - le64_to_cpu(sb->data_offset); else rdev->sectors = rdev->sb_start; if (rdev->sectors < le64_to_cpu(sb->data_size)) return -EINVAL; rdev->sectors = le64_to_cpu(sb->data_size); if (le64_to_cpu(sb->size) > rdev->sectors) return -EINVAL; return ret; } static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) { struct mdp_superblock_1 *sb = page_address(rdev->sb_page); __u64 ev1 = le64_to_cpu(sb->events); rdev->raid_disk = -1; clear_bit(Faulty, &rdev->flags); clear_bit(In_sync, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); if (mddev->raid_disks == 0) { mddev->major_version = 1; mddev->patch_version = 0; mddev->external = 0; mddev->chunk_sectors = le32_to_cpu(sb->chunksize); mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); mddev->level = le32_to_cpu(sb->level); mddev->clevel[0] = 0; mddev->layout = le32_to_cpu(sb->layout); mddev->raid_disks = le32_to_cpu(sb->raid_disks); mddev->dev_sectors = le64_to_cpu(sb->size); mddev->events = ev1; mddev->bitmap_info.offset = 0; mddev->bitmap_info.default_offset = 1024 >> 9; mddev->recovery_cp = le64_to_cpu(sb->resync_offset); memcpy(mddev->uuid, sb->set_uuid, 16); mddev->max_disks = (4096-256)/2; if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && mddev->bitmap_info.file == NULL ) mddev->bitmap_info.offset = (__s32)le32_to_cpu(sb->bitmap_offset); if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { mddev->reshape_position = le64_to_cpu(sb->reshape_position); mddev->delta_disks = le32_to_cpu(sb->delta_disks); mddev->new_level = le32_to_cpu(sb->new_level); mddev->new_layout = le32_to_cpu(sb->new_layout); mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); } else { mddev->reshape_position = MaxSector; mddev->delta_disks = 0; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; } } else if (mddev->pers == NULL) { /* Insist of good event counter while assembling, except for * spares (which don't need an event count) */ ++ev1; if (rdev->desc_nr >= 0 && rdev->desc_nr < le32_to_cpu(sb->max_dev) && le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) if (ev1 < mddev->events) return -EINVAL; } else if (mddev->bitmap) { /* If adding to array with a bitmap, then we can accept an * older device, but not too old. */ if (ev1 < mddev->bitmap->events_cleared) return 0; } else { if (ev1 < mddev->events) /* just a hot-add of a new device, leave raid_disk at -1 */ return 0; } if (mddev->level != LEVEL_MULTIPATH) { int role; if (rdev->desc_nr < 0 || rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { role = 0xffff; rdev->desc_nr = -1; } else role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); switch(role) { case 0xffff: /* spare */ break; case 0xfffe: /* faulty */ set_bit(Faulty, &rdev->flags); break; default: if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); else set_bit(In_sync, &rdev->flags); rdev->raid_disk = role; break; } if (sb->devflags & WriteMostly1) set_bit(WriteMostly, &rdev->flags); if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) set_bit(Replacement, &rdev->flags); } else /* MULTIPATH are always insync */ set_bit(In_sync, &rdev->flags); return 0; } static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) { struct mdp_superblock_1 *sb; struct md_rdev *rdev2; int max_dev, i; /* make rdev->sb match mddev and rdev data. */ sb = page_address(rdev->sb_page); sb->feature_map = 0; sb->pad0 = 0; sb->recovery_offset = cpu_to_le64(0); memset(sb->pad1, 0, sizeof(sb->pad1)); memset(sb->pad3, 0, sizeof(sb->pad3)); sb->utime = cpu_to_le64((__u64)mddev->utime); sb->events = cpu_to_le64(mddev->events); if (mddev->in_sync) sb->resync_offset = cpu_to_le64(mddev->recovery_cp); else sb->resync_offset = cpu_to_le64(0); sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); sb->raid_disks = cpu_to_le32(mddev->raid_disks); sb->size = cpu_to_le64(mddev->dev_sectors); sb->chunksize = cpu_to_le32(mddev->chunk_sectors); sb->level = cpu_to_le32(mddev->level); sb->layout = cpu_to_le32(mddev->layout); if (test_bit(WriteMostly, &rdev->flags)) sb->devflags |= WriteMostly1; else sb->devflags &= ~WriteMostly1; if (mddev->bitmap && mddev->bitmap_info.file == NULL) { sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); } if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags)) { sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); } if (test_bit(Replacement, &rdev->flags)) sb->feature_map |= cpu_to_le32(MD_FEATURE_REPLACEMENT); if (mddev->reshape_position != MaxSector) { sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); sb->reshape_position = cpu_to_le64(mddev->reshape_position); sb->new_layout = cpu_to_le32(mddev->new_layout); sb->delta_disks = cpu_to_le32(mddev->delta_disks); sb->new_level = cpu_to_le32(mddev->new_level); sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); } if (rdev->badblocks.count == 0) /* Nothing to do for bad blocks*/ ; else if (sb->bblog_offset == 0) /* Cannot record bad blocks on this device */ md_error(mddev, rdev); else { struct badblocks *bb = &rdev->badblocks; u64 *bbp = (u64 *)page_address(rdev->bb_page); u64 *p = bb->page; sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); if (bb->changed) { unsigned seq; retry: seq = read_seqbegin(&bb->lock); memset(bbp, 0xff, PAGE_SIZE); for (i = 0 ; i < bb->count ; i++) { u64 internal_bb = *p++; u64 store_bb = ((BB_OFFSET(internal_bb) << 10) | BB_LEN(internal_bb)); *bbp++ = cpu_to_le64(store_bb); } if (read_seqretry(&bb->lock, seq)) goto retry; bb->sector = (rdev->sb_start + (int)le32_to_cpu(sb->bblog_offset)); bb->size = le16_to_cpu(sb->bblog_size); bb->changed = 0; } } max_dev = 0; rdev_for_each(rdev2, mddev) if (rdev2->desc_nr+1 > max_dev) max_dev = rdev2->desc_nr+1; if (max_dev > le32_to_cpu(sb->max_dev)) { int bmask; sb->max_dev = cpu_to_le32(max_dev); rdev->sb_size = max_dev * 2 + 256; bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; if (rdev->sb_size & bmask) rdev->sb_size = (rdev->sb_size | bmask) + 1; } else max_dev = le32_to_cpu(sb->max_dev); for (i=0; idev_roles[i] = cpu_to_le16(0xfffe); rdev_for_each(rdev2, mddev) { i = rdev2->desc_nr; if (test_bit(Faulty, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(0xfffe); else if (test_bit(In_sync, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else if (rdev2->raid_disk >= 0) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else sb->dev_roles[i] = cpu_to_le16(0xffff); } sb->sb_csum = calc_sb_1_csum(sb); } static unsigned long long super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) { struct mdp_superblock_1 *sb; sector_t max_sectors; if (num_sectors && num_sectors < rdev->mddev->dev_sectors) return 0; /* component must fit device */ if (rdev->sb_start < rdev->data_offset) { /* minor versions 1 and 2; superblock before data */ max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; max_sectors -= rdev->data_offset; if (!num_sectors || num_sectors > max_sectors) num_sectors = max_sectors; } else if (rdev->mddev->bitmap_info.offset) { /* minor version 0 with bitmap we can't move */ return 0; } else { /* minor version 0; superblock after data */ sector_t sb_start; sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; sb_start &= ~(sector_t)(4*2 - 1); max_sectors = rdev->sectors + sb_start - rdev->sb_start; if (!num_sectors || num_sectors > max_sectors) num_sectors = max_sectors; rdev->sb_start = sb_start; } sb = page_address(rdev->sb_page); sb->data_size = cpu_to_le64(num_sectors); sb->super_offset = rdev->sb_start; sb->sb_csum = calc_sb_1_csum(sb); md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); md_super_wait(rdev->mddev); return num_sectors; } static struct super_type super_types[] = { [0] = { .name = "0.90.0", .owner = THIS_MODULE, .load_super = super_90_load, .validate_super = super_90_validate, .sync_super = super_90_sync, .rdev_size_change = super_90_rdev_size_change, }, [1] = { .name = "md-1", .owner = THIS_MODULE, .load_super = super_1_load, .validate_super = super_1_validate, .sync_super = super_1_sync, .rdev_size_change = super_1_rdev_size_change, }, }; static void sync_super(struct mddev *mddev, struct md_rdev *rdev) { if (mddev->sync_super) { mddev->sync_super(mddev, rdev); return; } BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); super_types[mddev->major_version].sync_super(mddev, rdev); } static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) { struct md_rdev *rdev, *rdev2; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev1) rdev_for_each_rcu(rdev2, mddev2) if (rdev->bdev->bd_contains == rdev2->bdev->bd_contains) { rcu_read_unlock(); return 1; } rcu_read_unlock(); return 0; } static LIST_HEAD(pending_raid_disks); /* * Try to register data integrity profile for an mddev * * This is called when an array is started and after a disk has been kicked * from the array. It only succeeds if all working and active component devices * are integrity capable with matching profiles. */ int md_integrity_register(struct mddev *mddev) { struct md_rdev *rdev, *reference = NULL; if (list_empty(&mddev->disks)) return 0; /* nothing to do */ if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) return 0; /* shouldn't register, or already is */ rdev_for_each(rdev, mddev) { /* skip spares and non-functional disks */ if (test_bit(Faulty, &rdev->flags)) continue; if (rdev->raid_disk < 0) continue; if (!reference) { /* Use the first rdev as the reference */ reference = rdev; continue; } /* does this rdev's profile match the reference profile? */ if (blk_integrity_compare(reference->bdev->bd_disk, rdev->bdev->bd_disk) < 0) return -EINVAL; } if (!reference || !bdev_get_integrity(reference->bdev)) return 0; /* * All component devices are integrity capable and have matching * profiles, register the common profile for the md device. */ if (blk_integrity_register(mddev->gendisk, bdev_get_integrity(reference->bdev)) != 0) { printk(KERN_ERR "md: failed to register integrity for %s\n", mdname(mddev)); return -EINVAL; } printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { printk(KERN_ERR "md: failed to create integrity pool for %s\n", mdname(mddev)); return -EINVAL; } return 0; } EXPORT_SYMBOL(md_integrity_register); /* Disable data integrity if non-capable/non-matching disk is being added */ void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) { struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); if (!bi_mddev) /* nothing to do */ return; if (rdev->raid_disk < 0) /* skip spares */ return; if (bi_rdev && blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) >= 0) return; printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); blk_integrity_unregister(mddev->gendisk); } EXPORT_SYMBOL(md_integrity_add_rdev); static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) { char b[BDEVNAME_SIZE]; struct kobject *ko; char *s; int err; if (rdev->mddev) { MD_BUG(); return -EINVAL; } /* prevent duplicates */ if (find_rdev(mddev, rdev->bdev->bd_dev)) return -EEXIST; /* make sure rdev->sectors exceeds mddev->dev_sectors */ if (rdev->sectors && (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { if (mddev->pers) { /* Cannot change size, so fail * If mddev->level <= 0, then we don't care * about aligning sizes (e.g. linear) */ if (mddev->level > 0) return -ENOSPC; } else mddev->dev_sectors = rdev->sectors; } /* Verify rdev->desc_nr is unique. * If it is -1, assign a free number, else * check number is not in use */ if (rdev->desc_nr < 0) { int choice = 0; if (mddev->pers) choice = mddev->raid_disks; while (find_rdev_nr(mddev, choice)) choice++; rdev->desc_nr = choice; } else { if (find_rdev_nr(mddev, rdev->desc_nr)) return -EBUSY; } if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { printk(KERN_WARNING "md: %s: array is limited to %d devices\n", mdname(mddev), mddev->max_disks); return -EBUSY; } bdevname(rdev->bdev,b); while ( (s=strchr(b, '/')) != NULL) *s = '!'; rdev->mddev = mddev; printk(KERN_INFO "md: bind<%s>\n", b); if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) goto fail; ko = &part_to_dev(rdev->bdev->bd_part)->kobj; if (sysfs_create_link(&rdev->kobj, ko, "block")) /* failure here is OK */; rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); list_add_rcu(&rdev->same_set, &mddev->disks); bd_link_disk_holder(rdev->bdev, mddev->gendisk); /* May as well allow recovery to be retried once */ mddev->recovery_disabled++; return 0; fail: printk(KERN_WARNING "md: failed to register dev-%s for %s\n", b, mdname(mddev)); return err; } static void md_delayed_delete(struct work_struct *ws) { struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); kobject_del(&rdev->kobj); kobject_put(&rdev->kobj); } static void unbind_rdev_from_array(struct md_rdev * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->mddev) { MD_BUG(); return; } bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); list_del_rcu(&rdev->same_set); printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); rdev->mddev = NULL; sysfs_remove_link(&rdev->kobj, "block"); sysfs_put(rdev->sysfs_state); rdev->sysfs_state = NULL; kfree(rdev->badblocks.page); rdev->badblocks.count = 0; rdev->badblocks.page = NULL; /* We need to delay this, otherwise we can deadlock when * writing to 'remove' to "dev/state". We also need * to delay it due to rcu usage. */ synchronize_rcu(); INIT_WORK(&rdev->del_work, md_delayed_delete); kobject_get(&rdev->kobj); queue_work(md_misc_wq, &rdev->del_work); } /* * prevent the device from being mounted, repartitioned or * otherwise reused by a RAID array (or any other kernel * subsystem), by bd_claiming the device. */ static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) { int err = 0; struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, shared ? (struct md_rdev *)lock_rdev : rdev); if (IS_ERR(bdev)) { printk(KERN_ERR "md: could not open %s.\n", __bdevname(dev, b)); return PTR_ERR(bdev); } rdev->bdev = bdev; return err; } static void unlock_rdev(struct md_rdev *rdev) { struct block_device *bdev = rdev->bdev; rdev->bdev = NULL; if (!bdev) MD_BUG(); blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } void md_autodetect_dev(dev_t dev); static void export_rdev(struct md_rdev * rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); if (rdev->mddev) MD_BUG(); free_disk_sb(rdev); #ifndef MODULE if (test_bit(AutoDetected, &rdev->flags)) md_autodetect_dev(rdev->bdev->bd_dev); #endif unlock_rdev(rdev); kobject_put(&rdev->kobj); } static void kick_rdev_from_array(struct md_rdev * rdev) { unbind_rdev_from_array(rdev); export_rdev(rdev); } static void export_array(struct mddev *mddev) { struct md_rdev *rdev, *tmp; rdev_for_each_safe(rdev, tmp, mddev) { if (!rdev->mddev) { MD_BUG(); continue; } kick_rdev_from_array(rdev); } if (!list_empty(&mddev->disks)) MD_BUG(); mddev->raid_disks = 0; mddev->major_version = 0; } static void print_desc(mdp_disk_t *desc) { printk(" DISK\n", desc->number, desc->major,desc->minor,desc->raid_disk,desc->state); } static void print_sb_90(mdp_super_t *sb) { int i; printk(KERN_INFO "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", sb->major_version, sb->minor_version, sb->patch_version, sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, sb->ctime); printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", sb->level, sb->size, sb->nr_disks, sb->raid_disks, sb->md_minor, sb->layout, sb->chunk_size); printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" " FD:%d SD:%d CSUM:%08x E:%08lx\n", sb->utime, sb->state, sb->active_disks, sb->working_disks, sb->failed_disks, sb->spare_disks, sb->sb_csum, (unsigned long)sb->events_lo); printk(KERN_INFO); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc; desc = sb->disks + i; if (desc->number || desc->major || desc->minor || desc->raid_disk || (desc->state && (desc->state != 4))) { printk(" D %2d: ", i); print_desc(desc); } } printk(KERN_INFO "md: THIS: "); print_desc(&sb->this_disk); } static void print_sb_1(struct mdp_superblock_1 *sb) { __u8 *uuid; uuid = sb->set_uuid; printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" "md: Name: \"%s\" CT:%llu\n", le32_to_cpu(sb->major_version), le32_to_cpu(sb->feature_map), uuid, sb->set_name, (unsigned long long)le64_to_cpu(sb->ctime) & MD_SUPERBLOCK_1_TIME_SEC_MASK); uuid = sb->device_uuid; printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" " RO:%llu\n" "md: Dev:%08x UUID: %pU\n" "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" "md: (MaxDev:%u) \n", le32_to_cpu(sb->level), (unsigned long long)le64_to_cpu(sb->size), le32_to_cpu(sb->raid_disks), le32_to_cpu(sb->layout), le32_to_cpu(sb->chunksize), (unsigned long long)le64_to_cpu(sb->data_offset), (unsigned long long)le64_to_cpu(sb->data_size), (unsigned long long)le64_to_cpu(sb->super_offset), (unsigned long long)le64_to_cpu(sb->recovery_offset), le32_to_cpu(sb->dev_number), uuid, sb->devflags, (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, (unsigned long long)le64_to_cpu(sb->events), (unsigned long long)le64_to_cpu(sb->resync_offset), le32_to_cpu(sb->sb_csum), le32_to_cpu(sb->max_dev) ); } static void print_rdev(struct md_rdev *rdev, int major_version) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), rdev->desc_nr); if (rdev->sb_loaded) { printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); switch (major_version) { case 0: print_sb_90(page_address(rdev->sb_page)); break; case 1: print_sb_1(page_address(rdev->sb_page)); break; } } else printk(KERN_INFO "md: no rdev superblock!\n"); } static void md_print_devices(void) { struct list_head *tmp; struct md_rdev *rdev; struct mddev *mddev; char b[BDEVNAME_SIZE]; printk("\n"); printk("md: **********************************\n"); printk("md: * *\n"); printk("md: **********************************\n"); for_each_mddev(mddev, tmp) { if (mddev->bitmap) bitmap_print_sb(mddev->bitmap); else printk("%s: ", mdname(mddev)); rdev_for_each(rdev, mddev) printk("<%s>", bdevname(rdev->bdev,b)); printk("\n"); rdev_for_each(rdev, mddev) print_rdev(rdev, mddev->major_version); } printk("md: **********************************\n"); printk("\n"); } static void sync_sbs(struct mddev * mddev, int nospares) { /* Update each superblock (in-memory image), but * if we are allowed to, skip spares which already * have the right event counter, or have one earlier * (which would mean they aren't being marked as dirty * with the rest of the array) */ struct md_rdev *rdev; rdev_for_each(rdev, mddev) { if (rdev->sb_events == mddev->events || (nospares && rdev->raid_disk < 0 && rdev->sb_events+1 == mddev->events)) { /* Don't update this superblock */ rdev->sb_loaded = 2; } else { sync_super(mddev, rdev); rdev->sb_loaded = 1; } } } static void md_update_sb(struct mddev * mddev, int force_change) { struct md_rdev *rdev; int sync_req; int nospares = 0; int any_badblocks_changed = 0; repeat: /* First make sure individual recovery_offsets are correct */ rdev_for_each(rdev, mddev) { if (rdev->raid_disk >= 0 && mddev->delta_disks >= 0 && !test_bit(In_sync, &rdev->flags) && mddev->curr_resync_completed > rdev->recovery_offset) rdev->recovery_offset = mddev->curr_resync_completed; } if (!mddev->persistent) { clear_bit(MD_CHANGE_CLEAN, &mddev->flags); clear_bit(MD_CHANGE_DEVS, &mddev->flags); if (!mddev->external) { clear_bit(MD_CHANGE_PENDING, &mddev->flags); rdev_for_each(rdev, mddev) { if (rdev->badblocks.changed) { md_ack_all_badblocks(&rdev->badblocks); md_error(mddev, rdev); } clear_bit(Blocked, &rdev->flags); clear_bit(BlockedBadBlocks, &rdev->flags); wake_up(&rdev->blocked_wait); } } wake_up(&mddev->sb_wait); return; } spin_lock_irq(&mddev->write_lock); mddev->utime = get_seconds(); if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) force_change = 1; if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) /* just a clean<-> dirty transition, possibly leave spares alone, * though if events isn't the right even/odd, we will have to do * spares after all */ nospares = 1; if (force_change) nospares = 0; if (mddev->degraded) /* If the array is degraded, then skipping spares is both * dangerous and fairly pointless. * Dangerous because a device that was removed from the array * might have a event_count that still looks up-to-date, * so it can be re-added without a resync. * Pointless because if there are any spares to skip, * then a recovery will happen and soon that array won't * be degraded any more and the spare can go back to sleep then. */ nospares = 0; sync_req = mddev->in_sync; /* If this is just a dirty<->clean transition, and the array is clean * and 'events' is odd, we can roll back to the previous clean state */ if (nospares && (mddev->in_sync && mddev->recovery_cp == MaxSector) && mddev->can_decrease_events && mddev->events != 1) { mddev->events--; mddev->can_decrease_events = 0; } else { /* otherwise we have to go forward and ... */ mddev->events ++; mddev->can_decrease_events = nospares; } if (!mddev->events) { /* * oops, this 64-bit counter should never wrap. * Either we are in around ~1 trillion A.C., assuming * 1 reboot per second, or we have a bug: */ MD_BUG(); mddev->events --; } rdev_for_each(rdev, mddev) { if (rdev->badblocks.changed) any_badblocks_changed++; if (test_bit(Faulty, &rdev->flags)) set_bit(FaultRecorded, &rdev->flags); } sync_sbs(mddev, nospares); spin_unlock_irq(&mddev->write_lock); pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", mdname(mddev), mddev->in_sync); bitmap_update_sb(mddev->bitmap); rdev_for_each(rdev, mddev) { char b[BDEVNAME_SIZE]; if (rdev->sb_loaded != 1) continue; /* no noise on spare devices */ if (!test_bit(Faulty, &rdev->flags) && rdev->saved_raid_disk == -1) { md_super_write(mddev,rdev, rdev->sb_start, rdev->sb_size, rdev->sb_page); pr_debug("md: (write) %s's sb offset: %llu\n", bdevname(rdev->bdev, b), (unsigned long long)rdev->sb_start); rdev->sb_events = mddev->events; if (rdev->badblocks.size) { md_super_write(mddev, rdev, rdev->badblocks.sector, rdev->badblocks.size << 9, rdev->bb_page); rdev->badblocks.size = 0; } } else if (test_bit(Faulty, &rdev->flags)) pr_debug("md: %s (skipping faulty)\n", bdevname(rdev->bdev, b)); else pr_debug("(skipping incremental s/r "); if (mddev->level == LEVEL_MULTIPATH) /* only need to write one superblock... */ break; } md_super_wait(mddev); /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ spin_lock_irq(&mddev->write_lock); if (mddev->in_sync != sync_req || test_bit(MD_CHANGE_DEVS, &mddev->flags)) { /* have to write it out again */ spin_unlock_irq(&mddev->write_lock); goto repeat; } clear_bit(MD_CHANGE_PENDING, &mddev->flags); spin_unlock_irq(&mddev->write_lock); wake_up(&mddev->sb_wait); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) sysfs_notify(&mddev->kobj, NULL, "sync_completed"); rdev_for_each(rdev, mddev) { if (test_and_clear_bit(FaultRecorded, &rdev->flags)) clear_bit(Blocked, &rdev->flags); if (any_badblocks_changed) md_ack_all_badblocks(&rdev->badblocks); clear_bit(BlockedBadBlocks, &rdev->flags); wake_up(&rdev->blocked_wait); } } /* words written to sysfs files may, or may not, be \n terminated. * We want to accept with case. For this we use cmd_match. */ static int cmd_match(const char *cmd, const char *str) { /* See if cmd, written into a sysfs file, matches * str. They must either be the same, or cmd can * have a trailing newline */ while (*cmd && *str && *cmd == *str) { cmd++; str++; } if (*cmd == '\n') cmd++; if (*str || *cmd) return 0; return 1; } struct rdev_sysfs_entry { struct attribute attr; ssize_t (*show)(struct md_rdev *, char *); ssize_t (*store)(struct md_rdev *, const char *, size_t); }; static ssize_t state_show(struct md_rdev *rdev, char *page) { char *sep = ""; size_t len = 0; if (test_bit(Faulty, &rdev->flags) || rdev->badblocks.unacked_exist) { len+= sprintf(page+len, "%sfaulty",sep); sep = ","; } if (test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sin_sync",sep); sep = ","; } if (test_bit(WriteMostly, &rdev->flags)) { len += sprintf(page+len, "%swrite_mostly",sep); sep = ","; } if (test_bit(Blocked, &rdev->flags) || (rdev->badblocks.unacked_exist && !test_bit(Faulty, &rdev->flags))) { len += sprintf(page+len, "%sblocked", sep); sep = ","; } if (!test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sspare", sep); sep = ","; } if (test_bit(WriteErrorSeen, &rdev->flags)) { len += sprintf(page+len, "%swrite_error", sep); sep = ","; } if (test_bit(WantReplacement, &rdev->flags)) { len += sprintf(page+len, "%swant_replacement", sep); sep = ","; } if (test_bit(Replacement, &rdev->flags)) { len += sprintf(page+len, "%sreplacement", sep); sep = ","; } return len+sprintf(page+len, "\n"); } static ssize_t state_store(struct md_rdev *rdev, const char *buf, size_t len) { /* can write * faulty - simulates an error * remove - disconnects the device * writemostly - sets write_mostly * -writemostly - clears write_mostly * blocked - sets the Blocked flags * -blocked - clears the Blocked and possibly simulates an error * insync - sets Insync providing device isn't active * write_error - sets WriteErrorSeen * -write_error - clears WriteErrorSeen */ int err = -EINVAL; if (cmd_match(buf, "faulty") && rdev->mddev->pers) { md_error(rdev->mddev, rdev); if (test_bit(Faulty, &rdev->flags)) err = 0; else err = -EBUSY; } else if (cmd_match(buf, "remove")) { if (rdev->raid_disk >= 0) err = -EBUSY; else { struct mddev *mddev = rdev->mddev; kick_rdev_from_array(rdev); if (mddev->pers) md_update_sb(mddev, 1); md_new_event(mddev); err = 0; } } else if (cmd_match(buf, "writemostly")) { set_bit(WriteMostly, &rdev->flags); err = 0; } else if (cmd_match(buf, "-writemostly")) { clear_bit(WriteMostly, &rdev->flags); err = 0; } else if (cmd_match(buf, "blocked")) { set_bit(Blocked, &rdev->flags); err = 0; } else if (cmd_match(buf, "-blocked")) { if (!test_bit(Faulty, &rdev->flags) && rdev->badblocks.unacked_exist) { /* metadata handler doesn't understand badblocks, * so we need to fail the device */ md_error(rdev->mddev, rdev); } clear_bit(Blocked, &rdev->flags); clear_bit(BlockedBadBlocks, &rdev->flags); wake_up(&rdev->blocked_wait); set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); err = 0; } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { set_bit(In_sync, &rdev->flags); err = 0; } else if (cmd_match(buf, "write_error")) { set_bit(WriteErrorSeen, &rdev->flags); err = 0; } else if (cmd_match(buf, "-write_error")) { clear_bit(WriteErrorSeen, &rdev->flags); err = 0; } else if (cmd_match(buf, "want_replacement")) { /* Any non-spare device that is not a replacement can * become want_replacement at any time, but we then need to * check if recovery is needed. */ if (rdev->raid_disk >= 0 && !test_bit(Replacement, &rdev->flags)) set_bit(WantReplacement, &rdev->flags); set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); err = 0; } else if (cmd_match(buf, "-want_replacement")) { /* Clearing 'want_replacement' is always allowed. * Once replacements starts it is too late though. */ err = 0; clear_bit(WantReplacement, &rdev->flags); } else if (cmd_match(buf, "replacement")) { /* Can only set a device as a replacement when array has not * yet been started. Once running, replacement is automatic * from spares, or by assigning 'slot'. */ if (rdev->mddev->pers) err = -EBUSY; else { set_bit(Replacement, &rdev->flags); err = 0; } } else if (cmd_match(buf, "-replacement")) { /* Similarly, can only clear Replacement before start */ if (rdev->mddev->pers) err = -EBUSY; else { clear_bit(Replacement, &rdev->flags); err = 0; } } if (!err) sysfs_notify_dirent_safe(rdev->sysfs_state); return err ? err : len; } static struct rdev_sysfs_entry rdev_state = __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); static ssize_t errors_show(struct md_rdev *rdev, char *page) { return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); } static ssize_t errors_store(struct md_rdev *rdev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (*buf && (*e == 0 || *e == '\n')) { atomic_set(&rdev->corrected_errors, n); return len; } return -EINVAL; } static struct rdev_sysfs_entry rdev_errors = __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); static ssize_t slot_show(struct md_rdev *rdev, char *page) { if (rdev->raid_disk < 0) return sprintf(page, "none\n"); else return sprintf(page, "%d\n", rdev->raid_disk); } static ssize_t slot_store(struct md_rdev *rdev, const char *buf, size_t len) { char *e; int err; int slot = simple_strtoul(buf, &e, 10); if (strncmp(buf, "none", 4)==0) slot = -1; else if (e==buf || (*e && *e!= '\n')) return -EINVAL; if (rdev->mddev->pers && slot == -1) { /* Setting 'slot' on an active array requires also * updating the 'rd%d' link, and communicating * with the personality with ->hot_*_disk. * For now we only support removing * failed/spare devices. This normally happens automatically, * but not when the metadata is externally managed. */ if (rdev->raid_disk == -1) return -EEXIST; /* personality does all needed checks */ if (rdev->mddev->pers->hot_remove_disk == NULL) return -EINVAL; err = rdev->mddev->pers-> hot_remove_disk(rdev->mddev, rdev); if (err) return err; sysfs_unlink_rdev(rdev->mddev, rdev); rdev->raid_disk = -1; set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); md_wakeup_thread(rdev->mddev->thread); } else if (rdev->mddev->pers) { /* Activating a spare .. or possibly reactivating * if we ever get bitmaps working here. */ if (rdev->raid_disk != -1) return -EBUSY; if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) return -EBUSY; if (rdev->mddev->pers->hot_add_disk == NULL) return -EINVAL; if (slot >= rdev->mddev->raid_disks && slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) return -ENOSPC; rdev->raid_disk = slot; if (test_bit(In_sync, &rdev->flags)) rdev->saved_raid_disk = slot; else rdev->saved_raid_disk = -1; clear_bit(In_sync, &rdev->flags); err = rdev->mddev->pers-> hot_add_disk(rdev->mddev, rdev); if (err) { rdev->raid_disk = -1; return err; } else sysfs_notify_dirent_safe(rdev->sysfs_state); if (sysfs_link_rdev(rdev->mddev, rdev)) /* failure here is OK */; /* don't wakeup anyone, leave that to userspace. */ } else { if (slot >= rdev->mddev->raid_disks && slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) return -ENOSPC; rdev->raid_disk = slot; /* assume it is working */ clear_bit(Faulty, &rdev->flags); clear_bit(WriteMostly, &rdev->flags); set_bit(In_sync, &rdev->flags); sysfs_notify_dirent_safe(rdev->sysfs_state); } return len; } static struct rdev_sysfs_entry rdev_slot = __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); static ssize_t offset_show(struct md_rdev *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); } static ssize_t offset_store(struct md_rdev *rdev, const char *buf, size_t len) { char *e; unsigned long long offset = simple_strtoull(buf, &e, 10); if (e==buf || (*e && *e != '\n')) return -EINVAL; if (rdev->mddev->pers && rdev->raid_disk >= 0) return -EBUSY; if (rdev->sectors && rdev->mddev->external) /* Must set offset before size, so overlap checks * can be sane */ return -EBUSY; rdev->data_offset = offset; return len; } static struct rdev_sysfs_entry rdev_offset = __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); static ssize_t rdev_size_show(struct md_rdev *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); } static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) { /* check if two start/length pairs overlap */ if (s1+l1 <= s2) return 0; if (s2+l2 <= s1) return 0; return 1; } static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) { unsigned long long blocks; sector_t new; if (strict_strtoull(buf, 10, &blocks) < 0) return -EINVAL; if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) return -EINVAL; /* sector conversion overflow */ new = blocks * 2; if (new != blocks * 2) return -EINVAL; /* unsigned long long to sector_t overflow */ *sectors = new; return 0; } static ssize_t rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) { struct mddev *my_mddev = rdev->mddev; sector_t oldsectors = rdev->sectors; sector_t sectors; if (strict_blocks_to_sectors(buf, §ors) < 0) return -EINVAL; if (my_mddev->pers && rdev->raid_disk >= 0) { if (my_mddev->persistent) { sectors = super_types[my_mddev->major_version]. rdev_size_change(rdev, sectors); if (!sectors) return -EBUSY; } else if (!sectors) sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - rdev->data_offset; } if (sectors < my_mddev->dev_sectors) return -EINVAL; /* component must fit device */ rdev->sectors = sectors; if (sectors > oldsectors && my_mddev->external) { /* need to check that all other rdevs with the same ->bdev * do not overlap. We need to unlock the mddev to avoid * a deadlock. We have already changed rdev->sectors, and if * we have to change it back, we will have the lock again. */ struct mddev *mddev; int overlap = 0; struct list_head *tmp; mddev_unlock(my_mddev); for_each_mddev(mddev, tmp) { struct md_rdev *rdev2; mddev_lock(mddev); rdev_for_each(rdev2, mddev) if (rdev->bdev == rdev2->bdev && rdev != rdev2 && overlaps(rdev->data_offset, rdev->sectors, rdev2->data_offset, rdev2->sectors)) { overlap = 1; break; } mddev_unlock(mddev); if (overlap) { mddev_put(mddev); break; } } mddev_lock(my_mddev); if (overlap) { /* Someone else could have slipped in a size * change here, but doing so is just silly. * We put oldsectors back because we *know* it is * safe, and trust userspace not to race with * itself */ rdev->sectors = oldsectors; return -EBUSY; } } return len; } static struct rdev_sysfs_entry rdev_size = __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) { unsigned long long recovery_start = rdev->recovery_offset; if (test_bit(In_sync, &rdev->flags) || recovery_start == MaxSector) return sprintf(page, "none\n"); return sprintf(page, "%llu\n", recovery_start); } static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) { unsigned long long recovery_start; if (cmd_match(buf, "none")) recovery_start = MaxSector; else if (strict_strtoull(buf, 10, &recovery_start)) return -EINVAL; if (rdev->mddev->pers && rdev->raid_disk >= 0) return -EBUSY; rdev->recovery_offset = recovery_start; if (recovery_start == MaxSector) set_bit(In_sync, &rdev->flags); else clear_bit(In_sync, &rdev->flags); return len; } static struct rdev_sysfs_entry rdev_recovery_start = __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); static ssize_t badblocks_show(struct badblocks *bb, char *page, int unack); static ssize_t badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); static ssize_t bb_show(struct md_rdev *rdev, char *page) { return badblocks_show(&rdev->badblocks, page, 0); } static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) { int rv = badblocks_store(&rdev->badblocks, page, len, 0); /* Maybe that ack was all we needed */ if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) wake_up(&rdev->blocked_wait); return rv; } static struct rdev_sysfs_entry rdev_bad_blocks = __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); static ssize_t ubb_show(struct md_rdev *rdev, char *page) { return badblocks_show(&rdev->badblocks, page, 1); } static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) { return badblocks_store(&rdev->badblocks, page, len, 1); } static struct rdev_sysfs_entry rdev_unack_bad_blocks = __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); static struct attribute *rdev_default_attrs[] = { &rdev_state.attr, &rdev_errors.attr, &rdev_slot.attr, &rdev_offset.attr, &rdev_size.attr, &rdev_recovery_start.attr, &rdev_bad_blocks.attr, &rdev_unack_bad_blocks.attr, NULL, }; static ssize_t rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); struct mddev *mddev = rdev->mddev; ssize_t rv; if (!entry->show) return -EIO; rv = mddev ? mddev_lock(mddev) : -EBUSY; if (!rv) { if (rdev->mddev == NULL) rv = -EBUSY; else rv = entry->show(rdev, page); mddev_unlock(mddev); } return rv; } static ssize_t rdev_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); ssize_t rv; struct mddev *mddev = rdev->mddev; if (!entry->store) return -EIO; if (!capable(CAP_SYS_ADMIN)) return -EACCES; rv = mddev ? mddev_lock(mddev): -EBUSY; if (!rv) { if (rdev->mddev == NULL) rv = -EBUSY; else rv = entry->store(rdev, page, length); mddev_unlock(mddev); } return rv; } static void rdev_free(struct kobject *ko) { struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); kfree(rdev); } static const struct sysfs_ops rdev_sysfs_ops = { .show = rdev_attr_show, .store = rdev_attr_store, }; static struct kobj_type rdev_ktype = { .release = rdev_free, .sysfs_ops = &rdev_sysfs_ops, .default_attrs = rdev_default_attrs, }; int md_rdev_init(struct md_rdev *rdev) { rdev->desc_nr = -1; rdev->saved_raid_disk = -1; rdev->raid_disk = -1; rdev->flags = 0; rdev->data_offset = 0; rdev->sb_events = 0; rdev->last_read_error.tv_sec = 0; rdev->last_read_error.tv_nsec = 0; rdev->sb_loaded = 0; rdev->bb_page = NULL; atomic_set(&rdev->nr_pending, 0); atomic_set(&rdev->read_errors, 0); atomic_set(&rdev->corrected_errors, 0); INIT_LIST_HEAD(&rdev->same_set); init_waitqueue_head(&rdev->blocked_wait); /* Add space to store bad block list. * This reserves the space even on arrays where it cannot * be used - I wonder if that matters */ rdev->badblocks.count = 0; rdev->badblocks.shift = 0; rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); seqlock_init(&rdev->badblocks.lock); if (rdev->badblocks.page == NULL) return -ENOMEM; return 0; } EXPORT_SYMBOL_GPL(md_rdev_init); /* * Import a device. If 'super_format' >= 0, then sanity check the superblock * * mark the device faulty if: * * - the device is nonexistent (zero size) * - the device has no valid superblock * * a faulty rdev _never_ has rdev->sb set. */ static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) { char b[BDEVNAME_SIZE]; int err; struct md_rdev *rdev; sector_t size; rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); if (!rdev) { printk(KERN_ERR "md: could not alloc mem for new device!\n"); return ERR_PTR(-ENOMEM); } err = md_rdev_init(rdev); if (err) goto abort_free; err = alloc_disk_sb(rdev); if (err) goto abort_free; err = lock_rdev(rdev, newdev, super_format == -2); if (err) goto abort_free; kobject_init(&rdev->kobj, &rdev_ktype); size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; if (!size) { printk(KERN_WARNING "md: %s has zero or unknown size, marking faulty!\n", bdevname(rdev->bdev,b)); err = -EINVAL; goto abort_free; } if (super_format >= 0) { err = super_types[super_format]. load_super(rdev, NULL, super_minor); if (err == -EINVAL) { printk(KERN_WARNING "md: %s does not have a valid v%d.%d " "superblock, not importing!\n", bdevname(rdev->bdev,b), super_format, super_minor); goto abort_free; } if (err < 0) { printk(KERN_WARNING "md: could not read %s's sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } } if (super_format == -1) /* hot-add for 0.90, or non-persistent: so no badblocks */ rdev->badblocks.shift = -1; return rdev; abort_free: if (rdev->bdev) unlock_rdev(rdev); free_disk_sb(rdev); kfree(rdev->badblocks.page); kfree(rdev); return ERR_PTR(err); } /* * Check a full RAID array for plausibility */ static void analyze_sbs(struct mddev * mddev) { int i; struct md_rdev *rdev, *freshest, *tmp; char b[BDEVNAME_SIZE]; freshest = NULL; rdev_for_each_safe(rdev, tmp, mddev) switch (super_types[mddev->major_version]. load_super(rdev, freshest, mddev->minor_version)) { case 1: freshest = rdev; break; case 0: break; default: printk( KERN_ERR \ "md: fatal superblock inconsistency in %s" " -- removing from array\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); } super_types[mddev->major_version]. validate_super(mddev, freshest); i = 0; rdev_for_each_safe(rdev, tmp, mddev) { if (mddev->max_disks && (rdev->desc_nr >= mddev->max_disks || i > mddev->max_disks)) { printk(KERN_WARNING "md: %s: %s: only %d devices permitted\n", mdname(mddev), bdevname(rdev->bdev, b), mddev->max_disks); kick_rdev_from_array(rdev); continue; } if (rdev != freshest) if (super_types[mddev->major_version]. validate_super(mddev, rdev)) { printk(KERN_WARNING "md: kicking non-fresh %s" " from array!\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); continue; } if (mddev->level == LEVEL_MULTIPATH) { rdev->desc_nr = i++; rdev->raid_disk = rdev->desc_nr; set_bit(In_sync, &rdev->flags); } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { rdev->raid_disk = -1; clear_bit(In_sync, &rdev->flags); } } } /* Read a fixed-point number. * Numbers in sysfs attributes should be in "standard" units where * possible, so time should be in seconds. * However we internally use a a much smaller unit such as * milliseconds or jiffies. * This function takes a decimal number with a possible fractional * component, and produces an integer which is the result of * multiplying that number by 10^'scale'. * all without any floating-point arithmetic. */ int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) { unsigned long result = 0; long decimals = -1; while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { if (*cp == '.') decimals = 0; else if (decimals < scale) { unsigned int value; value = *cp - '0'; result = result * 10 + value; if (decimals >= 0) decimals++; } cp++; } if (*cp == '\n') cp++; if (*cp) return -EINVAL; if (decimals < 0) decimals = 0; while (decimals < scale) { result *= 10; decimals ++; } *res = result; return 0; } static void md_safemode_timeout(unsigned long data); static ssize_t safe_delay_show(struct mddev *mddev, char *page) { int msec = (mddev->safemode_delay*1000)/HZ; return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); } static ssize_t safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) { unsigned long msec; if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) return -EINVAL; if (msec == 0) mddev->safemode_delay = 0; else { unsigned long old_delay = mddev->safemode_delay; mddev->safemode_delay = (msec*HZ)/1000; if (mddev->safemode_delay == 0) mddev->safemode_delay = 1; if (mddev->safemode_delay < old_delay) md_safemode_timeout((unsigned long)mddev); } return len; } static struct md_sysfs_entry md_safe_delay = __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); static ssize_t level_show(struct mddev *mddev, char *page) { struct md_personality *p = mddev->pers; if (p) return sprintf(page, "%s\n", p->name); else if (mddev->clevel[0]) return sprintf(page, "%s\n", mddev->clevel); else if (mddev->level != LEVEL_NONE) return sprintf(page, "%d\n", mddev->level); else return 0; } static ssize_t level_store(struct mddev *mddev, const char *buf, size_t len) { char clevel[16]; ssize_t rv = len; struct md_personality *pers; long level; void *priv; struct md_rdev *rdev; if (mddev->pers == NULL) { if (len == 0) return 0; if (len >= sizeof(mddev->clevel)) return -ENOSPC; strncpy(mddev->clevel, buf, len); if (mddev->clevel[len-1] == '\n') len--; mddev->clevel[len] = 0; mddev->level = LEVEL_NONE; return rv; } /* request to change the personality. Need to ensure: * - array is not engaged in resync/recovery/reshape * - old personality can be suspended * - new personality will access other array. */ if (mddev->sync_thread || mddev->reshape_position != MaxSector || mddev->sysfs_active) return -EBUSY; if (!mddev->pers->quiesce) { printk(KERN_WARNING "md: %s: %s does not support online personality change\n", mdname(mddev), mddev->pers->name); return -EINVAL; } /* Now find the new personality */ if (len == 0 || len >= sizeof(clevel)) return -EINVAL; strncpy(clevel, buf, len); if (clevel[len-1] == '\n') len--; clevel[len] = 0; if (strict_strtol(clevel, 10, &level)) level = LEVEL_NONE; if (request_module("md-%s", clevel) != 0) request_module("md-level-%s", clevel); spin_lock(&pers_lock); pers = find_pers(level, clevel); if (!pers || !try_module_get(pers->owner)) { spin_unlock(&pers_lock); printk(KERN_WARNING "md: personality %s not loaded\n", clevel); return -EINVAL; } spin_unlock(&pers_lock); if (pers == mddev->pers) { /* Nothing to do! */ module_put(pers->owner); return rv; } if (!pers->takeover) { module_put(pers->owner); printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", mdname(mddev), clevel); return -EINVAL; } rdev_for_each(rdev, mddev) rdev->new_raid_disk = rdev->raid_disk; /* ->takeover must set new_* and/or delta_disks * if it succeeds, and may set them when it fails. */ priv = pers->takeover(mddev); if (IS_ERR(priv)) { mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->raid_disks -= mddev->delta_disks; mddev->delta_disks = 0; module_put(pers->owner); printk(KERN_WARNING "md: %s: %s would not accept array\n", mdname(mddev), clevel); return PTR_ERR(priv); } /* Looks like we have a winner */ mddev_suspend(mddev); mddev->pers->stop(mddev); if (mddev->pers->sync_request == NULL && pers->sync_request != NULL) { /* need to add the md_redundancy_group */ if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) printk(KERN_WARNING "md: cannot register extra attributes for %s\n", mdname(mddev)); mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); } if (mddev->pers->sync_request != NULL && pers->sync_request == NULL) { /* need to remove the md_redundancy_group */ if (mddev->to_remove == NULL) mddev->to_remove = &md_redundancy_group; } if (mddev->pers->sync_request == NULL && mddev->external) { /* We are converting from a no-redundancy array * to a redundancy array and metadata is managed * externally so we need to be sure that writes * won't block due to a need to transition * clean->dirty * until external management is started. */ mddev->in_sync = 0; mddev->safemode_delay = 0; mddev->safemode = 0; } rdev_for_each(rdev, mddev) { if (rdev->raid_disk < 0) continue; if (rdev->new_raid_disk >= mddev->raid_disks) rdev->new_raid_disk = -1; if (rdev->new_raid_disk == rdev->raid_disk) continue; sysfs_unlink_rdev(mddev, rdev); } rdev_for_each(rdev, mddev) { if (rdev->raid_disk < 0) continue; if (rdev->new_raid_disk == rdev->raid_disk) continue; rdev->raid_disk = rdev->new_raid_disk; if (rdev->raid_disk < 0) clear_bit(In_sync, &rdev->flags); else { if (sysfs_link_rdev(mddev, rdev)) printk(KERN_WARNING "md: cannot register rd%d" " for %s after level change\n", rdev->raid_disk, mdname(mddev)); } } module_put(mddev->pers->owner); mddev->pers = pers; mddev->private = priv; strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); mddev->level = mddev->new_level; mddev->layout = mddev->new_layout; mddev->chunk_sectors = mddev->new_chunk_sectors; mddev->delta_disks = 0; mddev->degraded = 0; if (mddev->pers->sync_request == NULL) { /* this is now an array without redundancy, so * it must always be in_sync */ mddev->in_sync = 1; del_timer_sync(&mddev->safemode_timer); } pers->run(mddev); mddev_resume(mddev); set_bit(MD_CHANGE_DEVS, &mddev->flags); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); sysfs_notify(&mddev->kobj, NULL, "level"); md_new_event(mddev); return rv; } static struct md_sysfs_entry md_level = __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); static ssize_t layout_show(struct mddev *mddev, char *page) { /* just a number, not meaningful for all levels */ if (mddev->reshape_position != MaxSector && mddev->layout != mddev->new_layout) return sprintf(page, "%d (%d)\n", mddev->new_layout, mddev->layout); return sprintf(page, "%d\n", mddev->layout); } static ssize_t layout_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) { int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; mddev->new_layout = n; err = mddev->pers->check_reshape(mddev); if (err) { mddev->new_layout = mddev->layout; return err; } } else { mddev->new_layout = n; if (mddev->reshape_position == MaxSector) mddev->layout = n; } return len; } static struct md_sysfs_entry md_layout = __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); static ssize_t raid_disks_show(struct mddev *mddev, char *page) { if (mddev->raid_disks == 0) return 0; if (mddev->reshape_position != MaxSector && mddev->delta_disks != 0) return sprintf(page, "%d (%d)\n", mddev->raid_disks, mddev->raid_disks - mddev->delta_disks); return sprintf(page, "%d\n", mddev->raid_disks); } static int update_raid_disks(struct mddev *mddev, int raid_disks); static ssize_t raid_disks_store(struct mddev *mddev, const char *buf, size_t len) { char *e; int rv = 0; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) rv = update_raid_disks(mddev, n); else if (mddev->reshape_position != MaxSector) { int olddisks = mddev->raid_disks - mddev->delta_disks; mddev->delta_disks = n - olddisks; mddev->raid_disks = n; } else mddev->raid_disks = n; return rv ? rv : len; } static struct md_sysfs_entry md_raid_disks = __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); static ssize_t chunk_size_show(struct mddev *mddev, char *page) { if (mddev->reshape_position != MaxSector && mddev->chunk_sectors != mddev->new_chunk_sectors) return sprintf(page, "%d (%d)\n", mddev->new_chunk_sectors << 9, mddev->chunk_sectors << 9); return sprintf(page, "%d\n", mddev->chunk_sectors << 9); } static ssize_t chunk_size_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) { int err; if (mddev->pers->check_reshape == NULL) return -EBUSY; mddev->new_chunk_sectors = n >> 9; err = mddev->pers->check_reshape(mddev); if (err) { mddev->new_chunk_sectors = mddev->chunk_sectors; return err; } } else { mddev->new_chunk_sectors = n >> 9; if (mddev->reshape_position == MaxSector) mddev->chunk_sectors = n >> 9; } return len; } static struct md_sysfs_entry md_chunk_size = __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); static ssize_t resync_start_show(struct mddev *mddev, char *page) { if (mddev->recovery_cp == MaxSector) return sprintf(page, "none\n"); return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); } static ssize_t resync_start_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long long n = simple_strtoull(buf, &e, 10); if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) return -EBUSY; if (cmd_match(buf, "none")) n = MaxSector; else if (!*buf || (*e && *e != '\n')) return -EINVAL; mddev->recovery_cp = n; return len; } static struct md_sysfs_entry md_resync_start = __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); /* * The array state can be: * * clear * No devices, no size, no level * Equivalent to STOP_ARRAY ioctl * inactive * May have some settings, but array is not active * all IO results in error * When written, doesn't tear down array, but just stops it * suspended (not supported yet) * All IO requests will block. The array can be reconfigured. * Writing this, if accepted, will block until array is quiescent * readonly * no resync can happen. no superblocks get written. * write requests fail * read-auto * like readonly, but behaves like 'clean' on a write request. * * clean - no pending writes, but otherwise active. * When written to inactive array, starts without resync * If a write request arrives then * if metadata is known, mark 'dirty' and switch to 'active'. * if not known, block and switch to write-pending * If written to an active array that has pending writes, then fails. * active * fully active: IO and resync can be happening. * When written to inactive array, starts with resync * * write-pending * clean, but writes are blocked waiting for 'active' to be written. * * active-idle * like active, but no writes have been seen for a while (100msec). * */ enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, write_pending, active_idle, bad_word}; static char *array_states[] = { "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", "write-pending", "active-idle", NULL }; static int match_word(const char *word, char **list) { int n; for (n=0; list[n]; n++) if (cmd_match(word, list[n])) break; return n; } static ssize_t array_state_show(struct mddev *mddev, char *page) { enum array_state st = inactive; if (mddev->pers) switch(mddev->ro) { case 1: st = readonly; break; case 2: st = read_auto; break; case 0: if (mddev->in_sync) st = clean; else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) st = write_pending; else if (mddev->safemode) st = active_idle; else st = active; } else { if (list_empty(&mddev->disks) && mddev->raid_disks == 0 && mddev->dev_sectors == 0) st = clear; else st = inactive; } return sprintf(page, "%s\n", array_states[st]); } static int do_md_stop(struct mddev * mddev, int ro, int is_open); static int md_set_readonly(struct mddev * mddev, int is_open); static int do_md_run(struct mddev * mddev); static int restart_array(struct mddev *mddev); static ssize_t array_state_store(struct mddev *mddev, const char *buf, size_t len) { int err = -EINVAL; enum array_state st = match_word(buf, array_states); switch(st) { case bad_word: break; case clear: /* stopping an active array */ if (atomic_read(&mddev->openers) > 0) return -EBUSY; err = do_md_stop(mddev, 0, 0); break; case inactive: /* stopping an active array */ if (mddev->pers) { if (atomic_read(&mddev->openers) > 0) return -EBUSY; err = do_md_stop(mddev, 2, 0); } else err = 0; /* already inactive */ break; case suspended: break; /* not supported yet */ case readonly: if (mddev->pers) err = md_set_readonly(mddev, 0); else { mddev->ro = 1; set_disk_ro(mddev->gendisk, 1); err = do_md_run(mddev); } break; case read_auto: if (mddev->pers) { if (mddev->ro == 0) err = md_set_readonly(mddev, 0); else if (mddev->ro == 1) err = restart_array(mddev); if (err == 0) { mddev->ro = 2; set_disk_ro(mddev->gendisk, 0); } } else { mddev->ro = 2; err = do_md_run(mddev); } break; case clean: if (mddev->pers) { restart_array(mddev); spin_lock_irq(&mddev->write_lock); if (atomic_read(&mddev->writes_pending) == 0) { if (mddev->in_sync == 0) { mddev->in_sync = 1; if (mddev->safemode == 1) mddev->safemode = 0; set_bit(MD_CHANGE_CLEAN, &mddev->flags); } err = 0; } else err = -EBUSY; spin_unlock_irq(&mddev->write_lock); } else err = -EINVAL; break; case active: if (mddev->pers) { restart_array(mddev); clear_bit(MD_CHANGE_PENDING, &mddev->flags); wake_up(&mddev->sb_wait); err = 0; } else { mddev->ro = 0; set_disk_ro(mddev->gendisk, 0); err = do_md_run(mddev); } break; case write_pending: case active_idle: /* these cannot be set */ break; } if (err) return err; else { if (mddev->hold_active == UNTIL_IOCTL) mddev->hold_active = 0; sysfs_notify_dirent_safe(mddev->sysfs_state); return len; } } static struct md_sysfs_entry md_array_state = __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); static ssize_t max_corrected_read_errors_show(struct mddev *mddev, char *page) { return sprintf(page, "%d\n", atomic_read(&mddev->max_corr_read_errors)); } static ssize_t max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (*buf && (*e == 0 || *e == '\n')) { atomic_set(&mddev->max_corr_read_errors, n); return len; } return -EINVAL; } static struct md_sysfs_entry max_corr_read_errors = __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, max_corrected_read_errors_store); static ssize_t null_show(struct mddev *mddev, char *page) { return -EINVAL; } static ssize_t new_dev_store(struct mddev *mddev, const char *buf, size_t len) { /* buf must be %d:%d\n? giving major and minor numbers */ /* The new device is added to the array. * If the array has a persistent superblock, we read the * superblock to initialise info and check validity. * Otherwise, only checking done is that in bind_rdev_to_array, * which mainly checks size. */ char *e; int major = simple_strtoul(buf, &e, 10); int minor; dev_t dev; struct md_rdev *rdev; int err; if (!*buf || *e != ':' || !e[1] || e[1] == '\n') return -EINVAL; minor = simple_strtoul(e+1, &e, 10); if (*e && *e != '\n') return -EINVAL; dev = MKDEV(major, minor); if (major != MAJOR(dev) || minor != MINOR(dev)) return -EOVERFLOW; if (mddev->persistent) { rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { struct md_rdev *rdev0 = list_entry(mddev->disks.next, struct md_rdev, same_set); err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) goto out; } } else if (mddev->external) rdev = md_import_device(dev, -2, -1); else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) return PTR_ERR(rdev); err = bind_rdev_to_array(rdev, mddev); out: if (err) export_rdev(rdev); return err ? err : len; } static struct md_sysfs_entry md_new_device = __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); static ssize_t bitmap_store(struct mddev *mddev, const char *buf, size_t len) { char *end; unsigned long chunk, end_chunk; if (!mddev->bitmap) goto out; /* buf should be ... or - ... (range) */ while (*buf) { chunk = end_chunk = simple_strtoul(buf, &end, 0); if (buf == end) break; if (*end == '-') { /* range */ buf = end + 1; end_chunk = simple_strtoul(buf, &end, 0); if (buf == end) break; } if (*end && !isspace(*end)) break; bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); buf = skip_spaces(end); } bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ out: return len; } static struct md_sysfs_entry md_bitmap = __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); static ssize_t size_show(struct mddev *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->dev_sectors / 2); } static int update_size(struct mddev *mddev, sector_t num_sectors); static ssize_t size_store(struct mddev *mddev, const char *buf, size_t len) { /* If array is inactive, we can reduce the component size, but * not increase it (except from 0). * If array is active, we can try an on-line resize */ sector_t sectors; int err = strict_blocks_to_sectors(buf, §ors); if (err < 0) return err; if (mddev->pers) { err = update_size(mddev, sectors); md_update_sb(mddev, 1); } else { if (mddev->dev_sectors == 0 || mddev->dev_sectors > sectors) mddev->dev_sectors = sectors; else err = -ENOSPC; } return err ? err : len; } static struct md_sysfs_entry md_size = __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); /* Metdata version. * This is one of * 'none' for arrays with no metadata (good luck...) * 'external' for arrays with externally managed metadata, * or N.M for internally known formats */ static ssize_t metadata_show(struct mddev *mddev, char *page) { if (mddev->persistent) return sprintf(page, "%d.%d\n", mddev->major_version, mddev->minor_version); else if (mddev->external) return sprintf(page, "external:%s\n", mddev->metadata_type); else return sprintf(page, "none\n"); } static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len) { int major, minor; char *e; /* Changing the details of 'external' metadata is * always permitted. Otherwise there must be * no devices attached to the array. */ if (mddev->external && strncmp(buf, "external:", 9) == 0) ; else if (!list_empty(&mddev->disks)) return -EBUSY; if (cmd_match(buf, "none")) { mddev->persistent = 0; mddev->external = 0; mddev->major_version = 0; mddev->minor_version = 90; return len; } if (strncmp(buf, "external:", 9) == 0) { size_t namelen = len-9; if (namelen >= sizeof(mddev->metadata_type)) namelen = sizeof(mddev->metadata_type)-1; strncpy(mddev->metadata_type, buf+9, namelen); mddev->metadata_type[namelen] = 0; if (namelen && mddev->metadata_type[namelen-1] == '\n') mddev->metadata_type[--namelen] = 0; mddev->persistent = 0; mddev->external = 1; mddev->major_version = 0; mddev->minor_version = 90; return len; } major = simple_strtoul(buf, &e, 10); if (e==buf || *e != '.') return -EINVAL; buf = e+1; minor = simple_strtoul(buf, &e, 10); if (e==buf || (*e && *e != '\n') ) return -EINVAL; if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) return -ENOENT; mddev->major_version = major; mddev->minor_version = minor; mddev->persistent = 1; mddev->external = 0; return len; } static struct md_sysfs_entry md_metadata = __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); static ssize_t action_show(struct mddev *mddev, char *page) { char *type = "idle"; if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) type = "frozen"; else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) type = "reshape"; else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) type = "resync"; else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) type = "check"; else type = "repair"; } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) type = "recover"; } return sprintf(page, "%s\n", type); } static void reap_sync_thread(struct mddev *mddev); static ssize_t action_store(struct mddev *mddev, const char *page, size_t len) { if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (cmd_match(page, "frozen")) set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); else clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); reap_sync_thread(mddev); } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return -EBUSY; else if (cmd_match(page, "resync")) set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); else if (cmd_match(page, "recover")) { set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); } else if (cmd_match(page, "reshape")) { int err; if (mddev->pers->start_reshape == NULL) return -EINVAL; err = mddev->pers->start_reshape(mddev); if (err) return err; sysfs_notify(&mddev->kobj, NULL, "degraded"); } else { if (cmd_match(page, "check")) set_bit(MD_RECOVERY_CHECK, &mddev->recovery); else if (!cmd_match(page, "repair")) return -EINVAL; set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); sysfs_notify_dirent_safe(mddev->sysfs_action); return len; } static ssize_t mismatch_cnt_show(struct mddev *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long) mddev->resync_mismatches); } static struct md_sysfs_entry md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); static ssize_t sync_min_show(struct mddev *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_min(mddev), mddev->sync_speed_min ? "local": "system"); } static ssize_t sync_min_store(struct mddev *mddev, const char *buf, size_t len) { int min; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_min = 0; return len; } min = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || min <= 0) return -EINVAL; mddev->sync_speed_min = min; return len; } static struct md_sysfs_entry md_sync_min = __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); static ssize_t sync_max_show(struct mddev *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_max(mddev), mddev->sync_speed_max ? "local": "system"); } static ssize_t sync_max_store(struct mddev *mddev, const char *buf, size_t len) { int max; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_max = 0; return len; } max = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || max <= 0) return -EINVAL; mddev->sync_speed_max = max; return len; } static struct md_sysfs_entry md_sync_max = __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); static ssize_t degraded_show(struct mddev *mddev, char *page) { return sprintf(page, "%d\n", mddev->degraded); } static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); static ssize_t sync_force_parallel_show(struct mddev *mddev, char *page) { return sprintf(page, "%d\n", mddev->parallel_resync); } static ssize_t sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) { long n; if (strict_strtol(buf, 10, &n)) return -EINVAL; if (n != 0 && n != 1) return -EINVAL; mddev->parallel_resync = n; if (mddev->sync_thread) wake_up(&resync_wait); return len; } /* force parallel resync, even with shared block devices */ static struct md_sysfs_entry md_sync_force_parallel = __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, sync_force_parallel_show, sync_force_parallel_store); static ssize_t sync_speed_show(struct mddev *mddev, char *page) { unsigned long resync, dt, db; if (mddev->curr_resync == 0) return sprintf(page, "none\n"); resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); dt = (jiffies - mddev->resync_mark) / HZ; if (!dt) dt++; db = resync - mddev->resync_mark_cnt; return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ } static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); static ssize_t sync_completed_show(struct mddev *mddev, char *page) { unsigned long long max_sectors, resync; if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return sprintf(page, "none\n"); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_sectors = mddev->resync_max_sectors; else max_sectors = mddev->dev_sectors; resync = mddev->curr_resync_completed; return sprintf(page, "%llu / %llu\n", resync, max_sectors); } static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); static ssize_t min_sync_show(struct mddev *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->resync_min); } static ssize_t min_sync_store(struct mddev *mddev, const char *buf, size_t len) { unsigned long long min; if (strict_strtoull(buf, 10, &min)) return -EINVAL; if (min > mddev->resync_max) return -EINVAL; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; /* Must be a multiple of chunk_size */ if (mddev->chunk_sectors) { sector_t temp = min; if (sector_div(temp, mddev->chunk_sectors)) return -EINVAL; } mddev->resync_min = min; return len; } static struct md_sysfs_entry md_min_sync = __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); static ssize_t max_sync_show(struct mddev *mddev, char *page) { if (mddev->resync_max == MaxSector) return sprintf(page, "max\n"); else return sprintf(page, "%llu\n", (unsigned long long)mddev->resync_max); } static ssize_t max_sync_store(struct mddev *mddev, const char *buf, size_t len) { if (strncmp(buf, "max", 3) == 0) mddev->resync_max = MaxSector; else { unsigned long long max; if (strict_strtoull(buf, 10, &max)) return -EINVAL; if (max < mddev->resync_min) return -EINVAL; if (max < mddev->resync_max && mddev->ro == 0 && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) return -EBUSY; /* Must be a multiple of chunk_size */ if (mddev->chunk_sectors) { sector_t temp = max; if (sector_div(temp, mddev->chunk_sectors)) return -EINVAL; } mddev->resync_max = max; } wake_up(&mddev->recovery_wait); return len; } static struct md_sysfs_entry md_max_sync = __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); static ssize_t suspend_lo_show(struct mddev *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); } static ssize_t suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); unsigned long long old = mddev->suspend_lo; if (mddev->pers == NULL || mddev->pers->quiesce == NULL) return -EINVAL; if (buf == e || (*e && *e != '\n')) return -EINVAL; mddev->suspend_lo = new; if (new >= old) /* Shrinking suspended region */ mddev->pers->quiesce(mddev, 2); else { /* Expanding suspended region - need to wait */ mddev->pers->quiesce(mddev, 1); mddev->pers->quiesce(mddev, 0); } return len; } static struct md_sysfs_entry md_suspend_lo = __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); static ssize_t suspend_hi_show(struct mddev *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); } static ssize_t suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); unsigned long long old = mddev->suspend_hi; if (mddev->pers == NULL || mddev->pers->quiesce == NULL) return -EINVAL; if (buf == e || (*e && *e != '\n')) return -EINVAL; mddev->suspend_hi = new; if (new <= old) /* Shrinking suspended region */ mddev->pers->quiesce(mddev, 2); else { /* Expanding suspended region - need to wait */ mddev->pers->quiesce(mddev, 1); mddev->pers->quiesce(mddev, 0); } return len; } static struct md_sysfs_entry md_suspend_hi = __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); static ssize_t reshape_position_show(struct mddev *mddev, char *page) { if (mddev->reshape_position != MaxSector) return sprintf(page, "%llu\n", (unsigned long long)mddev->reshape_position); strcpy(page, "none\n"); return 5; } static ssize_t reshape_position_store(struct mddev *mddev, const char *buf, size_t len) { char *e; unsigned long long new = simple_strtoull(buf, &e, 10); if (mddev->pers) return -EBUSY; if (buf == e || (*e && *e != '\n')) return -EINVAL; mddev->reshape_position = new; mddev->delta_disks = 0; mddev->new_level = mddev->level; mddev->new_layout = mddev->layout; mddev->new_chunk_sectors = mddev->chunk_sectors; return len; } static struct md_sysfs_entry md_reshape_position = __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, reshape_position_store); static ssize_t array_size_show(struct mddev *mddev, char *page) { if (mddev->external_size) return sprintf(page, "%llu\n", (unsigned long long)mddev->array_sectors/2); else return sprintf(page, "default\n"); } static ssize_t array_size_store(struct mddev *mddev, const char *buf, size_t len) { sector_t sectors; if (strncmp(buf, "default", 7) == 0) { if (mddev->pers) sectors = mddev->pers->size(mddev, 0, 0); else sectors = mddev->array_sectors; mddev->external_size = 0; } else { if (strict_blocks_to_sectors(buf, §ors) < 0) return -EINVAL; if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) return -E2BIG; mddev->external_size = 1; } mddev->array_sectors = sectors; if (mddev->pers) { set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); } return len; } static struct md_sysfs_entry md_array_size = __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, array_size_store); static struct attribute *md_default_attrs[] = { &md_level.attr, &md_layout.attr, &md_raid_disks.attr, &md_chunk_size.attr, &md_size.attr, &md_resync_start.attr, &md_metadata.attr, &md_new_device.attr, &md_safe_delay.attr, &md_array_state.attr, &md_reshape_position.attr, &md_array_size.attr, &max_corr_read_errors.attr, NULL, }; static struct attribute *md_redundancy_attrs[] = { &md_scan_mode.attr, &md_mismatches.attr, &md_sync_min.attr, &md_sync_max.attr, &md_sync_speed.attr, &md_sync_force_parallel.attr, &md_sync_completed.attr, &md_min_sync.attr, &md_max_sync.attr, &md_suspend_lo.attr, &md_suspend_hi.attr, &md_bitmap.attr, &md_degraded.attr, NULL, }; static struct attribute_group md_redundancy_group = { .name = NULL, .attrs = md_redundancy_attrs, }; static ssize_t md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); struct mddev *mddev = container_of(kobj, struct mddev, kobj); ssize_t rv; if (!entry->show) return -EIO; spin_lock(&all_mddevs_lock); if (list_empty(&mddev->all_mddevs)) { spin_unlock(&all_mddevs_lock); return -EBUSY; } mddev_get(mddev); spin_unlock(&all_mddevs_lock); rv = mddev_lock(mddev); if (!rv) { rv = entry->show(mddev, page); mddev_unlock(mddev); } mddev_put(mddev); return rv; } static ssize_t md_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); struct mddev *mddev = container_of(kobj, struct mddev, kobj); ssize_t rv; if (!entry->store) return -EIO; if (!capable(CAP_SYS_ADMIN)) return -EACCES; spin_lock(&all_mddevs_lock); if (list_empty(&mddev->all_mddevs)) { spin_unlock(&all_mddevs_lock); return -EBUSY; } mddev_get(mddev); spin_unlock(&all_mddevs_lock); rv = mddev_lock(mddev); if (!rv) { rv = entry->store(mddev, page, length); mddev_unlock(mddev); } mddev_put(mddev); return rv; } static void md_free(struct kobject *ko) { struct mddev *mddev = container_of(ko, struct mddev, kobj); if (mddev->sysfs_state) sysfs_put(mddev->sysfs_state); if (mddev->gendisk) { del_gendisk(mddev->gendisk); put_disk(mddev->gendisk); } if (mddev->queue) blk_cleanup_queue(mddev->queue); kfree(mddev); } static const struct sysfs_ops md_sysfs_ops = { .show = md_attr_show, .store = md_attr_store, }; static struct kobj_type md_ktype = { .release = md_free, .sysfs_ops = &md_sysfs_ops, .default_attrs = md_default_attrs, }; int mdp_major = 0; static void mddev_delayed_delete(struct work_struct *ws) { struct mddev *mddev = container_of(ws, struct mddev, del_work); sysfs_remove_group(&mddev->kobj, &md_bitmap_group); kobject_del(&mddev->kobj); kobject_put(&mddev->kobj); } static int md_alloc(dev_t dev, char *name) { static DEFINE_MUTEX(disks_mutex); struct mddev *mddev = mddev_find(dev); struct gendisk *disk; int partitioned; int shift; int unit; int error; if (!mddev) return -ENODEV; partitioned = (MAJOR(mddev->unit) != MD_MAJOR); shift = partitioned ? MdpMinorShift : 0; unit = MINOR(mddev->unit) >> shift; /* wait for any previous instance of this device to be * completely removed (mddev_delayed_delete). */ flush_workqueue(md_misc_wq); mutex_lock(&disks_mutex); error = -EEXIST; if (mddev->gendisk) goto abort; if (name) { /* Need to ensure that 'name' is not a duplicate. */ struct mddev *mddev2; spin_lock(&all_mddevs_lock); list_for_each_entry(mddev2, &all_mddevs, all_mddevs) if (mddev2->gendisk && strcmp(mddev2->gendisk->disk_name, name) == 0) { spin_unlock(&all_mddevs_lock); goto abort; } spin_unlock(&all_mddevs_lock); } error = -ENOMEM; mddev->queue = blk_alloc_queue(GFP_KERNEL); if (!mddev->queue) goto abort; mddev->queue->queuedata = mddev; blk_queue_make_request(mddev->queue, md_make_request); blk_set_stacking_limits(&mddev->queue->limits); disk = alloc_disk(1 << shift); if (!disk) { blk_cleanup_queue(mddev->queue); mddev->queue = NULL; goto abort; } disk->major = MAJOR(mddev->unit); disk->first_minor = unit << shift; if (name) strcpy(disk->disk_name, name); else if (partitioned) sprintf(disk->disk_name, "md_d%d", unit); else sprintf(disk->disk_name, "md%d", unit); disk->fops = &md_fops; disk->private_data = mddev; disk->queue = mddev->queue; blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); /* Allow extended partitions. This makes the * 'mdp' device redundant, but we can't really * remove it now. */ disk->flags |= GENHD_FL_EXT_DEVT; mddev->gendisk = disk; /* As soon as we call add_disk(), another thread could get * through to md_open, so make sure it doesn't get too far */ mutex_lock(&mddev->open_mutex); add_disk(disk); error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk_to_dev(disk)->kobj, "%s", "md"); if (error) { /* This isn't possible, but as kobject_init_and_add is marked * __must_check, we must do something with the result */ printk(KERN_WARNING "md: cannot register %s/md - name in use\n", disk->disk_name); error = 0; } if (mddev->kobj.sd && sysfs_create_group(&mddev->kobj, &md_bitmap_group)) printk(KERN_DEBUG "pointless warning\n"); mutex_unlock(&mddev->open_mutex); abort: mutex_unlock(&disks_mutex); if (!error && mddev->kobj.sd) { kobject_uevent(&mddev->kobj, KOBJ_ADD); mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); } mddev_put(mddev); return error; } static struct kobject *md_probe(dev_t dev, int *part, void *data) { md_alloc(dev, NULL); return NULL; } static int add_named_array(const char *val, struct kernel_param *kp) { /* val must be "md_*" where * is not all digits. * We allocate an array with a large free minor number, and * set the name to val. val must not already be an active name. */ int len = strlen(val); char buf[DISK_NAME_LEN]; while (len && val[len-1] == '\n') len--; if (len >= DISK_NAME_LEN) return -E2BIG; strlcpy(buf, val, len+1); if (strncmp(buf, "md_", 3) != 0) return -EINVAL; return md_alloc(0, buf); } static void md_safemode_timeout(unsigned long data) { struct mddev *mddev = (struct mddev *) data; if (!atomic_read(&mddev->writes_pending)) { mddev->safemode = 1; if (mddev->external) sysfs_notify_dirent_safe(mddev->sysfs_state); } md_wakeup_thread(mddev->thread); } static int start_dirty_degraded; int md_run(struct mddev *mddev) { int err; struct md_rdev *rdev; struct md_personality *pers; if (list_empty(&mddev->disks)) /* cannot run an array with no devices.. */ return -EINVAL; if (mddev->pers) return -EBUSY; /* Cannot run until previous stop completes properly */ if (mddev->sysfs_active) return -EBUSY; /* * Analyze all RAID superblock(s) */ if (!mddev->raid_disks) { if (!mddev->persistent) return -EINVAL; analyze_sbs(mddev); } if (mddev->level != LEVEL_NONE) request_module("md-level-%d", mddev->level); else if (mddev->clevel[0]) request_module("md-%s", mddev->clevel); /* * Drop all container device buffers, from now on * the only valid external interface is through the md * device. */ rdev_for_each(rdev, mddev) { if (test_bit(Faulty, &rdev->flags)) continue; sync_blockdev(rdev->bdev); invalidate_bdev(rdev->bdev); /* perform some consistency tests on the device. * We don't want the data to overlap the metadata, * Internal Bitmap issues have been handled elsewhere. */ if (rdev->meta_bdev) { /* Nothing to check */; } else if (rdev->data_offset < rdev->sb_start) { if (mddev->dev_sectors && rdev->data_offset + mddev->dev_sectors > rdev->sb_start) { printk("md: %s: data overlaps metadata\n", mdname(mddev)); return -EINVAL; } } else { if (rdev->sb_start + rdev->sb_size/512 > rdev->data_offset) { printk("md: %s: metadata overlaps data\n", mdname(mddev)); return -EINVAL; } } sysfs_notify_dirent_safe(rdev->sysfs_state); } if (mddev->bio_set == NULL) mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(struct mddev *)); spin_lock(&pers_lock); pers = find_pers(mddev->level, mddev->clevel); if (!pers || !try_module_get(pers->owner)) { spin_unlock(&pers_lock); if (mddev->level != LEVEL_NONE) printk(KERN_WARNING "md: personality for level %d is not loaded!\n", mddev->level); else printk(KERN_WARNING "md: personality for level %s is not loaded!\n", mddev->clevel); return -EINVAL; } mddev->pers = pers; spin_unlock(&pers_lock); if (mddev->level != pers->level) { mddev->level = pers->level; mddev->new_level = pers->level; } strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); if (mddev->reshape_position != MaxSector && pers->start_reshape == NULL) { /* This personality cannot handle reshaping... */ mddev->pers = NULL; module_put(pers->owner); return -EINVAL; } if (pers->sync_request) { /* Warn if this is a potentially silly * configuration. */ char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; struct md_rdev *rdev2; int warned = 0; rdev_for_each(rdev, mddev) rdev_for_each(rdev2, mddev) { if (rdev < rdev2 && rdev->bdev->bd_contains == rdev2->bdev->bd_contains) { printk(KERN_WARNING "%s: WARNING: %s appears to be" " on the same physical disk as" " %s.\n", mdname(mddev), bdevname(rdev->bdev,b), bdevname(rdev2->bdev,b2)); warned = 1; } } if (warned) printk(KERN_WARNING "True protection against single-disk" " failure might be compromised.\n"); } mddev->recovery = 0; /* may be over-ridden by personality */ mddev->resync_max_sectors = mddev->dev_sectors; mddev->ok_start_degraded = start_dirty_degraded; if (start_readonly && mddev->ro == 0) mddev->ro = 2; /* read-only, but switch on first write */ err = mddev->pers->run(mddev); if (err) printk(KERN_ERR "md: pers->run() failed ...\n"); else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { WARN_ONCE(!mddev->external_size, "%s: default size too small," " but 'external_size' not in effect?\n", __func__); printk(KERN_ERR "md: invalid array_size %llu > default size %llu\n", (unsigned long long)mddev->array_sectors / 2, (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); err = -EINVAL; mddev->pers->stop(mddev); } if (err == 0 && mddev->pers->sync_request) { err = bitmap_create(mddev); if (err) { printk(KERN_ERR "%s: failed to create bitmap (%d)\n", mdname(mddev), err); mddev->pers->stop(mddev); } } if (err) { module_put(mddev->pers->owner); mddev->pers = NULL; bitmap_destroy(mddev); return err; } if (mddev->pers->sync_request) { if (mddev->kobj.sd && sysfs_create_group(&mddev->kobj, &md_redundancy_group)) printk(KERN_WARNING "md: cannot register extra attributes for %s\n", mdname(mddev)); mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); } else if (mddev->ro == 2) /* auto-readonly not meaningful */ mddev->ro = 0; atomic_set(&mddev->writes_pending,0); atomic_set(&mddev->max_corr_read_errors, MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); mddev->safemode = 0; mddev->safemode_timer.function = md_safemode_timeout; mddev->safemode_timer.data = (unsigned long) mddev; mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ mddev->in_sync = 1; smp_wmb(); mddev->ready = 1; rdev_for_each(rdev, mddev) if (rdev->raid_disk >= 0) if (sysfs_link_rdev(mddev, rdev)) /* failure here is OK */; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (mddev->flags) md_update_sb(mddev, 0); md_new_event(mddev); sysfs_notify_dirent_safe(mddev->sysfs_state); sysfs_notify_dirent_safe(mddev->sysfs_action); sysfs_notify(&mddev->kobj, NULL, "degraded"); return 0; } EXPORT_SYMBOL_GPL(md_run); static int do_md_run(struct mddev *mddev) { int err; err = md_run(mddev); if (err) goto out; err = bitmap_load(mddev); if (err) { bitmap_destroy(mddev); goto out; } md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ set_capacity(mddev->gendisk, mddev->array_sectors); revalidate_disk(mddev->gendisk); mddev->changed = 1; kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); out: return err; } static int restart_array(struct mddev *mddev) { struct gendisk *disk = mddev->gendisk; /* Complain if it has no devices */ if (list_empty(&mddev->disks)) return -ENXIO; if (!mddev->pers) return -EINVAL; if (!mddev->ro) return -EBUSY; mddev->safemode = 0; mddev->ro = 0; set_disk_ro(disk, 0); printk(KERN_INFO "md: %s switched to read-write mode.\n", mdname(mddev)); /* Kick recovery or resync if necessary */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); sysfs_notify_dirent_safe(mddev->sysfs_state); return 0; } /* similar to deny_write_access, but accounts for our holding a reference * to the file ourselves */ static int deny_bitmap_write_access(struct file * file) { struct inode *inode = file->f_mapping->host; spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) > 1) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_set(&inode->i_writecount, -1); spin_unlock(&inode->i_lock); return 0; } void restore_bitmap_write_access(struct file *file) { struct inode *inode = file->f_mapping->host; spin_lock(&inode->i_lock); atomic_set(&inode->i_writecount, 1); spin_unlock(&inode->i_lock); } static void md_clean(struct mddev *mddev) { mddev->array_sectors = 0; mddev->external_size = 0; mddev->dev_sectors = 0; mddev->raid_disks = 0; mddev->recovery_cp = 0; mddev->resync_min = 0; mddev->resync_max = MaxSector; mddev->reshape_position = MaxSector; mddev->external = 0; mddev->persistent = 0; mddev->level = LEVEL_NONE; mddev->clevel[0] = 0; mddev->flags = 0; mddev->ro = 0; mddev->metadata_type[0] = 0; mddev->chunk_sectors = 0; mddev->ctime = mddev->utime = 0; mddev->layout = 0; mddev->max_disks = 0; mddev->events = 0; mddev->can_decrease_events = 0; mddev->delta_disks = 0; mddev->new_level = LEVEL_NONE; mddev->new_layout = 0; mddev->new_chunk_sectors = 0; mddev->curr_resync = 0; mddev->resync_mismatches = 0; mddev->suspend_lo = mddev->suspend_hi = 0; mddev->sync_speed_min = mddev->sync_speed_max = 0; mddev->recovery = 0; mddev->in_sync = 0; mddev->changed = 0; mddev->degraded = 0; mddev->safemode = 0; mddev->merge_check_needed = 0; mddev->bitmap_info.offset = 0; mddev->bitmap_info.default_offset = 0; mddev->bitmap_info.chunksize = 0; mddev->bitmap_info.daemon_sleep = 0; mddev->bitmap_info.max_write_behind = 0; } static void __md_stop_writes(struct mddev *mddev) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); set_bit(MD_RECOVERY_INTR, &mddev->recovery); reap_sync_thread(mddev); } del_timer_sync(&mddev->safemode_timer); bitmap_flush(mddev); md_super_wait(mddev); if (!mddev->in_sync || mddev->flags) { /* mark array as shutdown cleanly */ mddev->in_sync = 1; md_update_sb(mddev, 1); } } void md_stop_writes(struct mddev *mddev) { mddev_lock(mddev); __md_stop_writes(mddev); mddev_unlock(mddev); } EXPORT_SYMBOL_GPL(md_stop_writes); void md_stop(struct mddev *mddev) { mddev->ready = 0; mddev->pers->stop(mddev); if (mddev->pers->sync_request && mddev->to_remove == NULL) mddev->to_remove = &md_redundancy_group; module_put(mddev->pers->owner); mddev->pers = NULL; clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); } EXPORT_SYMBOL_GPL(md_stop); static int md_set_readonly(struct mddev *mddev, int is_open) { int err = 0; mutex_lock(&mddev->open_mutex); if (atomic_read(&mddev->openers) > is_open) { printk("md: %s still in use.\n",mdname(mddev)); err = -EBUSY; goto out; } if (mddev->pers) { __md_stop_writes(mddev); err = -ENXIO; if (mddev->ro==1) goto out; mddev->ro = 1; set_disk_ro(mddev->gendisk, 1); clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); sysfs_notify_dirent_safe(mddev->sysfs_state); err = 0; } out: mutex_unlock(&mddev->open_mutex); return err; } /* mode: * 0 - completely stop and dis-assemble array * 2 - stop but do not disassemble array */ static int do_md_stop(struct mddev * mddev, int mode, int is_open) { struct gendisk *disk = mddev->gendisk; struct md_rdev *rdev; mutex_lock(&mddev->open_mutex); if (atomic_read(&mddev->openers) > is_open || mddev->sysfs_active) { printk("md: %s still in use.\n",mdname(mddev)); mutex_unlock(&mddev->open_mutex); return -EBUSY; } if (mddev->pers) { if (mddev->ro) set_disk_ro(disk, 0); __md_stop_writes(mddev); md_stop(mddev); mddev->queue->merge_bvec_fn = NULL; mddev->queue->backing_dev_info.congested_fn = NULL; /* tell userspace to handle 'inactive' */ sysfs_notify_dirent_safe(mddev->sysfs_state); rdev_for_each(rdev, mddev) if (rdev->raid_disk >= 0) sysfs_unlink_rdev(mddev, rdev); set_capacity(disk, 0); mutex_unlock(&mddev->open_mutex); mddev->changed = 1; revalidate_disk(disk); if (mddev->ro) mddev->ro = 0; } else mutex_unlock(&mddev->open_mutex); /* * Free resources if final stop */ if (mode == 0) { printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); bitmap_destroy(mddev); if (mddev->bitmap_info.file) { restore_bitmap_write_access(mddev->bitmap_info.file); fput(mddev->bitmap_info.file); mddev->bitmap_info.file = NULL; } mddev->bitmap_info.offset = 0; export_array(mddev); md_clean(mddev); kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); if (mddev->hold_active == UNTIL_STOP) mddev->hold_active = 0; } blk_integrity_unregister(disk); md_new_event(mddev); sysfs_notify_dirent_safe(mddev->sysfs_state); return 0; } #ifndef MODULE static void autorun_array(struct mddev *mddev) { struct md_rdev *rdev; int err; if (list_empty(&mddev->disks)) return; printk(KERN_INFO "md: running: "); rdev_for_each(rdev, mddev) { char b[BDEVNAME_SIZE]; printk("<%s>", bdevname(rdev->bdev,b)); } printk("\n"); err = do_md_run(mddev); if (err) { printk(KERN_WARNING "md: do_md_run() returned %d\n", err); do_md_stop(mddev, 0, 0); } } /* * lets try to run arrays based on all disks that have arrived * until now. (those are in pending_raid_disks) * * the method: pick the first pending disk, collect all disks with * the same UUID, remove all from the pending list and put them into * the 'same_array' list. Then order this list based on superblock * update time (freshest comes first), kick out 'old' disks and * compare superblocks. If everything's fine then run it. * * If "unit" is allocated, then bump its reference count */ static void autorun_devices(int part) { struct md_rdev *rdev0, *rdev, *tmp; struct mddev *mddev; char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: autorun ...\n"); while (!list_empty(&pending_raid_disks)) { int unit; dev_t dev; LIST_HEAD(candidates); rdev0 = list_entry(pending_raid_disks.next, struct md_rdev, same_set); printk(KERN_INFO "md: considering %s ...\n", bdevname(rdev0->bdev,b)); INIT_LIST_HEAD(&candidates); rdev_for_each_list(rdev, tmp, &pending_raid_disks) if (super_90_load(rdev, rdev0, 0) >= 0) { printk(KERN_INFO "md: adding %s ...\n", bdevname(rdev->bdev,b)); list_move(&rdev->same_set, &candidates); } /* * now we have a set of devices, with all of them having * mostly sane superblocks. It's time to allocate the * mddev. */ if (part) { dev = MKDEV(mdp_major, rdev0->preferred_minor << MdpMinorShift); unit = MINOR(dev) >> MdpMinorShift; } else { dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); unit = MINOR(dev); } if (rdev0->preferred_minor != unit) { printk(KERN_INFO "md: unit number in %s is bad: %d\n", bdevname(rdev0->bdev, b), rdev0->preferred_minor); break; } md_probe(dev, NULL, NULL); mddev = mddev_find(dev); if (!mddev || !mddev->gendisk) { if (mddev) mddev_put(mddev); printk(KERN_ERR "md: cannot allocate memory for md drive.\n"); break; } if (mddev_lock(mddev)) printk(KERN_WARNING "md: %s locked, cannot run\n", mdname(mddev)); else if (mddev->raid_disks || mddev->major_version || !list_empty(&mddev->disks)) { printk(KERN_WARNING "md: %s already running, cannot run %s\n", mdname(mddev), bdevname(rdev0->bdev,b)); mddev_unlock(mddev); } else { printk(KERN_INFO "md: created %s\n", mdname(mddev)); mddev->persistent = 1; rdev_for_each_list(rdev, tmp, &candidates) { list_del_init(&rdev->same_set); if (bind_rdev_to_array(rdev, mddev)) export_rdev(rdev); } autorun_array(mddev); mddev_unlock(mddev); } /* on success, candidates will be empty, on error * it won't... */ rdev_for_each_list(rdev, tmp, &candidates) { list_del_init(&rdev->same_set); export_rdev(rdev); } mddev_put(mddev); } printk(KERN_INFO "md: ... autorun DONE.\n"); } #endif /* !MODULE */ static int get_version(void __user * arg) { mdu_version_t ver; ver.major = MD_MAJOR_VERSION; ver.minor = MD_MINOR_VERSION; ver.patchlevel = MD_PATCHLEVEL_VERSION; if (copy_to_user(arg, &ver, sizeof(ver))) return -EFAULT; return 0; } static int get_array_info(struct mddev * mddev, void __user * arg) { mdu_array_info_t info; int nr,working,insync,failed,spare; struct md_rdev *rdev; nr=working=insync=failed=spare=0; rdev_for_each(rdev, mddev) { nr++; if (test_bit(Faulty, &rdev->flags)) failed++; else { working++; if (test_bit(In_sync, &rdev->flags)) insync++; else spare++; } } info.major_version = mddev->major_version; info.minor_version = mddev->minor_version; info.patch_version = MD_PATCHLEVEL_VERSION; info.ctime = mddev->ctime; info.level = mddev->level; info.size = mddev->dev_sectors / 2; if (info.size != mddev->dev_sectors / 2) /* overflow */ info.size = -1; info.nr_disks = nr; info.raid_disks = mddev->raid_disks; info.md_minor = mddev->md_minor; info.not_persistent= !mddev->persistent; info.utime = mddev->utime; info.state = 0; if (mddev->in_sync) info.state = (1<bitmap && mddev->bitmap_info.offset) info.state = (1<layout; info.chunk_size = mddev->chunk_sectors << 9; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int get_bitmap_file(struct mddev * mddev, void __user * arg) { mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ char *ptr, *buf = NULL; int err = -ENOMEM; if (md_allow_write(mddev)) file = kmalloc(sizeof(*file), GFP_NOIO); else file = kmalloc(sizeof(*file), GFP_KERNEL); if (!file) goto out; /* bitmap disabled, zero the first byte and copy out */ if (!mddev->bitmap || !mddev->bitmap->file) { file->pathname[0] = '\0'; goto copy_out; } buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); if (!buf) goto out; ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); if (IS_ERR(ptr)) goto out; strcpy(file->pathname, ptr); copy_out: err = 0; if (copy_to_user(arg, file, sizeof(*file))) err = -EFAULT; out: kfree(buf); kfree(file); return err; } static int get_disk_info(struct mddev * mddev, void __user * arg) { mdu_disk_info_t info; struct md_rdev *rdev; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; rdev = find_rdev_nr(mddev, info.number); if (rdev) { info.major = MAJOR(rdev->bdev->bd_dev); info.minor = MINOR(rdev->bdev->bd_dev); info.raid_disk = rdev->raid_disk; info.state = 0; if (test_bit(Faulty, &rdev->flags)) info.state |= (1<flags)) { info.state |= (1<flags)) info.state |= (1<major,info->minor); if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) return -EOVERFLOW; if (!mddev->raid_disks) { int err; /* expecting a device which has a superblock */ rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } if (!list_empty(&mddev->disks)) { struct md_rdev *rdev0 = list_entry(mddev->disks.next, struct md_rdev, same_set); err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) { printk(KERN_WARNING "md: %s has different UUID to %s\n", bdevname(rdev->bdev,b), bdevname(rdev0->bdev,b2)); export_rdev(rdev); return -EINVAL; } } err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); return err; } /* * add_new_disk can be used once the array is assembled * to add "hot spares". They must already have a superblock * written */ if (mddev->pers) { int err; if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } if (mddev->persistent) rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } /* set saved_raid_disk if appropriate */ if (!mddev->persistent) { if (info->state & (1<raid_disk < mddev->raid_disks) { rdev->raid_disk = info->raid_disk; set_bit(In_sync, &rdev->flags); } else rdev->raid_disk = -1; } else super_types[mddev->major_version]. validate_super(mddev, rdev); if ((info->state & (1<flags) || rdev->raid_disk != info->raid_disk)) { /* This was a hot-add request, but events doesn't * match, so reject it. */ export_rdev(rdev); return -EINVAL; } if (test_bit(In_sync, &rdev->flags)) rdev->saved_raid_disk = rdev->raid_disk; else rdev->saved_raid_disk = -1; clear_bit(In_sync, &rdev->flags); /* just to be sure */ if (info->state & (1<flags); else clear_bit(WriteMostly, &rdev->flags); rdev->raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (!err && !mddev->pers->hot_remove_disk) { /* If there is hot_add_disk but no hot_remove_disk * then added disks for geometry changes, * and should be added immediately. */ super_types[mddev->major_version]. validate_super(mddev, rdev); err = mddev->pers->hot_add_disk(mddev, rdev); if (err) unbind_rdev_from_array(rdev); } if (err) export_rdev(rdev); else sysfs_notify_dirent_safe(rdev->sysfs_state); md_update_sb(mddev, 1); if (mddev->degraded) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (!err) md_new_event(mddev); md_wakeup_thread(mddev->thread); return err; } /* otherwise, add_new_disk is only allowed * for major_version==0 superblocks */ if (mddev->major_version != 0) { printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", mdname(mddev)); return -EINVAL; } if (!(info->state & (1<desc_nr = info->number; if (info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; if (rdev->raid_disk < mddev->raid_disks) if (info->state & (1<flags); if (info->state & (1<flags); if (!mddev->persistent) { printk(KERN_INFO "md: nonpersistent superblock ...\n"); rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; } else rdev->sb_start = calc_dev_sboffset(rdev); rdev->sectors = rdev->sb_start; err = bind_rdev_to_array(rdev, mddev); if (err) { export_rdev(rdev); return err; } } return 0; } static int hot_remove_disk(struct mddev * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; struct md_rdev *rdev; rdev = find_rdev(mddev, dev); if (!rdev) return -ENXIO; if (rdev->raid_disk >= 0) goto busy; kick_rdev_from_array(rdev); md_update_sb(mddev, 1); md_new_event(mddev); return 0; busy: printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", bdevname(rdev->bdev,b), mdname(mddev)); return -EBUSY; } static int hot_add_disk(struct mddev * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; int err; struct md_rdev *rdev; if (!mddev->pers) return -ENODEV; if (mddev->major_version != 0) { printk(KERN_WARNING "%s: HOT_ADD may only be used with" " version-0 superblocks.\n", mdname(mddev)); return -EINVAL; } if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } rdev = md_import_device(dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return -EINVAL; } if (mddev->persistent) rdev->sb_start = calc_dev_sboffset(rdev); else rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; rdev->sectors = rdev->sb_start; if (test_bit(Faulty, &rdev->flags)) { printk(KERN_WARNING "md: can not hot-add faulty %s disk to %s!\n", bdevname(rdev->bdev,b), mdname(mddev)); err = -EINVAL; goto abort_export; } clear_bit(In_sync, &rdev->flags); rdev->desc_nr = -1; rdev->saved_raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (err) goto abort_export; /* * The rest should better be atomic, we can have disk failures * noticed in interrupt contexts ... */ rdev->raid_disk = -1; md_update_sb(mddev, 1); /* * Kick recovery, maybe this spare has to be added to the * array immediately. */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_new_event(mddev); return 0; abort_export: export_rdev(rdev); return err; } static int set_bitmap_file(struct mddev *mddev, int fd) { int err; if (mddev->pers) { if (!mddev->pers->quiesce) return -EBUSY; if (mddev->recovery || mddev->sync_thread) return -EBUSY; /* we should be able to change the bitmap.. */ } if (fd >= 0) { if (mddev->bitmap) return -EEXIST; /* cannot add when bitmap is present */ mddev->bitmap_info.file = fget(fd); if (mddev->bitmap_info.file == NULL) { printk(KERN_ERR "%s: error: failed to get bitmap file\n", mdname(mddev)); return -EBADF; } err = deny_bitmap_write_access(mddev->bitmap_info.file); if (err) { printk(KERN_ERR "%s: error: bitmap file is already in use\n", mdname(mddev)); fput(mddev->bitmap_info.file); mddev->bitmap_info.file = NULL; return err; } mddev->bitmap_info.offset = 0; /* file overrides offset */ } else if (mddev->bitmap == NULL) return -ENOENT; /* cannot remove what isn't there */ err = 0; if (mddev->pers) { mddev->pers->quiesce(mddev, 1); if (fd >= 0) { err = bitmap_create(mddev); if (!err) err = bitmap_load(mddev); } if (fd < 0 || err) { bitmap_destroy(mddev); fd = -1; /* make sure to put the file */ } mddev->pers->quiesce(mddev, 0); } if (fd < 0) { if (mddev->bitmap_info.file) { restore_bitmap_write_access(mddev->bitmap_info.file); fput(mddev->bitmap_info.file); } mddev->bitmap_info.file = NULL; } return err; } /* * set_array_info is used two different ways * The original usage is when creating a new array. * In this usage, raid_disks is > 0 and it together with * level, size, not_persistent,layout,chunksize determine the * shape of the array. * This will always create an array with a type-0.90.0 superblock. * The newer usage is when assembling an array. * In this case raid_disks will be 0, and the major_version field is * use to determine which style super-blocks are to be found on the devices. * The minor and patch _version numbers are also kept incase the * super_block handler wishes to interpret them. */ static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) { if (info->raid_disks == 0) { /* just setting version number for superblock loading */ if (info->major_version < 0 || info->major_version >= ARRAY_SIZE(super_types) || super_types[info->major_version].name == NULL) { /* maybe try to auto-load a module? */ printk(KERN_INFO "md: superblock version %d not known\n", info->major_version); return -EINVAL; } mddev->major_version = info->major_version; mddev->minor_version = info->minor_version; mddev->patch_version = info->patch_version; mddev->persistent = !info->not_persistent; /* ensure mddev_put doesn't delete this now that there * is some minimal configuration. */ mddev->ctime = get_seconds(); return 0; } mddev->major_version = MD_MAJOR_VERSION; mddev->minor_version = MD_MINOR_VERSION; mddev->patch_version = MD_PATCHLEVEL_VERSION; mddev->ctime = get_seconds(); mddev->level = info->level; mddev->clevel[0] = 0; mddev->dev_sectors = 2 * (sector_t)info->size; mddev->raid_disks = info->raid_disks; /* don't set md_minor, it is determined by which /dev/md* was * openned */ if (info->state & (1<recovery_cp = MaxSector; else mddev->recovery_cp = 0; mddev->persistent = ! info->not_persistent; mddev->external = 0; mddev->layout = info->layout; mddev->chunk_sectors = info->chunk_size >> 9; mddev->max_disks = MD_SB_DISKS; if (mddev->persistent) mddev->flags = 0; set_bit(MD_CHANGE_DEVS, &mddev->flags); mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; mddev->bitmap_info.offset = 0; mddev->reshape_position = MaxSector; /* * Generate a 128 bit UUID */ get_random_bytes(mddev->uuid, 16); mddev->new_level = mddev->level; mddev->new_chunk_sectors = mddev->chunk_sectors; mddev->new_layout = mddev->layout; mddev->delta_disks = 0; return 0; } void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) { WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); if (mddev->external_size) return; mddev->array_sectors = array_sectors; } EXPORT_SYMBOL(md_set_array_sectors); static int update_size(struct mddev *mddev, sector_t num_sectors) { struct md_rdev *rdev; int rv; int fit = (num_sectors == 0); if (mddev->pers->resize == NULL) return -EINVAL; /* The "num_sectors" is the number of sectors of each device that * is used. This can only make sense for arrays with redundancy. * linear and raid0 always use whatever space is available. We can only * consider changing this number if no resync or reconstruction is * happening, and if the new size is acceptable. It must fit before the * sb_start or, if that is sync_thread) return -EBUSY; if (mddev->bitmap) /* Sorry, cannot grow a bitmap yet, just remove it, * grow, and re-add. */ return -EBUSY; rdev_for_each(rdev, mddev) { sector_t avail = rdev->sectors; if (fit && (num_sectors == 0 || num_sectors > avail)) num_sectors = avail; if (avail < num_sectors) return -ENOSPC; } rv = mddev->pers->resize(mddev, num_sectors); if (!rv) revalidate_disk(mddev->gendisk); return rv; } static int update_raid_disks(struct mddev *mddev, int raid_disks) { int rv; /* change the number of raid disks */ if (mddev->pers->check_reshape == NULL) return -EINVAL; if (raid_disks <= 0 || (mddev->max_disks && raid_disks >= mddev->max_disks)) return -EINVAL; if (mddev->sync_thread || mddev->reshape_position != MaxSector) return -EBUSY; mddev->delta_disks = raid_disks - mddev->raid_disks; rv = mddev->pers->check_reshape(mddev); if (rv < 0) mddev->delta_disks = 0; return rv; } /* * update_array_info is used to change the configuration of an * on-line array. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size * fields in the info are checked against the array. * Any differences that cannot be handled will cause an error. * Normally, only one change can be managed at a time. */ static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) { int rv = 0; int cnt = 0; int state = 0; /* calculate expected state,ignoring low bits */ if (mddev->bitmap && mddev->bitmap_info.offset) state |= (1 << MD_SB_BITMAP_PRESENT); if (mddev->major_version != info->major_version || mddev->minor_version != info->minor_version || /* mddev->patch_version != info->patch_version || */ mddev->ctime != info->ctime || mddev->level != info->level || /* mddev->layout != info->layout || */ !mddev->persistent != info->not_persistent|| mddev->chunk_sectors != info->chunk_size >> 9 || /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ ((state^info->state) & 0xfffffe00) ) return -EINVAL; /* Check there is only one change */ if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) cnt++; if (mddev->raid_disks != info->raid_disks) cnt++; if (mddev->layout != info->layout) cnt++; if ((state ^ info->state) & (1< 1) return -EINVAL; if (mddev->layout != info->layout) { /* Change layout * we don't need to do anything at the md level, the * personality will take care of it all. */ if (mddev->pers->check_reshape == NULL) return -EINVAL; else { mddev->new_layout = info->layout; rv = mddev->pers->check_reshape(mddev); if (rv) mddev->new_layout = mddev->layout; return rv; } } if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) rv = update_size(mddev, (sector_t)info->size * 2); if (mddev->raid_disks != info->raid_disks) rv = update_raid_disks(mddev, info->raid_disks); if ((state ^ info->state) & (1<pers->quiesce == NULL) return -EINVAL; if (mddev->recovery || mddev->sync_thread) return -EBUSY; if (info->state & (1<bitmap) return -EEXIST; if (mddev->bitmap_info.default_offset == 0) return -EINVAL; mddev->bitmap_info.offset = mddev->bitmap_info.default_offset; mddev->pers->quiesce(mddev, 1); rv = bitmap_create(mddev); if (!rv) rv = bitmap_load(mddev); if (rv) bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); } else { /* remove the bitmap */ if (!mddev->bitmap) return -ENOENT; if (mddev->bitmap->file) return -EINVAL; mddev->pers->quiesce(mddev, 1); bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); mddev->bitmap_info.offset = 0; } } md_update_sb(mddev, 1); return rv; } static int set_disk_faulty(struct mddev *mddev, dev_t dev) { struct md_rdev *rdev; if (mddev->pers == NULL) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENODEV; md_error(mddev, rdev); if (!test_bit(Faulty, &rdev->flags)) return -EBUSY; return 0; } /* * We have a problem here : there is no easy way to give a CHS * virtual geometry. We currently pretend that we have a 2 heads * 4 sectors (with a BIG number of cylinders...). This drives * dosfs just mad... ;-) */ static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct mddev *mddev = bdev->bd_disk->private_data; geo->heads = 2; geo->sectors = 4; geo->cylinders = mddev->array_sectors / 8; return 0; } static int md_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { int err = 0; void __user *argp = (void __user *)arg; struct mddev *mddev = NULL; int ro; switch (cmd) { case RAID_VERSION: case GET_ARRAY_INFO: case GET_DISK_INFO: break; default: if (!capable(CAP_SYS_ADMIN)) return -EACCES; } /* * Commands dealing with the RAID driver but not any * particular array: */ switch (cmd) { case RAID_VERSION: err = get_version(argp); goto done; case PRINT_RAID_DEBUG: err = 0; md_print_devices(); goto done; #ifndef MODULE case RAID_AUTORUN: err = 0; autostart_arrays(arg); goto done; #endif default:; } /* * Commands creating/starting a new array: */ mddev = bdev->bd_disk->private_data; if (!mddev) { BUG(); goto abort; } err = mddev_lock(mddev); if (err) { printk(KERN_INFO "md: ioctl lock interrupted, reason %d, cmd %d\n", err, cmd); goto abort; } switch (cmd) { case SET_ARRAY_INFO: { mdu_array_info_t info; if (!arg) memset(&info, 0, sizeof(info)); else if (copy_from_user(&info, argp, sizeof(info))) { err = -EFAULT; goto abort_unlock; } if (mddev->pers) { err = update_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't update" " array info. %d\n", err); goto abort_unlock; } goto done_unlock; } if (!list_empty(&mddev->disks)) { printk(KERN_WARNING "md: array %s already has disks!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } if (mddev->raid_disks) { printk(KERN_WARNING "md: array %s already initialised!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } err = set_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't set" " array info. %d\n", err); goto abort_unlock; } } goto done_unlock; default:; } /* * Commands querying/configuring an existing array: */ /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ if ((!mddev->raid_disks && !mddev->external) && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE && cmd != GET_BITMAP_FILE) { err = -ENODEV; goto abort_unlock; } /* * Commands even a read-only array can execute: */ switch (cmd) { case GET_ARRAY_INFO: err = get_array_info(mddev, argp); goto done_unlock; case GET_BITMAP_FILE: err = get_bitmap_file(mddev, argp); goto done_unlock; case GET_DISK_INFO: err = get_disk_info(mddev, argp); goto done_unlock; case RESTART_ARRAY_RW: err = restart_array(mddev); goto done_unlock; case STOP_ARRAY: err = do_md_stop(mddev, 0, 1); goto done_unlock; case STOP_ARRAY_RO: err = md_set_readonly(mddev, 1); goto done_unlock; case BLKROSET: if (get_user(ro, (int __user *)(arg))) { err = -EFAULT; goto done_unlock; } err = -EINVAL; /* if the bdev is going readonly the value of mddev->ro * does not matter, no writes are coming */ if (ro) goto done_unlock; /* are we are already prepared for writes? */ if (mddev->ro != 1) goto done_unlock; /* transitioning to readauto need only happen for * arrays that call md_write_start */ if (mddev->pers) { err = restart_array(mddev); if (err == 0) { mddev->ro = 2; set_disk_ro(mddev->gendisk, 0); } } goto done_unlock; } /* * The remaining ioctls are changing the state of the * superblock, so we do not allow them on read-only arrays. * However non-MD ioctls (e.g. get-size) will still come through * here and hit the 'default' below, so only disallow * 'md' ioctls, and switch to rw mode if started auto-readonly. */ if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { if (mddev->ro == 2) { mddev->ro = 0; sysfs_notify_dirent_safe(mddev->sysfs_state); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } else { err = -EROFS; goto abort_unlock; } } switch (cmd) { case ADD_NEW_DISK: { mdu_disk_info_t info; if (copy_from_user(&info, argp, sizeof(info))) err = -EFAULT; else err = add_new_disk(mddev, &info); goto done_unlock; } case HOT_REMOVE_DISK: err = hot_remove_disk(mddev, new_decode_dev(arg)); goto done_unlock; case HOT_ADD_DISK: err = hot_add_disk(mddev, new_decode_dev(arg)); goto done_unlock; case SET_DISK_FAULTY: err = set_disk_faulty(mddev, new_decode_dev(arg)); goto done_unlock; case RUN_ARRAY: err = do_md_run(mddev); goto done_unlock; case SET_BITMAP_FILE: err = set_bitmap_file(mddev, (int)arg); goto done_unlock; default: err = -EINVAL; goto abort_unlock; } done_unlock: abort_unlock: if (mddev->hold_active == UNTIL_IOCTL && err != -EINVAL) mddev->hold_active = 0; mddev_unlock(mddev); return err; done: if (err) MD_BUG(); abort: return err; } #ifdef CONFIG_COMPAT static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { switch (cmd) { case HOT_REMOVE_DISK: case HOT_ADD_DISK: case SET_DISK_FAULTY: case SET_BITMAP_FILE: /* These take in integer arg, do not convert */ break; default: arg = (unsigned long)compat_ptr(arg); break; } return md_ioctl(bdev, mode, cmd, arg); } #endif /* CONFIG_COMPAT */ static int md_open(struct block_device *bdev, fmode_t mode) { /* * Succeed if we can lock the mddev, which confirms that * it isn't being stopped right now. */ struct mddev *mddev = mddev_find(bdev->bd_dev); int err; if (mddev->gendisk != bdev->bd_disk) { /* we are racing with mddev_put which is discarding this * bd_disk. */ mddev_put(mddev); /* Wait until bdev->bd_disk is definitely gone */ flush_workqueue(md_misc_wq); /* Then retry the open from the top */ return -ERESTARTSYS; } BUG_ON(mddev != bdev->bd_disk->private_data); if ((err = mutex_lock_interruptible(&mddev->open_mutex))) goto out; err = 0; atomic_inc(&mddev->openers); mutex_unlock(&mddev->open_mutex); check_disk_change(bdev); out: return err; } static int md_release(struct gendisk *disk, fmode_t mode) { struct mddev *mddev = disk->private_data; BUG_ON(!mddev); atomic_dec(&mddev->openers); mddev_put(mddev); return 0; } static int md_media_changed(struct gendisk *disk) { struct mddev *mddev = disk->private_data; return mddev->changed; } static int md_revalidate(struct gendisk *disk) { struct mddev *mddev = disk->private_data; mddev->changed = 0; return 0; } static const struct block_device_operations md_fops = { .owner = THIS_MODULE, .open = md_open, .release = md_release, .ioctl = md_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = md_compat_ioctl, #endif .getgeo = md_getgeo, .media_changed = md_media_changed, .revalidate_disk= md_revalidate, }; static int md_thread(void * arg) { struct md_thread *thread = arg; /* * md_thread is a 'system-thread', it's priority should be very * high. We avoid resource deadlocks individually in each * raid personality. (RAID5 does preallocation) We also use RR and * the very same RT priority as kswapd, thus we will never get * into a priority inversion deadlock. * * we definitely have to have equal or higher priority than * bdflush, otherwise bdflush will deadlock if there are too * many dirty RAID5 blocks. */ allow_signal(SIGKILL); while (!kthread_should_stop()) { /* We need to wait INTERRUPTIBLE so that * we don't add to the load-average. * That means we need to be sure no signals are * pending */ if (signal_pending(current)) flush_signals(current); wait_event_interruptible_timeout (thread->wqueue, test_bit(THREAD_WAKEUP, &thread->flags) || kthread_should_stop(), thread->timeout); clear_bit(THREAD_WAKEUP, &thread->flags); if (!kthread_should_stop()) thread->run(thread->mddev); } return 0; } void md_wakeup_thread(struct md_thread *thread) { if (thread) { pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); set_bit(THREAD_WAKEUP, &thread->flags); wake_up(&thread->wqueue); } } struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev, const char *name) { struct md_thread *thread; thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); if (!thread) return NULL; init_waitqueue_head(&thread->wqueue); thread->run = run; thread->mddev = mddev; thread->timeout = MAX_SCHEDULE_TIMEOUT; thread->tsk = kthread_run(md_thread, thread, "%s_%s", mdname(thread->mddev), name ?: mddev->pers->name); if (IS_ERR(thread->tsk)) { kfree(thread); return NULL; } return thread; } void md_unregister_thread(struct md_thread **threadp) { struct md_thread *thread = *threadp; if (!thread) return; pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); /* Locking ensures that mddev_unlock does not wake_up a * non-existent thread */ spin_lock(&pers_lock); *threadp = NULL; spin_unlock(&pers_lock); kthread_stop(thread->tsk); kfree(thread); } void md_error(struct mddev *mddev, struct md_rdev *rdev) { if (!mddev) { MD_BUG(); return; } if (!rdev || test_bit(Faulty, &rdev->flags)) return; if (!mddev->pers || !mddev->pers->error_handler) return; mddev->pers->error_handler(mddev,rdev); if (mddev->degraded) set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); sysfs_notify_dirent_safe(rdev->sysfs_state); set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); if (mddev->event_work.func) queue_work(md_misc_wq, &mddev->event_work); md_new_event_inintr(mddev); } /* seq_file implementation /proc/mdstat */ static void status_unused(struct seq_file *seq) { int i = 0; struct md_rdev *rdev; seq_printf(seq, "unused devices: "); list_for_each_entry(rdev, &pending_raid_disks, same_set) { char b[BDEVNAME_SIZE]; i++; seq_printf(seq, "%s ", bdevname(rdev->bdev,b)); } if (!i) seq_printf(seq, ""); seq_printf(seq, "\n"); } static void status_resync(struct seq_file *seq, struct mddev * mddev) { sector_t max_sectors, resync, res; unsigned long dt, db; sector_t rt; int scale; unsigned int per_milli; resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_sectors = mddev->resync_max_sectors; else max_sectors = mddev->dev_sectors; /* * Should not happen. */ if (!max_sectors) { MD_BUG(); return; } /* Pick 'scale' such that (resync>>scale)*1000 will fit * in a sector_t, and (max_sectors>>scale) will fit in a * u32, as those are the requirements for sector_div. * Thus 'scale' must be at least 10 */ scale = 10; if (sizeof(sector_t) > sizeof(unsigned long)) { while ( max_sectors/2 > (1ULL<<(scale+32))) scale++; } res = (resync>>scale)*1000; sector_div(res, (u32)((max_sectors>>scale)+1)); per_milli = res; { int i, x = per_milli/50, y = 20-x; seq_printf(seq, "["); for (i = 0; i < x; i++) seq_printf(seq, "="); seq_printf(seq, ">"); for (i = 0; i < y; i++) seq_printf(seq, "."); seq_printf(seq, "] "); } seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? "reshape" : (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? "check" : (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"))), per_milli/10, per_milli % 10, (unsigned long long) resync/2, (unsigned long long) max_sectors/2); /* * dt: time from mark until now * db: blocks written from mark until now * rt: remaining time * * rt is a sector_t, so could be 32bit or 64bit. * So we divide before multiply in case it is 32bit and close * to the limit. * We scale the divisor (db) by 32 to avoid losing precision * near the end of resync when the number of remaining sectors * is close to 'db'. * We then divide rt by 32 after multiplying by db to compensate. * The '+1' avoids division by zero if db is very small. */ dt = ((jiffies - mddev->resync_mark) / HZ); if (!dt) dt++; db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) - mddev->resync_mark_cnt; rt = max_sectors - resync; /* number of remaining sectors */ sector_div(rt, db/32+1); rt *= dt; rt >>= 5; seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, ((unsigned long)rt % 60)/6); seq_printf(seq, " speed=%ldK/sec", db/2/dt); } static void *md_seq_start(struct seq_file *seq, loff_t *pos) { struct list_head *tmp; loff_t l = *pos; struct mddev *mddev; if (l >= 0x10000) return NULL; if (!l--) /* header */ return (void*)1; spin_lock(&all_mddevs_lock); list_for_each(tmp,&all_mddevs) if (!l--) { mddev = list_entry(tmp, struct mddev, all_mddevs); mddev_get(mddev); spin_unlock(&all_mddevs_lock); return mddev; } spin_unlock(&all_mddevs_lock); if (!l--) return (void*)2;/* tail */ return NULL; } static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *tmp; struct mddev *next_mddev, *mddev = v; ++*pos; if (v == (void*)2) return NULL; spin_lock(&all_mddevs_lock); if (v == (void*)1) tmp = all_mddevs.next; else tmp = mddev->all_mddevs.next; if (tmp != &all_mddevs) next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); else { next_mddev = (void*)2; *pos = 0x10000; } spin_unlock(&all_mddevs_lock); if (v != (void*)1) mddev_put(mddev); return next_mddev; } static void md_seq_stop(struct seq_file *seq, void *v) { struct mddev *mddev = v; if (mddev && v != (void*)1 && v != (void*)2) mddev_put(mddev); } static int md_seq_show(struct seq_file *seq, void *v) { struct mddev *mddev = v; sector_t sectors; struct md_rdev *rdev; struct bitmap *bitmap; if (v == (void*)1) { struct md_personality *pers; seq_printf(seq, "Personalities : "); spin_lock(&pers_lock); list_for_each_entry(pers, &pers_list, list) seq_printf(seq, "[%s] ", pers->name); spin_unlock(&pers_lock); seq_printf(seq, "\n"); seq->poll_event = atomic_read(&md_event_count); return 0; } if (v == (void*)2) { status_unused(seq); return 0; } if (mddev_lock(mddev) < 0) return -EINTR; if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { seq_printf(seq, "%s : %sactive", mdname(mddev), mddev->pers ? "" : "in"); if (mddev->pers) { if (mddev->ro==1) seq_printf(seq, " (read-only)"); if (mddev->ro==2) seq_printf(seq, " (auto-read-only)"); seq_printf(seq, " %s", mddev->pers->name); } sectors = 0; rdev_for_each(rdev, mddev) { char b[BDEVNAME_SIZE]; seq_printf(seq, " %s[%d]", bdevname(rdev->bdev,b), rdev->desc_nr); if (test_bit(WriteMostly, &rdev->flags)) seq_printf(seq, "(W)"); if (test_bit(Faulty, &rdev->flags)) { seq_printf(seq, "(F)"); continue; } if (rdev->raid_disk < 0) seq_printf(seq, "(S)"); /* spare */ if (test_bit(Replacement, &rdev->flags)) seq_printf(seq, "(R)"); sectors += rdev->sectors; } if (!list_empty(&mddev->disks)) { if (mddev->pers) seq_printf(seq, "\n %llu blocks", (unsigned long long) mddev->array_sectors / 2); else seq_printf(seq, "\n %llu blocks", (unsigned long long)sectors / 2); } if (mddev->persistent) { if (mddev->major_version != 0 || mddev->minor_version != 90) { seq_printf(seq," super %d.%d", mddev->major_version, mddev->minor_version); } } else if (mddev->external) seq_printf(seq, " super external:%s", mddev->metadata_type); else seq_printf(seq, " super non-persistent"); if (mddev->pers) { mddev->pers->status(seq, mddev); seq_printf(seq, "\n "); if (mddev->pers->sync_request) { if (mddev->curr_resync > 2) { status_resync(seq, mddev); seq_printf(seq, "\n "); } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) seq_printf(seq, "\tresync=DELAYED\n "); else if (mddev->recovery_cp < MaxSector) seq_printf(seq, "\tresync=PENDING\n "); } } else seq_printf(seq, "\n "); if ((bitmap = mddev->bitmap)) { unsigned long chunk_kb; unsigned long flags; spin_lock_irqsave(&bitmap->lock, flags); chunk_kb = mddev->bitmap_info.chunksize >> 10; seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " "%lu%s chunk", bitmap->pages - bitmap->missing_pages, bitmap->pages, (bitmap->pages - bitmap->missing_pages) << (PAGE_SHIFT - 10), chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, chunk_kb ? "KB" : "B"); if (bitmap->file) { seq_printf(seq, ", file: "); seq_path(seq, &bitmap->file->f_path, " \t\n"); } seq_printf(seq, "\n"); spin_unlock_irqrestore(&bitmap->lock, flags); } seq_printf(seq, "\n"); } mddev_unlock(mddev); return 0; } static const struct seq_operations md_seq_ops = { .start = md_seq_start, .next = md_seq_next, .stop = md_seq_stop, .show = md_seq_show, }; static int md_seq_open(struct inode *inode, struct file *file) { struct seq_file *seq; int error; error = seq_open(file, &md_seq_ops); if (error) return error; seq = file->private_data; seq->poll_event = atomic_read(&md_event_count); return error; } static unsigned int mdstat_poll(struct file *filp, poll_table *wait) { struct seq_file *seq = filp->private_data; int mask; poll_wait(filp, &md_event_waiters, wait); /* always allow read */ mask = POLLIN | POLLRDNORM; if (seq->poll_event != atomic_read(&md_event_count)) mask |= POLLERR | POLLPRI; return mask; } static const struct file_operations md_seq_fops = { .owner = THIS_MODULE, .open = md_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, .poll = mdstat_poll, }; int register_md_personality(struct md_personality *p) { spin_lock(&pers_lock); list_add_tail(&p->list, &pers_list); printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); spin_unlock(&pers_lock); return 0; } int unregister_md_personality(struct md_personality *p) { printk(KERN_INFO "md: %s personality unregistered\n", p->name); spin_lock(&pers_lock); list_del_init(&p->list); spin_unlock(&pers_lock); return 0; } static int is_mddev_idle(struct mddev *mddev, int init) { struct md_rdev * rdev; int idle; int curr_events; idle = 1; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev) { struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + (int)part_stat_read(&disk->part0, sectors[1]) - atomic_read(&disk->sync_io); /* sync IO will cause sync_io to increase before the disk_stats * as sync_io is counted when a request starts, and * disk_stats is counted when it completes. * So resync activity will cause curr_events to be smaller than * when there was no such activity. * non-sync IO will cause disk_stat to increase without * increasing sync_io so curr_events will (eventually) * be larger than it was before. Once it becomes * substantially larger, the test below will cause * the array to appear non-idle, and resync will slow * down. * If there is a lot of outstanding resync activity when * we set last_event to curr_events, then all that activity * completing might cause the array to appear non-idle * and resync will be slowed down even though there might * not have been non-resync activity. This will only * happen once though. 'last_events' will soon reflect * the state where there is little or no outstanding * resync requests, and further resync activity will * always make curr_events less than last_events. * */ if (init || curr_events - rdev->last_events > 64) { rdev->last_events = curr_events; idle = 0; } } rcu_read_unlock(); return idle; } void md_done_sync(struct mddev *mddev, int blocks, int ok) { /* another "blocks" (512byte) blocks have been synced */ atomic_sub(blocks, &mddev->recovery_active); wake_up(&mddev->recovery_wait); if (!ok) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread(mddev->thread); // stop recovery, signal do_sync .... } } /* md_write_start(mddev, bi) * If we need to update some array metadata (e.g. 'active' flag * in superblock) before writing, schedule a superblock update * and wait for it to complete. */ void md_write_start(struct mddev *mddev, struct bio *bi) { int did_change = 0; if (bio_data_dir(bi) != WRITE) return; BUG_ON(mddev->ro == 1); if (mddev->ro == 2) { /* need to switch to read/write */ mddev->ro = 0; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_wakeup_thread(mddev->sync_thread); did_change = 1; } atomic_inc(&mddev->writes_pending); if (mddev->safemode == 1) mddev->safemode = 0; if (mddev->in_sync) { spin_lock_irq(&mddev->write_lock); if (mddev->in_sync) { mddev->in_sync = 0; set_bit(MD_CHANGE_CLEAN, &mddev->flags); set_bit(MD_CHANGE_PENDING, &mddev->flags); md_wakeup_thread(mddev->thread); did_change = 1; } spin_unlock_irq(&mddev->write_lock); } if (did_change) sysfs_notify_dirent_safe(mddev->sysfs_state); wait_event(mddev->sb_wait, !test_bit(MD_CHANGE_PENDING, &mddev->flags)); } void md_write_end(struct mddev *mddev) { if (atomic_dec_and_test(&mddev->writes_pending)) { if (mddev->safemode == 2) md_wakeup_thread(mddev->thread); else if (mddev->safemode_delay) mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); } } /* md_allow_write(mddev) * Calling this ensures that the array is marked 'active' so that writes * may proceed without blocking. It is important to call this before * attempting a GFP_KERNEL allocation while holding the mddev lock. * Must be called with mddev_lock held. * * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock * is dropped, so return -EAGAIN after notifying userspace. */ int md_allow_write(struct mddev *mddev) { if (!mddev->pers) return 0; if (mddev->ro) return 0; if (!mddev->pers->sync_request) return 0; spin_lock_irq(&mddev->write_lock); if (mddev->in_sync) { mddev->in_sync = 0; set_bit(MD_CHANGE_CLEAN, &mddev->flags); set_bit(MD_CHANGE_PENDING, &mddev->flags); if (mddev->safemode_delay && mddev->safemode == 0) mddev->safemode = 1; spin_unlock_irq(&mddev->write_lock); md_update_sb(mddev, 0); sysfs_notify_dirent_safe(mddev->sysfs_state); } else spin_unlock_irq(&mddev->write_lock); if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) return -EAGAIN; else return 0; } EXPORT_SYMBOL_GPL(md_allow_write); #define SYNC_MARKS 10 #define SYNC_MARK_STEP (3*HZ) void md_do_sync(struct mddev *mddev) { struct mddev *mddev2; unsigned int currspeed = 0, window; sector_t max_sectors,j, io_sectors; unsigned long mark[SYNC_MARKS]; sector_t mark_cnt[SYNC_MARKS]; int last_mark,m; struct list_head *tmp; sector_t last_check; int skipped = 0; struct md_rdev *rdev; char *desc; /* just incase thread restarts... */ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) return; if (mddev->ro) /* never try to sync a read-only array */ return; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) desc = "data-check"; else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) desc = "requested-resync"; else desc = "resync"; } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) desc = "reshape"; else desc = "recovery"; /* we overload curr_resync somewhat here. * 0 == not engaged in resync at all * 2 == checking that there is no conflict with another sync * 1 == like 2, but have yielded to allow conflicting resync to * commense * other == active in resync - this many blocks * * Before starting a resync we must have set curr_resync to * 2, and then checked that every "conflicting" array has curr_resync * less than ours. When we find one that is the same or higher * we wait on resync_wait. To avoid deadlock, we reduce curr_resync * to 1 if we choose to yield (based arbitrarily on address of mddev structure). * This will mean we have to start checking from the beginning again. * */ do { mddev->curr_resync = 2; try_again: if (kthread_should_stop()) set_bit(MD_RECOVERY_INTR, &mddev->recovery); if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) goto skip; for_each_mddev(mddev2, tmp) { if (mddev2 == mddev) continue; if (!mddev->parallel_resync && mddev2->curr_resync && match_mddev_units(mddev, mddev2)) { DEFINE_WAIT(wq); if (mddev < mddev2 && mddev->curr_resync == 2) { /* arbitrarily yield */ mddev->curr_resync = 1; wake_up(&resync_wait); } if (mddev > mddev2 && mddev->curr_resync == 1) /* no need to wait here, we can wait the next * time 'round when curr_resync == 2 */ continue; /* We need to wait 'interruptible' so as not to * contribute to the load average, and not to * be caught by 'softlockup' */ prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); if (!kthread_should_stop() && mddev2->curr_resync >= mddev->curr_resync) { printk(KERN_INFO "md: delaying %s of %s" " until %s has finished (they" " share one or more physical units)\n", desc, mdname(mddev), mdname(mddev2)); mddev_put(mddev2); if (signal_pending(current)) flush_signals(current); schedule(); finish_wait(&resync_wait, &wq); goto try_again; } finish_wait(&resync_wait, &wq); } } } while (mddev->curr_resync < 2); j = 0; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { /* resync follows the size requested by the personality, * which defaults to physical size, but can be virtual size */ max_sectors = mddev->resync_max_sectors; mddev->resync_mismatches = 0; /* we don't use the checkpoint if there's a bitmap */ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) j = mddev->resync_min; else if (!mddev->bitmap) j = mddev->recovery_cp; } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) max_sectors = mddev->dev_sectors; else { /* recovery follows the physical size of devices */ max_sectors = mddev->dev_sectors; j = MaxSector; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev) if (rdev->raid_disk >= 0 && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < j) j = rdev->recovery_offset; rcu_read_unlock(); } printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); printk(KERN_INFO "md: minimum _guaranteed_ speed:" " %d KB/sec/disk.\n", speed_min(mddev)); printk(KERN_INFO "md: using maximum available idle IO bandwidth " "(but not more than %d KB/sec) for %s.\n", speed_max(mddev), desc); is_mddev_idle(mddev, 1); /* this initializes IO event counters */ io_sectors = 0; for (m = 0; m < SYNC_MARKS; m++) { mark[m] = jiffies; mark_cnt[m] = io_sectors; } last_mark = 0; mddev->resync_mark = mark[last_mark]; mddev->resync_mark_cnt = mark_cnt[last_mark]; /* * Tune reconstruction: */ window = 32*(PAGE_SIZE/512); printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", window/2, (unsigned long long)max_sectors/2); atomic_set(&mddev->recovery_active, 0); last_check = 0; if (j>2) { printk(KERN_INFO "md: resuming %s of %s from checkpoint.\n", desc, mdname(mddev)); mddev->curr_resync = j; } mddev->curr_resync_completed = j; while (j < max_sectors) { sector_t sectors; skipped = 0; if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && ((mddev->curr_resync > mddev->curr_resync_completed && (mddev->curr_resync - mddev->curr_resync_completed) > (max_sectors >> 4)) || (j - mddev->curr_resync_completed)*2 >= mddev->resync_max - mddev->curr_resync_completed )) { /* time to update curr_resync_completed */ wait_event(mddev->recovery_wait, atomic_read(&mddev->recovery_active) == 0); mddev->curr_resync_completed = j; set_bit(MD_CHANGE_CLEAN, &mddev->flags); sysfs_notify(&mddev->kobj, NULL, "sync_completed"); } while (j >= mddev->resync_max && !kthread_should_stop()) { /* As this condition is controlled by user-space, * we can block indefinitely, so use '_interruptible' * to avoid triggering warnings. */ flush_signals(current); /* just in case */ wait_event_interruptible(mddev->recovery_wait, mddev->resync_max > j || kthread_should_stop()); } if (kthread_should_stop()) goto interrupted; sectors = mddev->pers->sync_request(mddev, j, &skipped, currspeed < speed_min(mddev)); if (sectors == 0) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } if (!skipped) { /* actual IO requested */ io_sectors += sectors; atomic_add(sectors, &mddev->recovery_active); } if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) break; j += sectors; if (j>1) mddev->curr_resync = j; mddev->curr_mark_cnt = io_sectors; if (last_check == 0) /* this is the earliest that rebuild will be * visible in /proc/mdstat */ md_new_event(mddev); if (last_check + window > io_sectors || j == max_sectors) continue; last_check = io_sectors; repeat: if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { /* step marks */ int next = (last_mark+1) % SYNC_MARKS; mddev->resync_mark = mark[next]; mddev->resync_mark_cnt = mark_cnt[next]; mark[next] = jiffies; mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); last_mark = next; } if (kthread_should_stop()) goto interrupted; /* * this loop exits only if either when we are slower than * the 'hard' speed limit, or the system was IO-idle for * a jiffy. * the system might be non-idle CPU-wise, but we only care * about not overloading the IO subsystem. (things like an * e2fsck being done on the RAID array should execute fast) */ cond_resched(); currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 /((jiffies-mddev->resync_mark)/HZ +1) +1; if (currspeed > speed_min(mddev)) { if ((currspeed > speed_max(mddev)) || !is_mddev_idle(mddev, 0)) { msleep(500); goto repeat; } } } printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); /* * this also signals 'finished resyncing' to md_stop */ out: wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); /* tell personality that we are finished */ mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && mddev->curr_resync > 2) { if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { if (mddev->curr_resync >= mddev->recovery_cp) { printk(KERN_INFO "md: checkpointing %s of %s.\n", desc, mdname(mddev)); mddev->recovery_cp = mddev->curr_resync_completed; } } else mddev->recovery_cp = MaxSector; } else { if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) mddev->curr_resync = MaxSector; rcu_read_lock(); rdev_for_each_rcu(rdev, mddev) if (rdev->raid_disk >= 0 && mddev->delta_disks >= 0 && !test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags) && rdev->recovery_offset < mddev->curr_resync) rdev->recovery_offset = mddev->curr_resync; rcu_read_unlock(); } } skip: set_bit(MD_CHANGE_DEVS, &mddev->flags); if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { /* We completed so min/max setting can be forgotten if used. */ if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) mddev->resync_min = 0; mddev->resync_max = MaxSector; } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) mddev->resync_min = mddev->curr_resync_completed; mddev->curr_resync = 0; wake_up(&resync_wait); set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); return; interrupted: /* * got a signal, exit. */ printk(KERN_INFO "md: md_do_sync() got signal ... exiting\n"); set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } EXPORT_SYMBOL_GPL(md_do_sync); static int remove_and_add_spares(struct mddev *mddev) { struct md_rdev *rdev; int spares = 0; int removed = 0; mddev->curr_resync_completed = 0; rdev_for_each(rdev, mddev) if (rdev->raid_disk >= 0 && !test_bit(Blocked, &rdev->flags) && (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) && atomic_read(&rdev->nr_pending)==0) { if (mddev->pers->hot_remove_disk( mddev, rdev) == 0) { sysfs_unlink_rdev(mddev, rdev); rdev->raid_disk = -1; removed++; } } if (removed) sysfs_notify(&mddev->kobj, NULL, "degraded"); rdev_for_each(rdev, mddev) { if (rdev->raid_disk >= 0 && !test_bit(In_sync, &rdev->flags) && !test_bit(Faulty, &rdev->flags)) spares++; if (rdev->raid_disk < 0 && !test_bit(Faulty, &rdev->flags)) { rdev->recovery_offset = 0; if (mddev->pers-> hot_add_disk(mddev, rdev) == 0) { if (sysfs_link_rdev(mddev, rdev)) /* failure here is OK */; spares++; md_new_event(mddev); set_bit(MD_CHANGE_DEVS, &mddev->flags); } } } return spares; } static void reap_sync_thread(struct mddev *mddev) { struct md_rdev *rdev; /* resync has finished, collect result */ md_unregister_thread(&mddev->sync_thread); if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { /* success...*/ /* activate any spares */ if (mddev->pers->spare_active(mddev)) sysfs_notify(&mddev->kobj, NULL, "degraded"); } if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && mddev->pers->finish_reshape) mddev->pers->finish_reshape(mddev); /* If array is no-longer degraded, then any saved_raid_disk * information must be scrapped. Also if any device is now * In_sync we must scrape the saved_raid_disk for that device * do the superblock for an incrementally recovered device * written out. */ rdev_for_each(rdev, mddev) if (!mddev->degraded || test_bit(In_sync, &rdev->flags)) rdev->saved_raid_disk = -1; md_update_sb(mddev, 1); clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); /* flag recovery needed just to double check */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); sysfs_notify_dirent_safe(mddev->sysfs_action); md_new_event(mddev); if (mddev->event_work.func) queue_work(md_misc_wq, &mddev->event_work); } /* * This routine is regularly called by all per-raid-array threads to * deal with generic issues like resync and super-block update. * Raid personalities that don't have a thread (linear/raid0) do not * need this as they never do any recovery or update the superblock. * * It does not do any resync itself, but rather "forks" off other threads * to do that as needed. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in * "->recovery" and create a thread at ->sync_thread. * When the thread finishes it sets MD_RECOVERY_DONE * and wakeups up this thread which will reap the thread and finish up. * This thread also removes any faulty devices (with nr_pending == 0). * * The overall approach is: * 1/ if the superblock needs updating, update it. * 2/ If a recovery thread is running, don't do anything else. * 3/ If recovery has finished, clean up, possibly marking spares active. * 4/ If there are any faulty devices, remove them. * 5/ If array is degraded, try to add spares devices * 6/ If array has spares or is not in-sync, start a resync thread. */ void md_check_recovery(struct mddev *mddev) { if (mddev->suspended) return; if (mddev->bitmap) bitmap_daemon_work(mddev); if (signal_pending(current)) { if (mddev->pers->sync_request && !mddev->external) { printk(KERN_INFO "md: %s in immediate safe mode\n", mdname(mddev)); mddev->safemode = 2; } flush_signals(current); } if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; if ( ! ( (mddev->flags & ~ (1<recovery) || test_bit(MD_RECOVERY_DONE, &mddev->recovery) || (mddev->external == 0 && mddev->safemode == 1) || (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) )) return; if (mddev_trylock(mddev)) { int spares = 0; if (mddev->ro) { /* Only thing we do on a ro array is remove * failed devices. */ struct md_rdev *rdev; rdev_for_each(rdev, mddev) if (rdev->raid_disk >= 0 && !test_bit(Blocked, &rdev->flags) && test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)==0) { if (mddev->pers->hot_remove_disk( mddev, rdev) == 0) { sysfs_unlink_rdev(mddev, rdev); rdev->raid_disk = -1; } } clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (!mddev->external) { int did_change = 0; spin_lock_irq(&mddev->write_lock); if (mddev->safemode && !atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) { mddev->in_sync = 1; did_change = 1; set_bit(MD_CHANGE_CLEAN, &mddev->flags); } if (mddev->safemode == 1) mddev->safemode = 0; spin_unlock_irq(&mddev->write_lock); if (did_change) sysfs_notify_dirent_safe(mddev->sysfs_state); } if (mddev->flags) md_update_sb(mddev, 0); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { /* resync/recovery still happening */ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (mddev->sync_thread) { reap_sync_thread(mddev); goto unlock; } /* Set RUNNING before clearing NEEDED to avoid * any transients in the value of "sync_action". */ set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); /* Clear some bits that don't mean anything, but * might be left set */ clear_bit(MD_RECOVERY_INTR, &mddev->recovery); clear_bit(MD_RECOVERY_DONE, &mddev->recovery); if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) goto unlock; /* no recovery is running. * remove any failed drives, then * add spares if possible. * Spare are also removed and re-added, to allow * the personality to fail the re-add. */ if (mddev->reshape_position != MaxSector) { if (mddev->pers->check_reshape == NULL || mddev->pers->check_reshape(mddev) != 0) /* Cannot proceed */ goto unlock; set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if ((spares = remove_and_add_spares(mddev))) { clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if (mddev->recovery_cp < MaxSector) { set_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) /* nothing to be done ... */ goto unlock; if (mddev->pers->sync_request) { if (spares && mddev->bitmap && ! mddev->bitmap->file) { /* We are adding a device or devices to an array * which has the bitmap stored on all devices. * So make sure all bitmap pages get written */ bitmap_write_all(mddev->bitmap); } mddev->sync_thread = md_register_thread(md_do_sync, mddev, "resync"); if (!mddev->sync_thread) { printk(KERN_ERR "%s: could not start resync" " thread...\n", mdname(mddev)); /* leave the spares where they are, it shouldn't hurt */ clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); } else md_wakeup_thread(mddev->sync_thread); sysfs_notify_dirent_safe(mddev->sysfs_action); md_new_event(mddev); } unlock: if (!mddev->sync_thread) { clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) if (mddev->sysfs_action) sysfs_notify_dirent_safe(mddev->sysfs_action); } mddev_unlock(mddev); } } void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) { sysfs_notify_dirent_safe(rdev->sysfs_state); wait_event_timeout(rdev->blocked_wait, !test_bit(Blocked, &rdev->flags) && !test_bit(BlockedBadBlocks, &rdev->flags), msecs_to_jiffies(5000)); rdev_dec_pending(rdev, mddev); } EXPORT_SYMBOL(md_wait_for_blocked_rdev); /* Bad block management. * We can record which blocks on each device are 'bad' and so just * fail those blocks, or that stripe, rather than the whole device. * Entries in the bad-block table are 64bits wide. This comprises: * Length of bad-range, in sectors: 0-511 for lengths 1-512 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) * A 'shift' can be set so that larger blocks are tracked and * consequently larger devices can be covered. * 'Acknowledged' flag - 1 bit. - the most significant bit. * * Locking of the bad-block table uses a seqlock so md_is_badblock * might need to retry if it is very unlucky. * We will sometimes want to check for bad blocks in a bi_end_io function, * so we use the write_seqlock_irq variant. * * When looking for a bad block we specify a range and want to * know if any block in the range is bad. So we binary-search * to the last range that starts at-or-before the given endpoint, * (or "before the sector after the target range") * then see if it ends after the given start. * We return * 0 if there are no known bad blocks in the range * 1 if there are known bad block which are all acknowledged * -1 if there are bad blocks which have not yet been acknowledged in metadata. * plus the start/length of the first bad section we overlap. */ int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, sector_t *first_bad, int *bad_sectors) { int hi; int lo = 0; u64 *p = bb->page; int rv = 0; sector_t target = s + sectors; unsigned seq; if (bb->shift > 0) { /* round the start down, and the end up */ s >>= bb->shift; target += (1<shift) - 1; target >>= bb->shift; sectors = target - s; } /* 'target' is now the first block after the bad range */ retry: seq = read_seqbegin(&bb->lock); hi = bb->count; /* Binary search between lo and hi for 'target' * i.e. for the last range that starts before 'target' */ /* INVARIANT: ranges before 'lo' and at-or-after 'hi' * are known not to be the last range before target. * VARIANT: hi-lo is the number of possible * ranges, and decreases until it reaches 1 */ while (hi - lo > 1) { int mid = (lo + hi) / 2; sector_t a = BB_OFFSET(p[mid]); if (a < target) /* This could still be the one, earlier ranges * could not. */ lo = mid; else /* This and later ranges are definitely out. */ hi = mid; } /* 'lo' might be the last that started before target, but 'hi' isn't */ if (hi > lo) { /* need to check all range that end after 's' to see if * any are unacknowledged. */ while (lo >= 0 && BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { if (BB_OFFSET(p[lo]) < target) { /* starts before the end, and finishes after * the start, so they must overlap */ if (rv != -1 && BB_ACK(p[lo])) rv = 1; else rv = -1; *first_bad = BB_OFFSET(p[lo]); *bad_sectors = BB_LEN(p[lo]); } lo--; } } if (read_seqretry(&bb->lock, seq)) goto retry; return rv; } EXPORT_SYMBOL_GPL(md_is_badblock); /* * Add a range of bad blocks to the table. * This might extend the table, or might contract it * if two adjacent ranges can be merged. * We binary-search to find the 'insertion' point, then * decide how best to handle it. */ static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, int acknowledged) { u64 *p; int lo, hi; int rv = 1; if (bb->shift < 0) /* badblocks are disabled */ return 0; if (bb->shift) { /* round the start down, and the end up */ sector_t next = s + sectors; s >>= bb->shift; next += (1<shift) - 1; next >>= bb->shift; sectors = next - s; } write_seqlock_irq(&bb->lock); p = bb->page; lo = 0; hi = bb->count; /* Find the last range that starts at-or-before 's' */ while (hi - lo > 1) { int mid = (lo + hi) / 2; sector_t a = BB_OFFSET(p[mid]); if (a <= s) lo = mid; else hi = mid; } if (hi > lo && BB_OFFSET(p[lo]) > s) hi = lo; if (hi > lo) { /* we found a range that might merge with the start * of our new range */ sector_t a = BB_OFFSET(p[lo]); sector_t e = a + BB_LEN(p[lo]); int ack = BB_ACK(p[lo]); if (e >= s) { /* Yes, we can merge with a previous range */ if (s == a && s + sectors >= e) /* new range covers old */ ack = acknowledged; else ack = ack && acknowledged; if (e < s + sectors) e = s + sectors; if (e - a <= BB_MAX_LEN) { p[lo] = BB_MAKE(a, e-a, ack); s = e; } else { /* does not all fit in one range, * make p[lo] maximal */ if (BB_LEN(p[lo]) != BB_MAX_LEN) p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); s = a + BB_MAX_LEN; } sectors = e - s; } } if (sectors && hi < bb->count) { /* 'hi' points to the first range that starts after 's'. * Maybe we can merge with the start of that range */ sector_t a = BB_OFFSET(p[hi]); sector_t e = a + BB_LEN(p[hi]); int ack = BB_ACK(p[hi]); if (a <= s + sectors) { /* merging is possible */ if (e <= s + sectors) { /* full overlap */ e = s + sectors; ack = acknowledged; } else ack = ack && acknowledged; a = s; if (e - a <= BB_MAX_LEN) { p[hi] = BB_MAKE(a, e-a, ack); s = e; } else { p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); s = a + BB_MAX_LEN; } sectors = e - s; lo = hi; hi++; } } if (sectors == 0 && hi < bb->count) { /* we might be able to combine lo and hi */ /* Note: 's' is at the end of 'lo' */ sector_t a = BB_OFFSET(p[hi]); int lolen = BB_LEN(p[lo]); int hilen = BB_LEN(p[hi]); int newlen = lolen + hilen - (s - a); if (s >= a && newlen < BB_MAX_LEN) { /* yes, we can combine them */ int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); memmove(p + hi, p + hi + 1, (bb->count - hi - 1) * 8); bb->count--; } } while (sectors) { /* didn't merge (it all). * Need to add a range just before 'hi' */ if (bb->count >= MD_MAX_BADBLOCKS) { /* No room for more */ rv = 0; break; } else { int this_sectors = sectors; memmove(p + hi + 1, p + hi, (bb->count - hi) * 8); bb->count++; if (this_sectors > BB_MAX_LEN) this_sectors = BB_MAX_LEN; p[hi] = BB_MAKE(s, this_sectors, acknowledged); sectors -= this_sectors; s += this_sectors; } } bb->changed = 1; if (!acknowledged) bb->unacked_exist = 1; write_sequnlock_irq(&bb->lock); return rv; } int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, int acknowledged) { int rv = md_set_badblocks(&rdev->badblocks, s + rdev->data_offset, sectors, acknowledged); if (rv) { /* Make sure they get written out promptly */ sysfs_notify_dirent_safe(rdev->sysfs_state); set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); md_wakeup_thread(rdev->mddev->thread); } return rv; } EXPORT_SYMBOL_GPL(rdev_set_badblocks); /* * Remove a range of bad blocks from the table. * This may involve extending the table if we spilt a region, * but it must not fail. So if the table becomes full, we just * drop the remove request. */ static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) { u64 *p; int lo, hi; sector_t target = s + sectors; int rv = 0; if (bb->shift > 0) { /* When clearing we round the start up and the end down. * This should not matter as the shift should align with * the block size and no rounding should ever be needed. * However it is better the think a block is bad when it * isn't than to think a block is not bad when it is. */ s += (1<shift) - 1; s >>= bb->shift; target >>= bb->shift; sectors = target - s; } write_seqlock_irq(&bb->lock); p = bb->page; lo = 0; hi = bb->count; /* Find the last range that starts before 'target' */ while (hi - lo > 1) { int mid = (lo + hi) / 2; sector_t a = BB_OFFSET(p[mid]); if (a < target) lo = mid; else hi = mid; } if (hi > lo) { /* p[lo] is the last range that could overlap the * current range. Earlier ranges could also overlap, * but only this one can overlap the end of the range. */ if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { /* Partial overlap, leave the tail of this range */ int ack = BB_ACK(p[lo]); sector_t a = BB_OFFSET(p[lo]); sector_t end = a + BB_LEN(p[lo]); if (a < s) { /* we need to split this range */ if (bb->count >= MD_MAX_BADBLOCKS) { rv = 0; goto out; } memmove(p+lo+1, p+lo, (bb->count - lo) * 8); bb->count++; p[lo] = BB_MAKE(a, s-a, ack); lo++; } p[lo] = BB_MAKE(target, end - target, ack); /* there is no longer an overlap */ hi = lo; lo--; } while (lo >= 0 && BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { /* This range does overlap */ if (BB_OFFSET(p[lo]) < s) { /* Keep the early parts of this range. */ int ack = BB_ACK(p[lo]); sector_t start = BB_OFFSET(p[lo]); p[lo] = BB_MAKE(start, s - start, ack); /* now low doesn't overlap, so.. */ break; } lo--; } /* 'lo' is strictly before, 'hi' is strictly after, * anything between needs to be discarded */ if (hi - lo > 1) { memmove(p+lo+1, p+hi, (bb->count - hi) * 8); bb->count -= (hi - lo - 1); } } bb->changed = 1; out: write_sequnlock_irq(&bb->lock); return rv; } int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors) { return md_clear_badblocks(&rdev->badblocks, s + rdev->data_offset, sectors); } EXPORT_SYMBOL_GPL(rdev_clear_badblocks); /* * Acknowledge all bad blocks in a list. * This only succeeds if ->changed is clear. It is used by * in-kernel metadata updates */ void md_ack_all_badblocks(struct badblocks *bb) { if (bb->page == NULL || bb->changed) /* no point even trying */ return; write_seqlock_irq(&bb->lock); if (bb->changed == 0) { u64 *p = bb->page; int i; for (i = 0; i < bb->count ; i++) { if (!BB_ACK(p[i])) { sector_t start = BB_OFFSET(p[i]); int len = BB_LEN(p[i]); p[i] = BB_MAKE(start, len, 1); } } bb->unacked_exist = 0; } write_sequnlock_irq(&bb->lock); } EXPORT_SYMBOL_GPL(md_ack_all_badblocks); /* sysfs access to bad-blocks list. * We present two files. * 'bad-blocks' lists sector numbers and lengths of ranges that * are recorded as bad. The list is truncated to fit within * the one-page limit of sysfs. * Writing "sector length" to this file adds an acknowledged * bad block list. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet * been acknowledged. Writing to this file adds bad blocks * without acknowledging them. This is largely for testing. */ static ssize_t badblocks_show(struct badblocks *bb, char *page, int unack) { size_t len; int i; u64 *p = bb->page; unsigned seq; if (bb->shift < 0) return 0; retry: seq = read_seqbegin(&bb->lock); len = 0; i = 0; while (len < PAGE_SIZE && i < bb->count) { sector_t s = BB_OFFSET(p[i]); unsigned int length = BB_LEN(p[i]); int ack = BB_ACK(p[i]); i++; if (unack && ack) continue; len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", (unsigned long long)s << bb->shift, length << bb->shift); } if (unack && len == 0) bb->unacked_exist = 0; if (read_seqretry(&bb->lock, seq)) goto retry; return len; } #define DO_DEBUG 1 static ssize_t badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) { unsigned long long sector; int length; char newline; #ifdef DO_DEBUG /* Allow clearing via sysfs *only* for testing/debugging. * Normally only a successful write may clear a badblock */ int clear = 0; if (page[0] == '-') { clear = 1; page++; } #endif /* DO_DEBUG */ switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { case 3: if (newline != '\n') return -EINVAL; case 2: if (length <= 0) return -EINVAL; break; default: return -EINVAL; } #ifdef DO_DEBUG if (clear) { md_clear_badblocks(bb, sector, length); return len; } #endif /* DO_DEBUG */ if (md_set_badblocks(bb, sector, length, !unack)) return len; else return -ENOSPC; } static int md_notify_reboot(struct notifier_block *this, unsigned long code, void *x) { struct list_head *tmp; struct mddev *mddev; int need_delay = 0; for_each_mddev(mddev, tmp) { if (mddev_trylock(mddev)) { __md_stop_writes(mddev); mddev->safemode = 2; mddev_unlock(mddev); } need_delay = 1; } /* * certain more exotic SCSI devices are known to be * volatile wrt too early system reboots. While the * right place to handle this issue is the given * driver, we do want to have a safe RAID driver ... */ if (need_delay) mdelay(1000*1); return NOTIFY_DONE; } static struct notifier_block md_notifier = { .notifier_call = md_notify_reboot, .next = NULL, .priority = INT_MAX, /* before any real devices */ }; static void md_geninit(void) { pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); } static int __init md_init(void) { int ret = -ENOMEM; md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); if (!md_wq) goto err_wq; md_misc_wq = alloc_workqueue("md_misc", 0, 0); if (!md_misc_wq) goto err_misc_wq; if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) goto err_md; if ((ret = register_blkdev(0, "mdp")) < 0) goto err_mdp; mdp_major = ret; blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<dev = dev; list_add_tail(&node_detected_dev->list, &all_detected_devices); } else { printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); } } static void autostart_arrays(int part) { struct md_rdev *rdev; struct detected_devices_node *node_detected_dev; dev_t dev; int i_scanned, i_passed; i_scanned = 0; i_passed = 0; printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { i_scanned++; node_detected_dev = list_entry(all_detected_devices.next, struct detected_devices_node, list); list_del(&node_detected_dev->list); dev = node_detected_dev->dev; kfree(node_detected_dev); rdev = md_import_device(dev,0, 90); if (IS_ERR(rdev)) continue; if (test_bit(Faulty, &rdev->flags)) { MD_BUG(); continue; } set_bit(AutoDetected, &rdev->flags); list_add(&rdev->same_set, &pending_raid_disks); i_passed++; } printk(KERN_INFO "md: Scanned %d and added %d devices.\n", i_scanned, i_passed); autorun_devices(part); } #endif /* !MODULE */ static __exit void md_exit(void) { struct mddev *mddev; struct list_head *tmp; blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); unregister_blkdev(MD_MAJOR,"md"); unregister_blkdev(mdp_major, "mdp"); unregister_reboot_notifier(&md_notifier); unregister_sysctl_table(raid_table_header); remove_proc_entry("mdstat", NULL); for_each_mddev(mddev, tmp) { export_array(mddev); mddev->hold_active = 0; } destroy_workqueue(md_misc_wq); destroy_workqueue(md_wq); } subsys_initcall(md_init); module_exit(md_exit) static int get_ro(char *buffer, struct kernel_param *kp) { return sprintf(buffer, "%d", start_readonly); } static int set_ro(const char *val, struct kernel_param *kp) { char *e; int num = simple_strtoul(val, &e, 10); if (*val && (*e == '\0' || *e == '\n')) { start_readonly = num; return 0; } return -EINVAL; } module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); EXPORT_SYMBOL(register_md_personality); EXPORT_SYMBOL(unregister_md_personality); EXPORT_SYMBOL(md_error); EXPORT_SYMBOL(md_done_sync); EXPORT_SYMBOL(md_write_start); EXPORT_SYMBOL(md_write_end); EXPORT_SYMBOL(md_register_thread); EXPORT_SYMBOL(md_unregister_thread); EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_check_recovery); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MD RAID framework"); MODULE_ALIAS("md"); MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);