/* * ring buffer based function tracer * * Copyright (C) 2007-2008 Steven Rostedt * Copyright (C) 2008 Ingo Molnar * * Originally taken from the RT patch by: * Arnaldo Carvalho de Melo * * Based on code from the latency_tracer, that is: * Copyright (C) 2004-2006 Ingo Molnar * Copyright (C) 2004 William Lee Irwin III */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" unsigned long __read_mostly tracing_max_latency = (cycle_t)ULONG_MAX; unsigned long __read_mostly tracing_thresh; static unsigned long __read_mostly tracing_nr_buffers; static cpumask_t __read_mostly tracing_buffer_mask; #define for_each_tracing_cpu(cpu) \ for_each_cpu_mask(cpu, tracing_buffer_mask) static int trace_alloc_page(void); static int trace_free_page(void); static int tracing_disabled = 1; static unsigned long tracing_pages_allocated; long ns2usecs(cycle_t nsec) { nsec += 500; do_div(nsec, 1000); return nsec; } cycle_t ftrace_now(int cpu) { return cpu_clock(cpu); } /* * The global_trace is the descriptor that holds the tracing * buffers for the live tracing. For each CPU, it contains * a link list of pages that will store trace entries. The * page descriptor of the pages in the memory is used to hold * the link list by linking the lru item in the page descriptor * to each of the pages in the buffer per CPU. * * For each active CPU there is a data field that holds the * pages for the buffer for that CPU. Each CPU has the same number * of pages allocated for its buffer. */ static struct trace_array global_trace; static DEFINE_PER_CPU(struct trace_array_cpu, global_trace_cpu); /* * The max_tr is used to snapshot the global_trace when a maximum * latency is reached. Some tracers will use this to store a maximum * trace while it continues examining live traces. * * The buffers for the max_tr are set up the same as the global_trace. * When a snapshot is taken, the link list of the max_tr is swapped * with the link list of the global_trace and the buffers are reset for * the global_trace so the tracing can continue. */ static struct trace_array max_tr; static DEFINE_PER_CPU(struct trace_array_cpu, max_data); /* tracer_enabled is used to toggle activation of a tracer */ static int tracer_enabled = 1; /* function tracing enabled */ int ftrace_function_enabled; /* * trace_nr_entries is the number of entries that is allocated * for a buffer. Note, the number of entries is always rounded * to ENTRIES_PER_PAGE. * * This number is purposely set to a low number of 16384. * If the dump on oops happens, it will be much appreciated * to not have to wait for all that output. Anyway this can be * boot time and run time configurable. */ #define TRACE_ENTRIES_DEFAULT 16384UL static unsigned long trace_nr_entries = TRACE_ENTRIES_DEFAULT; /* trace_types holds a link list of available tracers. */ static struct tracer *trace_types __read_mostly; /* current_trace points to the tracer that is currently active */ static struct tracer *current_trace __read_mostly; /* * max_tracer_type_len is used to simplify the allocating of * buffers to read userspace tracer names. We keep track of * the longest tracer name registered. */ static int max_tracer_type_len; /* * trace_types_lock is used to protect the trace_types list. * This lock is also used to keep user access serialized. * Accesses from userspace will grab this lock while userspace * activities happen inside the kernel. */ static DEFINE_MUTEX(trace_types_lock); /* trace_wait is a waitqueue for tasks blocked on trace_poll */ static DECLARE_WAIT_QUEUE_HEAD(trace_wait); /* trace_flags holds iter_ctrl options */ unsigned long trace_flags = TRACE_ITER_PRINT_PARENT; static notrace void no_trace_init(struct trace_array *tr) { int cpu; ftrace_function_enabled = 0; if(tr->ctrl) for_each_online_cpu(cpu) tracing_reset(tr->data[cpu]); tracer_enabled = 0; } /* dummy trace to disable tracing */ static struct tracer no_tracer __read_mostly = { .name = "none", .init = no_trace_init }; /** * trace_wake_up - wake up tasks waiting for trace input * * Simply wakes up any task that is blocked on the trace_wait * queue. These is used with trace_poll for tasks polling the trace. */ void trace_wake_up(void) { /* * The runqueue_is_locked() can fail, but this is the best we * have for now: */ if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) wake_up(&trace_wait); } #define ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(struct trace_entry)) static int __init set_nr_entries(char *str) { unsigned long nr_entries; int ret; if (!str) return 0; ret = strict_strtoul(str, 0, &nr_entries); /* nr_entries can not be zero */ if (ret < 0 || nr_entries == 0) return 0; trace_nr_entries = nr_entries; return 1; } __setup("trace_entries=", set_nr_entries); unsigned long nsecs_to_usecs(unsigned long nsecs) { return nsecs / 1000; } /* * trace_flag_type is an enumeration that holds different * states when a trace occurs. These are: * IRQS_OFF - interrupts were disabled * NEED_RESCED - reschedule is requested * HARDIRQ - inside an interrupt handler * SOFTIRQ - inside a softirq handler * CONT - multiple entries hold the trace item */ enum trace_flag_type { TRACE_FLAG_IRQS_OFF = 0x01, TRACE_FLAG_NEED_RESCHED = 0x02, TRACE_FLAG_HARDIRQ = 0x04, TRACE_FLAG_SOFTIRQ = 0x08, TRACE_FLAG_CONT = 0x10, }; /* * TRACE_ITER_SYM_MASK masks the options in trace_flags that * control the output of kernel symbols. */ #define TRACE_ITER_SYM_MASK \ (TRACE_ITER_PRINT_PARENT|TRACE_ITER_SYM_OFFSET|TRACE_ITER_SYM_ADDR) /* These must match the bit postions in trace_iterator_flags */ static const char *trace_options[] = { "print-parent", "sym-offset", "sym-addr", "verbose", "raw", "hex", "bin", "block", "stacktrace", "sched-tree", NULL }; /* * ftrace_max_lock is used to protect the swapping of buffers * when taking a max snapshot. The buffers themselves are * protected by per_cpu spinlocks. But the action of the swap * needs its own lock. * * This is defined as a raw_spinlock_t in order to help * with performance when lockdep debugging is enabled. */ static raw_spinlock_t ftrace_max_lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; /* * Copy the new maximum trace into the separate maximum-trace * structure. (this way the maximum trace is permanently saved, * for later retrieval via /debugfs/tracing/latency_trace) */ static void __update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) { struct trace_array_cpu *data = tr->data[cpu]; max_tr.cpu = cpu; max_tr.time_start = data->preempt_timestamp; data = max_tr.data[cpu]; data->saved_latency = tracing_max_latency; memcpy(data->comm, tsk->comm, TASK_COMM_LEN); data->pid = tsk->pid; data->uid = tsk->uid; data->nice = tsk->static_prio - 20 - MAX_RT_PRIO; data->policy = tsk->policy; data->rt_priority = tsk->rt_priority; /* record this tasks comm */ tracing_record_cmdline(current); } #define CHECK_COND(cond) \ if (unlikely(cond)) { \ tracing_disabled = 1; \ WARN_ON(1); \ return -1; \ } /** * check_pages - integrity check of trace buffers * * As a safty measure we check to make sure the data pages have not * been corrupted. */ int check_pages(struct trace_array_cpu *data) { struct page *page, *tmp; CHECK_COND(data->trace_pages.next->prev != &data->trace_pages); CHECK_COND(data->trace_pages.prev->next != &data->trace_pages); list_for_each_entry_safe(page, tmp, &data->trace_pages, lru) { CHECK_COND(page->lru.next->prev != &page->lru); CHECK_COND(page->lru.prev->next != &page->lru); } return 0; } /** * head_page - page address of the first page in per_cpu buffer. * * head_page returns the page address of the first page in * a per_cpu buffer. This also preforms various consistency * checks to make sure the buffer has not been corrupted. */ void *head_page(struct trace_array_cpu *data) { struct page *page; if (list_empty(&data->trace_pages)) return NULL; page = list_entry(data->trace_pages.next, struct page, lru); BUG_ON(&page->lru == &data->trace_pages); return page_address(page); } /** * trace_seq_printf - sequence printing of trace information * @s: trace sequence descriptor * @fmt: printf format string * * The tracer may use either sequence operations or its own * copy to user routines. To simplify formating of a trace * trace_seq_printf is used to store strings into a special * buffer (@s). Then the output may be either used by * the sequencer or pulled into another buffer. */ int trace_seq_printf(struct trace_seq *s, const char *fmt, ...) { int len = (PAGE_SIZE - 1) - s->len; va_list ap; int ret; if (!len) return 0; va_start(ap, fmt); ret = vsnprintf(s->buffer + s->len, len, fmt, ap); va_end(ap); /* If we can't write it all, don't bother writing anything */ if (ret >= len) return 0; s->len += ret; return len; } /** * trace_seq_puts - trace sequence printing of simple string * @s: trace sequence descriptor * @str: simple string to record * * The tracer may use either the sequence operations or its own * copy to user routines. This function records a simple string * into a special buffer (@s) for later retrieval by a sequencer * or other mechanism. */ static int trace_seq_puts(struct trace_seq *s, const char *str) { int len = strlen(str); if (len > ((PAGE_SIZE - 1) - s->len)) return 0; memcpy(s->buffer + s->len, str, len); s->len += len; return len; } static int trace_seq_putc(struct trace_seq *s, unsigned char c) { if (s->len >= (PAGE_SIZE - 1)) return 0; s->buffer[s->len++] = c; return 1; } static int trace_seq_putmem(struct trace_seq *s, void *mem, size_t len) { if (len > ((PAGE_SIZE - 1) - s->len)) return 0; memcpy(s->buffer + s->len, mem, len); s->len += len; return len; } #define HEX_CHARS 17 static const char hex2asc[] = "0123456789abcdef"; static int trace_seq_putmem_hex(struct trace_seq *s, void *mem, size_t len) { unsigned char hex[HEX_CHARS]; unsigned char *data = mem; unsigned char byte; int i, j; BUG_ON(len >= HEX_CHARS); #ifdef __BIG_ENDIAN for (i = 0, j = 0; i < len; i++) { #else for (i = len-1, j = 0; i >= 0; i--) { #endif byte = data[i]; hex[j++] = hex2asc[byte & 0x0f]; hex[j++] = hex2asc[byte >> 4]; } hex[j++] = ' '; return trace_seq_putmem(s, hex, j); } static void trace_seq_reset(struct trace_seq *s) { s->len = 0; s->readpos = 0; } ssize_t trace_seq_to_user(struct trace_seq *s, char __user *ubuf, size_t cnt) { int len; int ret; if (s->len <= s->readpos) return -EBUSY; len = s->len - s->readpos; if (cnt > len) cnt = len; ret = copy_to_user(ubuf, s->buffer + s->readpos, cnt); if (ret) return -EFAULT; s->readpos += len; return cnt; } static void trace_print_seq(struct seq_file *m, struct trace_seq *s) { int len = s->len >= PAGE_SIZE ? PAGE_SIZE - 1 : s->len; s->buffer[len] = 0; seq_puts(m, s->buffer); trace_seq_reset(s); } /* * flip the trace buffers between two trace descriptors. * This usually is the buffers between the global_trace and * the max_tr to record a snapshot of a current trace. * * The ftrace_max_lock must be held. */ static void flip_trace(struct trace_array_cpu *tr1, struct trace_array_cpu *tr2) { struct list_head flip_pages; INIT_LIST_HEAD(&flip_pages); memcpy(&tr1->trace_head_idx, &tr2->trace_head_idx, sizeof(struct trace_array_cpu) - offsetof(struct trace_array_cpu, trace_head_idx)); check_pages(tr1); check_pages(tr2); list_splice_init(&tr1->trace_pages, &flip_pages); list_splice_init(&tr2->trace_pages, &tr1->trace_pages); list_splice_init(&flip_pages, &tr2->trace_pages); BUG_ON(!list_empty(&flip_pages)); check_pages(tr1); check_pages(tr2); } /** * update_max_tr - snapshot all trace buffers from global_trace to max_tr * @tr: tracer * @tsk: the task with the latency * @cpu: The cpu that initiated the trace. * * Flip the buffers between the @tr and the max_tr and record information * about which task was the cause of this latency. */ void update_max_tr(struct trace_array *tr, struct task_struct *tsk, int cpu) { struct trace_array_cpu *data; int i; WARN_ON_ONCE(!irqs_disabled()); __raw_spin_lock(&ftrace_max_lock); /* clear out all the previous traces */ for_each_tracing_cpu(i) { data = tr->data[i]; flip_trace(max_tr.data[i], data); tracing_reset(data); } __update_max_tr(tr, tsk, cpu); __raw_spin_unlock(&ftrace_max_lock); } /** * update_max_tr_single - only copy one trace over, and reset the rest * @tr - tracer * @tsk - task with the latency * @cpu - the cpu of the buffer to copy. * * Flip the trace of a single CPU buffer between the @tr and the max_tr. */ void update_max_tr_single(struct trace_array *tr, struct task_struct *tsk, int cpu) { struct trace_array_cpu *data = tr->data[cpu]; int i; WARN_ON_ONCE(!irqs_disabled()); __raw_spin_lock(&ftrace_max_lock); for_each_tracing_cpu(i) tracing_reset(max_tr.data[i]); flip_trace(max_tr.data[cpu], data); tracing_reset(data); __update_max_tr(tr, tsk, cpu); __raw_spin_unlock(&ftrace_max_lock); } /** * register_tracer - register a tracer with the ftrace system. * @type - the plugin for the tracer * * Register a new plugin tracer. */ int register_tracer(struct tracer *type) { struct tracer *t; int len; int ret = 0; if (!type->name) { pr_info("Tracer must have a name\n"); return -1; } mutex_lock(&trace_types_lock); for (t = trace_types; t; t = t->next) { if (strcmp(type->name, t->name) == 0) { /* already found */ pr_info("Trace %s already registered\n", type->name); ret = -1; goto out; } } #ifdef CONFIG_FTRACE_STARTUP_TEST if (type->selftest) { struct tracer *saved_tracer = current_trace; struct trace_array_cpu *data; struct trace_array *tr = &global_trace; int saved_ctrl = tr->ctrl; int i; /* * Run a selftest on this tracer. * Here we reset the trace buffer, and set the current * tracer to be this tracer. The tracer can then run some * internal tracing to verify that everything is in order. * If we fail, we do not register this tracer. */ for_each_tracing_cpu(i) { data = tr->data[i]; if (!head_page(data)) continue; tracing_reset(data); } current_trace = type; tr->ctrl = 0; /* the test is responsible for initializing and enabling */ pr_info("Testing tracer %s: ", type->name); ret = type->selftest(type, tr); /* the test is responsible for resetting too */ current_trace = saved_tracer; tr->ctrl = saved_ctrl; if (ret) { printk(KERN_CONT "FAILED!\n"); goto out; } /* Only reset on passing, to avoid touching corrupted buffers */ for_each_tracing_cpu(i) { data = tr->data[i]; if (!head_page(data)) continue; tracing_reset(data); } printk(KERN_CONT "PASSED\n"); } #endif type->next = trace_types; trace_types = type; len = strlen(type->name); if (len > max_tracer_type_len) max_tracer_type_len = len; out: mutex_unlock(&trace_types_lock); return ret; } void unregister_tracer(struct tracer *type) { struct tracer **t; int len; mutex_lock(&trace_types_lock); for (t = &trace_types; *t; t = &(*t)->next) { if (*t == type) goto found; } pr_info("Trace %s not registered\n", type->name); goto out; found: *t = (*t)->next; if (strlen(type->name) != max_tracer_type_len) goto out; max_tracer_type_len = 0; for (t = &trace_types; *t; t = &(*t)->next) { len = strlen((*t)->name); if (len > max_tracer_type_len) max_tracer_type_len = len; } out: mutex_unlock(&trace_types_lock); } void tracing_reset(struct trace_array_cpu *data) { data->trace_idx = 0; data->overrun = 0; data->trace_head = data->trace_tail = head_page(data); data->trace_head_idx = 0; data->trace_tail_idx = 0; } #define SAVED_CMDLINES 128 static unsigned map_pid_to_cmdline[PID_MAX_DEFAULT+1]; static unsigned map_cmdline_to_pid[SAVED_CMDLINES]; static char saved_cmdlines[SAVED_CMDLINES][TASK_COMM_LEN]; static int cmdline_idx; static DEFINE_SPINLOCK(trace_cmdline_lock); /* temporary disable recording */ atomic_t trace_record_cmdline_disabled __read_mostly; static void trace_init_cmdlines(void) { memset(&map_pid_to_cmdline, -1, sizeof(map_pid_to_cmdline)); memset(&map_cmdline_to_pid, -1, sizeof(map_cmdline_to_pid)); cmdline_idx = 0; } void trace_stop_cmdline_recording(void); static void trace_save_cmdline(struct task_struct *tsk) { unsigned map; unsigned idx; if (!tsk->pid || unlikely(tsk->pid > PID_MAX_DEFAULT)) return; /* * It's not the end of the world if we don't get * the lock, but we also don't want to spin * nor do we want to disable interrupts, * so if we miss here, then better luck next time. */ if (!spin_trylock(&trace_cmdline_lock)) return; idx = map_pid_to_cmdline[tsk->pid]; if (idx >= SAVED_CMDLINES) { idx = (cmdline_idx + 1) % SAVED_CMDLINES; map = map_cmdline_to_pid[idx]; if (map <= PID_MAX_DEFAULT) map_pid_to_cmdline[map] = (unsigned)-1; map_pid_to_cmdline[tsk->pid] = idx; cmdline_idx = idx; } memcpy(&saved_cmdlines[idx], tsk->comm, TASK_COMM_LEN); spin_unlock(&trace_cmdline_lock); } static char *trace_find_cmdline(int pid) { char *cmdline = "<...>"; unsigned map; if (!pid) return ""; if (pid > PID_MAX_DEFAULT) goto out; map = map_pid_to_cmdline[pid]; if (map >= SAVED_CMDLINES) goto out; cmdline = saved_cmdlines[map]; out: return cmdline; } void tracing_record_cmdline(struct task_struct *tsk) { if (atomic_read(&trace_record_cmdline_disabled)) return; trace_save_cmdline(tsk); } static inline struct list_head * trace_next_list(struct trace_array_cpu *data, struct list_head *next) { /* * Roundrobin - but skip the head (which is not a real page): */ next = next->next; if (unlikely(next == &data->trace_pages)) next = next->next; BUG_ON(next == &data->trace_pages); return next; } static inline void * trace_next_page(struct trace_array_cpu *data, void *addr) { struct list_head *next; struct page *page; page = virt_to_page(addr); next = trace_next_list(data, &page->lru); page = list_entry(next, struct page, lru); return page_address(page); } static inline struct trace_entry * tracing_get_trace_entry(struct trace_array *tr, struct trace_array_cpu *data) { unsigned long idx, idx_next; struct trace_entry *entry; data->trace_idx++; idx = data->trace_head_idx; idx_next = idx + 1; BUG_ON(idx * TRACE_ENTRY_SIZE >= PAGE_SIZE); entry = data->trace_head + idx * TRACE_ENTRY_SIZE; if (unlikely(idx_next >= ENTRIES_PER_PAGE)) { data->trace_head = trace_next_page(data, data->trace_head); idx_next = 0; } if (data->trace_head == data->trace_tail && idx_next == data->trace_tail_idx) { /* overrun */ data->overrun++; data->trace_tail_idx++; if (data->trace_tail_idx >= ENTRIES_PER_PAGE) { data->trace_tail = trace_next_page(data, data->trace_tail); data->trace_tail_idx = 0; } } data->trace_head_idx = idx_next; return entry; } static inline void tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags) { struct task_struct *tsk = current; unsigned long pc; pc = preempt_count(); entry->field.preempt_count = pc & 0xff; entry->field.pid = (tsk) ? tsk->pid : 0; entry->field.t = ftrace_now(raw_smp_processor_id()); entry->field.flags = (irqs_disabled_flags(flags) ? TRACE_FLAG_IRQS_OFF : 0) | ((pc & HARDIRQ_MASK) ? TRACE_FLAG_HARDIRQ : 0) | ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) | (need_resched() ? TRACE_FLAG_NEED_RESCHED : 0); } void trace_function(struct trace_array *tr, struct trace_array_cpu *data, unsigned long ip, unsigned long parent_ip, unsigned long flags) { struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, flags); entry->type = TRACE_FN; entry->field.fn.ip = ip; entry->field.fn.parent_ip = parent_ip; __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); } void ftrace(struct trace_array *tr, struct trace_array_cpu *data, unsigned long ip, unsigned long parent_ip, unsigned long flags) { if (likely(!atomic_read(&data->disabled))) trace_function(tr, data, ip, parent_ip, flags); } #ifdef CONFIG_MMIOTRACE void __trace_mmiotrace_rw(struct trace_array *tr, struct trace_array_cpu *data, struct mmiotrace_rw *rw) { struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, 0); entry->type = TRACE_MMIO_RW; entry->field.mmiorw = *rw; __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); trace_wake_up(); } void __trace_mmiotrace_map(struct trace_array *tr, struct trace_array_cpu *data, struct mmiotrace_map *map) { struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, 0); entry->type = TRACE_MMIO_MAP; entry->field.mmiomap = *map; __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); trace_wake_up(); } #endif void __trace_stack(struct trace_array *tr, struct trace_array_cpu *data, unsigned long flags, int skip) { struct trace_entry *entry; struct stack_trace trace; if (!(trace_flags & TRACE_ITER_STACKTRACE)) return; entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, flags); entry->type = TRACE_STACK; memset(&entry->field.stack, 0, sizeof(entry->field.stack)); trace.nr_entries = 0; trace.max_entries = FTRACE_STACK_ENTRIES; trace.skip = skip; trace.entries = entry->field.stack.caller; save_stack_trace(&trace); } void __trace_special(void *__tr, void *__data, unsigned long arg1, unsigned long arg2, unsigned long arg3) { struct trace_array_cpu *data = __data; struct trace_array *tr = __tr; struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, 0); entry->type = TRACE_SPECIAL; entry->field.special.arg1 = arg1; entry->field.special.arg2 = arg2; entry->field.special.arg3 = arg3; __trace_stack(tr, data, irq_flags, 4); __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); trace_wake_up(); } void tracing_sched_switch_trace(struct trace_array *tr, struct trace_array_cpu *data, struct task_struct *prev, struct task_struct *next, unsigned long flags) { struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, flags); entry->type = TRACE_CTX; entry->field.ctx.prev_pid = prev->pid; entry->field.ctx.prev_prio = prev->prio; entry->field.ctx.prev_state = prev->state; entry->field.ctx.next_pid = next->pid; entry->field.ctx.next_prio = next->prio; entry->field.ctx.next_state = next->state; __trace_stack(tr, data, flags, 5); __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); } void tracing_sched_wakeup_trace(struct trace_array *tr, struct trace_array_cpu *data, struct task_struct *wakee, struct task_struct *curr, unsigned long flags) { struct trace_entry *entry; unsigned long irq_flags; raw_local_irq_save(irq_flags); __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, flags); entry->type = TRACE_WAKE; entry->field.ctx.prev_pid = curr->pid; entry->field.ctx.prev_prio = curr->prio; entry->field.ctx.prev_state = curr->state; entry->field.ctx.next_pid = wakee->pid; entry->field.ctx.next_prio = wakee->prio; entry->field.ctx.next_state = wakee->state; __trace_stack(tr, data, flags, 6); __raw_spin_unlock(&data->lock); raw_local_irq_restore(irq_flags); trace_wake_up(); } void ftrace_special(unsigned long arg1, unsigned long arg2, unsigned long arg3) { struct trace_array *tr = &global_trace; struct trace_array_cpu *data; unsigned long flags; long disabled; int cpu; if (tracing_disabled || current_trace == &no_tracer || !tr->ctrl) return; local_irq_save(flags); cpu = raw_smp_processor_id(); data = tr->data[cpu]; disabled = atomic_inc_return(&data->disabled); if (likely(disabled == 1)) __trace_special(tr, data, arg1, arg2, arg3); atomic_dec(&data->disabled); local_irq_restore(flags); } #ifdef CONFIG_FTRACE static void function_trace_call(unsigned long ip, unsigned long parent_ip) { struct trace_array *tr = &global_trace; struct trace_array_cpu *data; unsigned long flags; long disabled; int cpu; if (unlikely(!ftrace_function_enabled)) return; if (skip_trace(ip)) return; local_irq_save(flags); cpu = raw_smp_processor_id(); data = tr->data[cpu]; disabled = atomic_inc_return(&data->disabled); if (likely(disabled == 1)) trace_function(tr, data, ip, parent_ip, flags); atomic_dec(&data->disabled); local_irq_restore(flags); } static struct ftrace_ops trace_ops __read_mostly = { .func = function_trace_call, }; void tracing_start_function_trace(void) { ftrace_function_enabled = 0; register_ftrace_function(&trace_ops); if (tracer_enabled) ftrace_function_enabled = 1; } void tracing_stop_function_trace(void) { ftrace_function_enabled = 0; unregister_ftrace_function(&trace_ops); } #endif enum trace_file_type { TRACE_FILE_LAT_FMT = 1, }; /* Return the current entry. */ static struct trace_entry * trace_entry_idx(struct trace_array *tr, struct trace_array_cpu *data, struct trace_iterator *iter, int cpu) { struct page *page; struct trace_entry *array; if (iter->next_idx[cpu] >= tr->entries || iter->next_idx[cpu] >= data->trace_idx || (data->trace_head == data->trace_tail && data->trace_head_idx == data->trace_tail_idx)) return NULL; if (!iter->next_page[cpu]) { /* Initialize the iterator for this cpu trace buffer */ WARN_ON(!data->trace_tail); page = virt_to_page(data->trace_tail); iter->next_page[cpu] = &page->lru; iter->next_page_idx[cpu] = data->trace_tail_idx; } page = list_entry(iter->next_page[cpu], struct page, lru); BUG_ON(&data->trace_pages == &page->lru); array = page_address(page); WARN_ON(iter->next_page_idx[cpu] >= ENTRIES_PER_PAGE); return &array[iter->next_page_idx[cpu]]; } /* Increment the index counter of an iterator by one */ static void __trace_iterator_increment(struct trace_iterator *iter, int cpu) { iter->next_idx[cpu]++; iter->next_page_idx[cpu]++; if (iter->next_page_idx[cpu] >= ENTRIES_PER_PAGE) { struct trace_array_cpu *data = iter->tr->data[cpu]; iter->next_page_idx[cpu] = 0; iter->next_page[cpu] = trace_next_list(data, iter->next_page[cpu]); } } static void trace_iterator_increment(struct trace_iterator *iter, int cpu) { iter->idx++; __trace_iterator_increment(iter, cpu); } static struct trace_entry * trace_entry_next(struct trace_array *tr, struct trace_array_cpu *data, struct trace_iterator *iter, int cpu) { struct list_head *next_page; struct trace_entry *ent; int idx, next_idx, next_page_idx; ent = trace_entry_idx(tr, tr->data[cpu], iter, cpu); if (likely(!ent || ent->type != TRACE_CONT)) return ent; /* save the iterator details */ idx = iter->idx; next_idx = iter->next_idx[cpu]; next_page_idx = iter->next_page_idx[cpu]; next_page = iter->next_page[cpu]; /* find a real entry */ do { __trace_iterator_increment(iter, cpu); ent = trace_entry_idx(tr, tr->data[cpu], iter, cpu); } while (ent && ent->type != TRACE_CONT); /* reset the iterator */ iter->idx = idx; iter->next_idx[cpu] = next_idx; iter->next_page_idx[cpu] = next_page_idx; iter->next_page[cpu] = next_page; return ent; } static struct trace_entry * __find_next_entry(struct trace_iterator *iter, int *ent_cpu, int inc) { struct trace_array *tr = iter->tr; struct trace_entry *ent, *next = NULL; int next_cpu = -1; int cpu; for_each_tracing_cpu(cpu) { if (!head_page(tr->data[cpu])) continue; ent = trace_entry_idx(tr, tr->data[cpu], iter, cpu); if (ent && ent->type == TRACE_CONT) { struct trace_array_cpu *data = tr->data[cpu]; if (!inc) ent = trace_entry_next(tr, data, iter, cpu); else { while (ent && ent->type == TRACE_CONT) { __trace_iterator_increment(iter, cpu); ent = trace_entry_idx(tr, tr->data[cpu], iter, cpu); } } } /* * Pick the entry with the smallest timestamp: */ if (ent && (!next || ent->field.t < next->field.t)) { next = ent; next_cpu = cpu; } } if (ent_cpu) *ent_cpu = next_cpu; return next; } /* Find the next real entry, without updating the iterator itself */ static struct trace_entry * find_next_entry(struct trace_iterator *iter, int *ent_cpu) { return __find_next_entry(iter, ent_cpu, 0); } /* Find the next real entry, and increment the iterator to the next entry */ static void *find_next_entry_inc(struct trace_iterator *iter) { struct trace_entry *next; int next_cpu = -1; next = __find_next_entry(iter, &next_cpu, 1); iter->prev_ent = iter->ent; iter->prev_cpu = iter->cpu; iter->ent = next; iter->cpu = next_cpu; if (next) trace_iterator_increment(iter, iter->cpu); return next ? iter : NULL; } static void trace_consume(struct trace_iterator *iter) { struct trace_array_cpu *data = iter->tr->data[iter->cpu]; struct trace_entry *ent; again: data->trace_tail_idx++; if (data->trace_tail_idx >= ENTRIES_PER_PAGE) { data->trace_tail = trace_next_page(data, data->trace_tail); data->trace_tail_idx = 0; } /* Check if we empty it, then reset the index */ if (data->trace_head == data->trace_tail && data->trace_head_idx == data->trace_tail_idx) data->trace_idx = 0; ent = trace_entry_idx(iter->tr, iter->tr->data[iter->cpu], iter, iter->cpu); if (ent && ent->type == TRACE_CONT) goto again; } static void *s_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_iterator *iter = m->private; int i = (int)*pos; void *ent; (*pos)++; /* can't go backwards */ if (iter->idx > i) return NULL; if (iter->idx < 0) ent = find_next_entry_inc(iter); else ent = iter; while (ent && iter->idx < i) ent = find_next_entry_inc(iter); iter->pos = *pos; return ent; } static void *s_start(struct seq_file *m, loff_t *pos) { struct trace_iterator *iter = m->private; void *p = NULL; loff_t l = 0; int i; mutex_lock(&trace_types_lock); if (!current_trace || current_trace != iter->trace) { mutex_unlock(&trace_types_lock); return NULL; } atomic_inc(&trace_record_cmdline_disabled); /* let the tracer grab locks here if needed */ if (current_trace->start) current_trace->start(iter); if (*pos != iter->pos) { iter->ent = NULL; iter->cpu = 0; iter->idx = -1; iter->prev_ent = NULL; iter->prev_cpu = -1; for_each_tracing_cpu(i) { iter->next_idx[i] = 0; iter->next_page[i] = NULL; } for (p = iter; p && l < *pos; p = s_next(m, p, &l)) ; } else { l = *pos - 1; p = s_next(m, p, &l); } return p; } static void s_stop(struct seq_file *m, void *p) { struct trace_iterator *iter = m->private; atomic_dec(&trace_record_cmdline_disabled); /* let the tracer release locks here if needed */ if (current_trace && current_trace == iter->trace && iter->trace->stop) iter->trace->stop(iter); mutex_unlock(&trace_types_lock); } #define KRETPROBE_MSG "[unknown/kretprobe'd]" #ifdef CONFIG_KRETPROBES static inline int kretprobed(unsigned long addr) { return addr == (unsigned long)kretprobe_trampoline; } #else static inline int kretprobed(unsigned long addr) { return 0; } #endif /* CONFIG_KRETPROBES */ static int seq_print_sym_short(struct trace_seq *s, const char *fmt, unsigned long address) { #ifdef CONFIG_KALLSYMS char str[KSYM_SYMBOL_LEN]; kallsyms_lookup(address, NULL, NULL, NULL, str); return trace_seq_printf(s, fmt, str); #endif return 1; } static int seq_print_sym_offset(struct trace_seq *s, const char *fmt, unsigned long address) { #ifdef CONFIG_KALLSYMS char str[KSYM_SYMBOL_LEN]; sprint_symbol(str, address); return trace_seq_printf(s, fmt, str); #endif return 1; } #ifndef CONFIG_64BIT # define IP_FMT "%08lx" #else # define IP_FMT "%016lx" #endif static int seq_print_ip_sym(struct trace_seq *s, unsigned long ip, unsigned long sym_flags) { int ret; if (!ip) return trace_seq_printf(s, "0"); if (sym_flags & TRACE_ITER_SYM_OFFSET) ret = seq_print_sym_offset(s, "%s", ip); else ret = seq_print_sym_short(s, "%s", ip); if (!ret) return 0; if (sym_flags & TRACE_ITER_SYM_ADDR) ret = trace_seq_printf(s, " <" IP_FMT ">", ip); return ret; } static void print_lat_help_header(struct seq_file *m) { seq_puts(m, "# _------=> CPU# \n"); seq_puts(m, "# / _-----=> irqs-off \n"); seq_puts(m, "# | / _----=> need-resched \n"); seq_puts(m, "# || / _---=> hardirq/softirq \n"); seq_puts(m, "# ||| / _--=> preempt-depth \n"); seq_puts(m, "# |||| / \n"); seq_puts(m, "# ||||| delay \n"); seq_puts(m, "# cmd pid ||||| time | caller \n"); seq_puts(m, "# \\ / ||||| \\ | / \n"); } static void print_func_help_header(struct seq_file *m) { seq_puts(m, "# TASK-PID CPU# TIMESTAMP FUNCTION\n"); seq_puts(m, "# | | | | |\n"); } static void print_trace_header(struct seq_file *m, struct trace_iterator *iter) { unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); struct trace_array *tr = iter->tr; struct trace_array_cpu *data = tr->data[tr->cpu]; struct tracer *type = current_trace; unsigned long total = 0; unsigned long entries = 0; int cpu; const char *name = "preemption"; if (type) name = type->name; for_each_tracing_cpu(cpu) { if (head_page(tr->data[cpu])) { total += tr->data[cpu]->trace_idx; if (tr->data[cpu]->trace_idx > tr->entries) entries += tr->entries; else entries += tr->data[cpu]->trace_idx; } } seq_printf(m, "%s latency trace v1.1.5 on %s\n", name, UTS_RELEASE); seq_puts(m, "-----------------------------------" "---------------------------------\n"); seq_printf(m, " latency: %lu us, #%lu/%lu, CPU#%d |" " (M:%s VP:%d, KP:%d, SP:%d HP:%d", nsecs_to_usecs(data->saved_latency), entries, total, tr->cpu, #if defined(CONFIG_PREEMPT_NONE) "server", #elif defined(CONFIG_PREEMPT_VOLUNTARY) "desktop", #elif defined(CONFIG_PREEMPT) "preempt", #else "unknown", #endif /* These are reserved for later use */ 0, 0, 0, 0); #ifdef CONFIG_SMP seq_printf(m, " #P:%d)\n", num_online_cpus()); #else seq_puts(m, ")\n"); #endif seq_puts(m, " -----------------\n"); seq_printf(m, " | task: %.16s-%d " "(uid:%d nice:%ld policy:%ld rt_prio:%ld)\n", data->comm, data->pid, data->uid, data->nice, data->policy, data->rt_priority); seq_puts(m, " -----------------\n"); if (data->critical_start) { seq_puts(m, " => started at: "); seq_print_ip_sym(&iter->seq, data->critical_start, sym_flags); trace_print_seq(m, &iter->seq); seq_puts(m, "\n => ended at: "); seq_print_ip_sym(&iter->seq, data->critical_end, sym_flags); trace_print_seq(m, &iter->seq); seq_puts(m, "\n"); } seq_puts(m, "\n"); } static void lat_print_generic(struct trace_seq *s, struct trace_entry *entry, int cpu) { struct trace_field *field = &entry->field; int hardirq, softirq; char *comm; comm = trace_find_cmdline(field->pid); trace_seq_printf(s, "%8.8s-%-5d ", comm, field->pid); trace_seq_printf(s, "%3d", cpu); trace_seq_printf(s, "%c%c", (field->flags & TRACE_FLAG_IRQS_OFF) ? 'd' : '.', ((field->flags & TRACE_FLAG_NEED_RESCHED) ? 'N' : '.')); hardirq = field->flags & TRACE_FLAG_HARDIRQ; softirq = field->flags & TRACE_FLAG_SOFTIRQ; if (hardirq && softirq) { trace_seq_putc(s, 'H'); } else { if (hardirq) { trace_seq_putc(s, 'h'); } else { if (softirq) trace_seq_putc(s, 's'); else trace_seq_putc(s, '.'); } } if (field->preempt_count) trace_seq_printf(s, "%x", field->preempt_count); else trace_seq_puts(s, "."); } unsigned long preempt_mark_thresh = 100; static void lat_print_timestamp(struct trace_seq *s, unsigned long long abs_usecs, unsigned long rel_usecs) { trace_seq_printf(s, " %4lldus", abs_usecs); if (rel_usecs > preempt_mark_thresh) trace_seq_puts(s, "!: "); else if (rel_usecs > 1) trace_seq_puts(s, "+: "); else trace_seq_puts(s, " : "); } static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; static void trace_seq_print_cont(struct trace_seq *s, struct trace_iterator *iter) { struct trace_array *tr = iter->tr; struct trace_array_cpu *data = tr->data[iter->cpu]; struct trace_entry *ent; ent = trace_entry_idx(tr, data, iter, iter->cpu); if (!ent || ent->type != TRACE_CONT) { trace_seq_putc(s, '\n'); return; } do { trace_seq_printf(s, "%s", ent->cont.buf); __trace_iterator_increment(iter, iter->cpu); ent = trace_entry_idx(tr, data, iter, iter->cpu); } while (ent && ent->type == TRACE_CONT); } static int print_lat_fmt(struct trace_iterator *iter, unsigned int trace_idx, int cpu) { struct trace_seq *s = &iter->seq; unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); struct trace_entry *next_entry = find_next_entry(iter, NULL); unsigned long verbose = (trace_flags & TRACE_ITER_VERBOSE); struct trace_entry *entry = iter->ent; struct trace_field *field = &entry->field; unsigned long abs_usecs; unsigned long rel_usecs; char *comm; int S, T; int i; unsigned state; if (!next_entry) next_entry = entry; if (entry->type == TRACE_CONT) return 1; rel_usecs = ns2usecs(next_entry->field.t - entry->field.t); abs_usecs = ns2usecs(entry->field.t - iter->tr->time_start); if (verbose) { comm = trace_find_cmdline(field->pid); trace_seq_printf(s, "%16s %5d %3d %d %08x %08x [%08lx]" " %ld.%03ldms (+%ld.%03ldms): ", comm, field->pid, cpu, field->flags, field->preempt_count, trace_idx, ns2usecs(field->t), abs_usecs/1000, abs_usecs % 1000, rel_usecs/1000, rel_usecs % 1000); } else { lat_print_generic(s, entry, cpu); lat_print_timestamp(s, abs_usecs, rel_usecs); } switch (entry->type) { case TRACE_FN: seq_print_ip_sym(s, field->fn.ip, sym_flags); trace_seq_puts(s, " ("); if (kretprobed(field->fn.parent_ip)) trace_seq_puts(s, KRETPROBE_MSG); else seq_print_ip_sym(s, field->fn.parent_ip, sym_flags); trace_seq_puts(s, ")\n"); break; case TRACE_CTX: case TRACE_WAKE: T = field->ctx.next_state < sizeof(state_to_char) ? state_to_char[field->ctx.next_state] : 'X'; state = field->ctx.prev_state ? __ffs(field->ctx.prev_state) + 1 : 0; S = state < sizeof(state_to_char) - 1 ? state_to_char[state] : 'X'; comm = trace_find_cmdline(field->ctx.next_pid); trace_seq_printf(s, " %5d:%3d:%c %s %5d:%3d:%c %s\n", field->ctx.prev_pid, field->ctx.prev_prio, S, entry->type == TRACE_CTX ? "==>" : " +", field->ctx.next_pid, field->ctx.next_prio, T, comm); break; case TRACE_SPECIAL: trace_seq_printf(s, "# %ld %ld %ld\n", field->special.arg1, field->special.arg2, field->special.arg3); break; case TRACE_STACK: for (i = 0; i < FTRACE_STACK_ENTRIES; i++) { if (i) trace_seq_puts(s, " <= "); seq_print_ip_sym(s, field->stack.caller[i], sym_flags); } trace_seq_puts(s, "\n"); break; case TRACE_PRINT: seq_print_ip_sym(s, field->print.ip, sym_flags); trace_seq_printf(s, ": %s", field->print.buf); if (field->flags & TRACE_FLAG_CONT) trace_seq_print_cont(s, iter); break; default: trace_seq_printf(s, "Unknown type %d\n", entry->type); } return 1; } static int print_trace_fmt(struct trace_iterator *iter) { struct trace_seq *s = &iter->seq; unsigned long sym_flags = (trace_flags & TRACE_ITER_SYM_MASK); struct trace_entry *entry; struct trace_field *field; unsigned long usec_rem; unsigned long long t; unsigned long secs; char *comm; int ret; int S, T; int i; entry = iter->ent; if (entry->type == TRACE_CONT) return 1; field = &entry->field; comm = trace_find_cmdline(iter->ent->field.pid); t = ns2usecs(field->t); usec_rem = do_div(t, 1000000ULL); secs = (unsigned long)t; ret = trace_seq_printf(s, "%16s-%-5d ", comm, field->pid); if (!ret) return 0; ret = trace_seq_printf(s, "[%03d] ", iter->cpu); if (!ret) return 0; ret = trace_seq_printf(s, "%5lu.%06lu: ", secs, usec_rem); if (!ret) return 0; switch (entry->type) { case TRACE_FN: ret = seq_print_ip_sym(s, field->fn.ip, sym_flags); if (!ret) return 0; if ((sym_flags & TRACE_ITER_PRINT_PARENT) && field->fn.parent_ip) { ret = trace_seq_printf(s, " <-"); if (!ret) return 0; if (kretprobed(field->fn.parent_ip)) ret = trace_seq_puts(s, KRETPROBE_MSG); else ret = seq_print_ip_sym(s, field->fn.parent_ip, sym_flags); if (!ret) return 0; } ret = trace_seq_printf(s, "\n"); if (!ret) return 0; break; case TRACE_CTX: case TRACE_WAKE: S = field->ctx.prev_state < sizeof(state_to_char) ? state_to_char[field->ctx.prev_state] : 'X'; T = field->ctx.next_state < sizeof(state_to_char) ? state_to_char[field->ctx.next_state] : 'X'; ret = trace_seq_printf(s, " %5d:%3d:%c %s %5d:%3d:%c\n", field->ctx.prev_pid, field->ctx.prev_prio, S, entry->type == TRACE_CTX ? "==>" : " +", field->ctx.next_pid, field->ctx.next_prio, T); if (!ret) return 0; break; case TRACE_SPECIAL: ret = trace_seq_printf(s, "# %ld %ld %ld\n", field->special.arg1, field->special.arg2, field->special.arg3); if (!ret) return 0; break; case TRACE_STACK: for (i = 0; i < FTRACE_STACK_ENTRIES; i++) { if (i) { ret = trace_seq_puts(s, " <= "); if (!ret) return 0; } ret = seq_print_ip_sym(s, field->stack.caller[i], sym_flags); if (!ret) return 0; } ret = trace_seq_puts(s, "\n"); if (!ret) return 0; break; case TRACE_PRINT: seq_print_ip_sym(s, field->print.ip, sym_flags); trace_seq_printf(s, ": %s", field->print.buf); if (field->flags & TRACE_FLAG_CONT) trace_seq_print_cont(s, iter); break; } return 1; } static int print_raw_fmt(struct trace_iterator *iter) { struct trace_seq *s = &iter->seq; struct trace_entry *entry; struct trace_field *field; int ret; int S, T; entry = iter->ent; if (entry->type == TRACE_CONT) return 1; field = &entry->field; ret = trace_seq_printf(s, "%d %d %llu ", field->pid, iter->cpu, field->t); if (!ret) return 0; switch (entry->type) { case TRACE_FN: ret = trace_seq_printf(s, "%x %x\n", field->fn.ip, field->fn.parent_ip); if (!ret) return 0; break; case TRACE_CTX: case TRACE_WAKE: S = field->ctx.prev_state < sizeof(state_to_char) ? state_to_char[field->ctx.prev_state] : 'X'; T = field->ctx.next_state < sizeof(state_to_char) ? state_to_char[field->ctx.next_state] : 'X'; if (entry->type == TRACE_WAKE) S = '+'; ret = trace_seq_printf(s, "%d %d %c %d %d %c\n", field->ctx.prev_pid, field->ctx.prev_prio, S, field->ctx.next_pid, field->ctx.next_prio, T); if (!ret) return 0; break; case TRACE_SPECIAL: case TRACE_STACK: ret = trace_seq_printf(s, "# %ld %ld %ld\n", field->special.arg1, field->special.arg2, field->special.arg3); if (!ret) return 0; break; case TRACE_PRINT: trace_seq_printf(s, "# %lx %s", field->print.ip, field->print.buf); if (field->flags & TRACE_FLAG_CONT) trace_seq_print_cont(s, iter); break; } return 1; } #define SEQ_PUT_FIELD_RET(s, x) \ do { \ if (!trace_seq_putmem(s, &(x), sizeof(x))) \ return 0; \ } while (0) #define SEQ_PUT_HEX_FIELD_RET(s, x) \ do { \ if (!trace_seq_putmem_hex(s, &(x), sizeof(x))) \ return 0; \ } while (0) static int print_hex_fmt(struct trace_iterator *iter) { struct trace_seq *s = &iter->seq; unsigned char newline = '\n'; struct trace_entry *entry; struct trace_field *field; int S, T; entry = iter->ent; if (entry->type == TRACE_CONT) return 1; field = &entry->field; SEQ_PUT_HEX_FIELD_RET(s, field->pid); SEQ_PUT_HEX_FIELD_RET(s, iter->cpu); SEQ_PUT_HEX_FIELD_RET(s, field->t); switch (entry->type) { case TRACE_FN: SEQ_PUT_HEX_FIELD_RET(s, field->fn.ip); SEQ_PUT_HEX_FIELD_RET(s, field->fn.parent_ip); break; case TRACE_CTX: case TRACE_WAKE: S = field->ctx.prev_state < sizeof(state_to_char) ? state_to_char[field->ctx.prev_state] : 'X'; T = field->ctx.next_state < sizeof(state_to_char) ? state_to_char[field->ctx.next_state] : 'X'; if (entry->type == TRACE_WAKE) S = '+'; SEQ_PUT_HEX_FIELD_RET(s, field->ctx.prev_pid); SEQ_PUT_HEX_FIELD_RET(s, field->ctx.prev_prio); SEQ_PUT_HEX_FIELD_RET(s, S); SEQ_PUT_HEX_FIELD_RET(s, field->ctx.next_pid); SEQ_PUT_HEX_FIELD_RET(s, field->ctx.next_prio); SEQ_PUT_HEX_FIELD_RET(s, T); break; case TRACE_SPECIAL: case TRACE_STACK: SEQ_PUT_HEX_FIELD_RET(s, field->special.arg1); SEQ_PUT_HEX_FIELD_RET(s, field->special.arg2); SEQ_PUT_HEX_FIELD_RET(s, field->special.arg3); break; } SEQ_PUT_FIELD_RET(s, newline); return 1; } static int print_bin_fmt(struct trace_iterator *iter) { struct trace_seq *s = &iter->seq; struct trace_entry *entry; struct trace_field *field; entry = iter->ent; if (entry->type == TRACE_CONT) return 1; field = &entry->field; SEQ_PUT_FIELD_RET(s, field->pid); SEQ_PUT_FIELD_RET(s, field->cpu); SEQ_PUT_FIELD_RET(s, field->t); switch (entry->type) { case TRACE_FN: SEQ_PUT_FIELD_RET(s, field->fn.ip); SEQ_PUT_FIELD_RET(s, field->fn.parent_ip); break; case TRACE_CTX: SEQ_PUT_FIELD_RET(s, field->ctx.prev_pid); SEQ_PUT_FIELD_RET(s, field->ctx.prev_prio); SEQ_PUT_FIELD_RET(s, field->ctx.prev_state); SEQ_PUT_FIELD_RET(s, field->ctx.next_pid); SEQ_PUT_FIELD_RET(s, field->ctx.next_prio); SEQ_PUT_FIELD_RET(s, field->ctx.next_state); break; case TRACE_SPECIAL: case TRACE_STACK: SEQ_PUT_FIELD_RET(s, field->special.arg1); SEQ_PUT_FIELD_RET(s, field->special.arg2); SEQ_PUT_FIELD_RET(s, field->special.arg3); break; } return 1; } static int trace_empty(struct trace_iterator *iter) { struct trace_array_cpu *data; int cpu; for_each_tracing_cpu(cpu) { data = iter->tr->data[cpu]; if (head_page(data) && data->trace_idx && (data->trace_tail != data->trace_head || data->trace_tail_idx != data->trace_head_idx)) return 0; } return 1; } static int print_trace_line(struct trace_iterator *iter) { if (iter->trace && iter->trace->print_line) return iter->trace->print_line(iter); if (trace_flags & TRACE_ITER_BIN) return print_bin_fmt(iter); if (trace_flags & TRACE_ITER_HEX) return print_hex_fmt(iter); if (trace_flags & TRACE_ITER_RAW) return print_raw_fmt(iter); if (iter->iter_flags & TRACE_FILE_LAT_FMT) return print_lat_fmt(iter, iter->idx, iter->cpu); return print_trace_fmt(iter); } static int s_show(struct seq_file *m, void *v) { struct trace_iterator *iter = v; if (iter->ent == NULL) { if (iter->tr) { seq_printf(m, "# tracer: %s\n", iter->trace->name); seq_puts(m, "#\n"); } if (iter->iter_flags & TRACE_FILE_LAT_FMT) { /* print nothing if the buffers are empty */ if (trace_empty(iter)) return 0; print_trace_header(m, iter); if (!(trace_flags & TRACE_ITER_VERBOSE)) print_lat_help_header(m); } else { if (!(trace_flags & TRACE_ITER_VERBOSE)) print_func_help_header(m); } } else { print_trace_line(iter); trace_print_seq(m, &iter->seq); } return 0; } static struct seq_operations tracer_seq_ops = { .start = s_start, .next = s_next, .stop = s_stop, .show = s_show, }; static struct trace_iterator * __tracing_open(struct inode *inode, struct file *file, int *ret) { struct trace_iterator *iter; if (tracing_disabled) { *ret = -ENODEV; return NULL; } iter = kzalloc(sizeof(*iter), GFP_KERNEL); if (!iter) { *ret = -ENOMEM; goto out; } mutex_lock(&trace_types_lock); if (current_trace && current_trace->print_max) iter->tr = &max_tr; else iter->tr = inode->i_private; iter->trace = current_trace; iter->pos = -1; /* TODO stop tracer */ *ret = seq_open(file, &tracer_seq_ops); if (!*ret) { struct seq_file *m = file->private_data; m->private = iter; /* stop the trace while dumping */ if (iter->tr->ctrl) { tracer_enabled = 0; ftrace_function_enabled = 0; } if (iter->trace && iter->trace->open) iter->trace->open(iter); } else { kfree(iter); iter = NULL; } mutex_unlock(&trace_types_lock); out: return iter; } int tracing_open_generic(struct inode *inode, struct file *filp) { if (tracing_disabled) return -ENODEV; filp->private_data = inode->i_private; return 0; } int tracing_release(struct inode *inode, struct file *file) { struct seq_file *m = (struct seq_file *)file->private_data; struct trace_iterator *iter = m->private; mutex_lock(&trace_types_lock); if (iter->trace && iter->trace->close) iter->trace->close(iter); /* reenable tracing if it was previously enabled */ if (iter->tr->ctrl) { tracer_enabled = 1; /* * It is safe to enable function tracing even if it * isn't used */ ftrace_function_enabled = 1; } mutex_unlock(&trace_types_lock); seq_release(inode, file); kfree(iter); return 0; } static int tracing_open(struct inode *inode, struct file *file) { int ret; __tracing_open(inode, file, &ret); return ret; } static int tracing_lt_open(struct inode *inode, struct file *file) { struct trace_iterator *iter; int ret; iter = __tracing_open(inode, file, &ret); if (!ret) iter->iter_flags |= TRACE_FILE_LAT_FMT; return ret; } static void * t_next(struct seq_file *m, void *v, loff_t *pos) { struct tracer *t = m->private; (*pos)++; if (t) t = t->next; m->private = t; return t; } static void *t_start(struct seq_file *m, loff_t *pos) { struct tracer *t = m->private; loff_t l = 0; mutex_lock(&trace_types_lock); for (; t && l < *pos; t = t_next(m, t, &l)) ; return t; } static void t_stop(struct seq_file *m, void *p) { mutex_unlock(&trace_types_lock); } static int t_show(struct seq_file *m, void *v) { struct tracer *t = v; if (!t) return 0; seq_printf(m, "%s", t->name); if (t->next) seq_putc(m, ' '); else seq_putc(m, '\n'); return 0; } static struct seq_operations show_traces_seq_ops = { .start = t_start, .next = t_next, .stop = t_stop, .show = t_show, }; static int show_traces_open(struct inode *inode, struct file *file) { int ret; if (tracing_disabled) return -ENODEV; ret = seq_open(file, &show_traces_seq_ops); if (!ret) { struct seq_file *m = file->private_data; m->private = trace_types; } return ret; } static struct file_operations tracing_fops = { .open = tracing_open, .read = seq_read, .llseek = seq_lseek, .release = tracing_release, }; static struct file_operations tracing_lt_fops = { .open = tracing_lt_open, .read = seq_read, .llseek = seq_lseek, .release = tracing_release, }; static struct file_operations show_traces_fops = { .open = show_traces_open, .read = seq_read, .release = seq_release, }; /* * Only trace on a CPU if the bitmask is set: */ static cpumask_t tracing_cpumask = CPU_MASK_ALL; /* * When tracing/tracing_cpu_mask is modified then this holds * the new bitmask we are about to install: */ static cpumask_t tracing_cpumask_new; /* * The tracer itself will not take this lock, but still we want * to provide a consistent cpumask to user-space: */ static DEFINE_MUTEX(tracing_cpumask_update_lock); /* * Temporary storage for the character representation of the * CPU bitmask (and one more byte for the newline): */ static char mask_str[NR_CPUS + 1]; static ssize_t tracing_cpumask_read(struct file *filp, char __user *ubuf, size_t count, loff_t *ppos) { int len; mutex_lock(&tracing_cpumask_update_lock); len = cpumask_scnprintf(mask_str, count, tracing_cpumask); if (count - len < 2) { count = -EINVAL; goto out_err; } len += sprintf(mask_str + len, "\n"); count = simple_read_from_buffer(ubuf, count, ppos, mask_str, NR_CPUS+1); out_err: mutex_unlock(&tracing_cpumask_update_lock); return count; } static ssize_t tracing_cpumask_write(struct file *filp, const char __user *ubuf, size_t count, loff_t *ppos) { int err, cpu; mutex_lock(&tracing_cpumask_update_lock); err = cpumask_parse_user(ubuf, count, tracing_cpumask_new); if (err) goto err_unlock; raw_local_irq_disable(); __raw_spin_lock(&ftrace_max_lock); for_each_tracing_cpu(cpu) { /* * Increase/decrease the disabled counter if we are * about to flip a bit in the cpumask: */ if (cpu_isset(cpu, tracing_cpumask) && !cpu_isset(cpu, tracing_cpumask_new)) { atomic_inc(&global_trace.data[cpu]->disabled); } if (!cpu_isset(cpu, tracing_cpumask) && cpu_isset(cpu, tracing_cpumask_new)) { atomic_dec(&global_trace.data[cpu]->disabled); } } __raw_spin_unlock(&ftrace_max_lock); raw_local_irq_enable(); tracing_cpumask = tracing_cpumask_new; mutex_unlock(&tracing_cpumask_update_lock); return count; err_unlock: mutex_unlock(&tracing_cpumask_update_lock); return err; } static struct file_operations tracing_cpumask_fops = { .open = tracing_open_generic, .read = tracing_cpumask_read, .write = tracing_cpumask_write, }; static ssize_t tracing_iter_ctrl_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { char *buf; int r = 0; int len = 0; int i; /* calulate max size */ for (i = 0; trace_options[i]; i++) { len += strlen(trace_options[i]); len += 3; /* "no" and space */ } /* +2 for \n and \0 */ buf = kmalloc(len + 2, GFP_KERNEL); if (!buf) return -ENOMEM; for (i = 0; trace_options[i]; i++) { if (trace_flags & (1 << i)) r += sprintf(buf + r, "%s ", trace_options[i]); else r += sprintf(buf + r, "no%s ", trace_options[i]); } r += sprintf(buf + r, "\n"); WARN_ON(r >= len + 2); r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); kfree(buf); return r; } static ssize_t tracing_iter_ctrl_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; char *cmp = buf; int neg = 0; int i; if (cnt >= sizeof(buf)) return -EINVAL; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; if (strncmp(buf, "no", 2) == 0) { neg = 1; cmp += 2; } for (i = 0; trace_options[i]; i++) { int len = strlen(trace_options[i]); if (strncmp(cmp, trace_options[i], len) == 0) { if (neg) trace_flags &= ~(1 << i); else trace_flags |= (1 << i); break; } } /* * If no option could be set, return an error: */ if (!trace_options[i]) return -EINVAL; filp->f_pos += cnt; return cnt; } static struct file_operations tracing_iter_fops = { .open = tracing_open_generic, .read = tracing_iter_ctrl_read, .write = tracing_iter_ctrl_write, }; static const char readme_msg[] = "tracing mini-HOWTO:\n\n" "# mkdir /debug\n" "# mount -t debugfs nodev /debug\n\n" "# cat /debug/tracing/available_tracers\n" "wakeup preemptirqsoff preemptoff irqsoff ftrace sched_switch none\n\n" "# cat /debug/tracing/current_tracer\n" "none\n" "# echo sched_switch > /debug/tracing/current_tracer\n" "# cat /debug/tracing/current_tracer\n" "sched_switch\n" "# cat /debug/tracing/iter_ctrl\n" "noprint-parent nosym-offset nosym-addr noverbose\n" "# echo print-parent > /debug/tracing/iter_ctrl\n" "# echo 1 > /debug/tracing/tracing_enabled\n" "# cat /debug/tracing/trace > /tmp/trace.txt\n" "echo 0 > /debug/tracing/tracing_enabled\n" ; static ssize_t tracing_readme_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { return simple_read_from_buffer(ubuf, cnt, ppos, readme_msg, strlen(readme_msg)); } static struct file_operations tracing_readme_fops = { .open = tracing_open_generic, .read = tracing_readme_read, }; static ssize_t tracing_ctrl_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_array *tr = filp->private_data; char buf[64]; int r; r = sprintf(buf, "%ld\n", tr->ctrl); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static ssize_t tracing_ctrl_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_array *tr = filp->private_data; char buf[64]; long val; int ret; if (cnt >= sizeof(buf)) return -EINVAL; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; ret = strict_strtoul(buf, 10, &val); if (ret < 0) return ret; val = !!val; mutex_lock(&trace_types_lock); if (tr->ctrl ^ val) { if (val) tracer_enabled = 1; else tracer_enabled = 0; tr->ctrl = val; if (current_trace && current_trace->ctrl_update) current_trace->ctrl_update(tr); } mutex_unlock(&trace_types_lock); filp->f_pos += cnt; return cnt; } static ssize_t tracing_set_trace_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[max_tracer_type_len+2]; int r; mutex_lock(&trace_types_lock); if (current_trace) r = sprintf(buf, "%s\n", current_trace->name); else r = sprintf(buf, "\n"); mutex_unlock(&trace_types_lock); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static ssize_t tracing_set_trace_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_array *tr = &global_trace; struct tracer *t; char buf[max_tracer_type_len+1]; int i; if (cnt > max_tracer_type_len) cnt = max_tracer_type_len; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; /* strip ending whitespace. */ for (i = cnt - 1; i > 0 && isspace(buf[i]); i--) buf[i] = 0; mutex_lock(&trace_types_lock); for (t = trace_types; t; t = t->next) { if (strcmp(t->name, buf) == 0) break; } if (!t || t == current_trace) goto out; if (current_trace && current_trace->reset) current_trace->reset(tr); current_trace = t; if (t->init) t->init(tr); out: mutex_unlock(&trace_types_lock); filp->f_pos += cnt; return cnt; } static ssize_t tracing_max_lat_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { unsigned long *ptr = filp->private_data; char buf[64]; int r; r = snprintf(buf, sizeof(buf), "%ld\n", *ptr == (unsigned long)-1 ? -1 : nsecs_to_usecs(*ptr)); if (r > sizeof(buf)) r = sizeof(buf); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static ssize_t tracing_max_lat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { long *ptr = filp->private_data; char buf[64]; long val; int ret; if (cnt >= sizeof(buf)) return -EINVAL; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; ret = strict_strtoul(buf, 10, &val); if (ret < 0) return ret; *ptr = val * 1000; return cnt; } static atomic_t tracing_reader; static int tracing_open_pipe(struct inode *inode, struct file *filp) { struct trace_iterator *iter; if (tracing_disabled) return -ENODEV; /* We only allow for reader of the pipe */ if (atomic_inc_return(&tracing_reader) != 1) { atomic_dec(&tracing_reader); return -EBUSY; } /* create a buffer to store the information to pass to userspace */ iter = kzalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return -ENOMEM; mutex_lock(&trace_types_lock); iter->tr = &global_trace; iter->trace = current_trace; filp->private_data = iter; if (iter->trace->pipe_open) iter->trace->pipe_open(iter); mutex_unlock(&trace_types_lock); return 0; } static int tracing_release_pipe(struct inode *inode, struct file *file) { struct trace_iterator *iter = file->private_data; kfree(iter); atomic_dec(&tracing_reader); return 0; } static unsigned int tracing_poll_pipe(struct file *filp, poll_table *poll_table) { struct trace_iterator *iter = filp->private_data; if (trace_flags & TRACE_ITER_BLOCK) { /* * Always select as readable when in blocking mode */ return POLLIN | POLLRDNORM; } else { if (!trace_empty(iter)) return POLLIN | POLLRDNORM; poll_wait(filp, &trace_wait, poll_table); if (!trace_empty(iter)) return POLLIN | POLLRDNORM; return 0; } } /* * Consumer reader. */ static ssize_t tracing_read_pipe(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_iterator *iter = filp->private_data; struct trace_array_cpu *data; static cpumask_t mask; unsigned long flags; #ifdef CONFIG_FTRACE int ftrace_save; #endif int cpu; ssize_t sret; /* return any leftover data */ sret = trace_seq_to_user(&iter->seq, ubuf, cnt); if (sret != -EBUSY) return sret; sret = 0; trace_seq_reset(&iter->seq); mutex_lock(&trace_types_lock); if (iter->trace->read) { sret = iter->trace->read(iter, filp, ubuf, cnt, ppos); if (sret) goto out; } while (trace_empty(iter)) { if ((filp->f_flags & O_NONBLOCK)) { sret = -EAGAIN; goto out; } /* * This is a make-shift waitqueue. The reason we don't use * an actual wait queue is because: * 1) we only ever have one waiter * 2) the tracing, traces all functions, we don't want * the overhead of calling wake_up and friends * (and tracing them too) * Anyway, this is really very primitive wakeup. */ set_current_state(TASK_INTERRUPTIBLE); iter->tr->waiter = current; mutex_unlock(&trace_types_lock); /* sleep for 100 msecs, and try again. */ schedule_timeout(HZ/10); mutex_lock(&trace_types_lock); iter->tr->waiter = NULL; if (signal_pending(current)) { sret = -EINTR; goto out; } if (iter->trace != current_trace) goto out; /* * We block until we read something and tracing is disabled. * We still block if tracing is disabled, but we have never * read anything. This allows a user to cat this file, and * then enable tracing. But after we have read something, * we give an EOF when tracing is again disabled. * * iter->pos will be 0 if we haven't read anything. */ if (!tracer_enabled && iter->pos) break; continue; } /* stop when tracing is finished */ if (trace_empty(iter)) goto out; if (cnt >= PAGE_SIZE) cnt = PAGE_SIZE - 1; /* reset all but tr, trace, and overruns */ memset(&iter->seq, 0, sizeof(struct trace_iterator) - offsetof(struct trace_iterator, seq)); iter->pos = -1; /* * We need to stop all tracing on all CPUS to read the * the next buffer. This is a bit expensive, but is * not done often. We fill all what we can read, * and then release the locks again. */ cpus_clear(mask); local_irq_save(flags); #ifdef CONFIG_FTRACE ftrace_save = ftrace_enabled; ftrace_enabled = 0; #endif smp_wmb(); for_each_tracing_cpu(cpu) { data = iter->tr->data[cpu]; if (!head_page(data) || !data->trace_idx) continue; atomic_inc(&data->disabled); cpu_set(cpu, mask); } for_each_cpu_mask(cpu, mask) { data = iter->tr->data[cpu]; __raw_spin_lock(&data->lock); if (data->overrun > iter->last_overrun[cpu]) iter->overrun[cpu] += data->overrun - iter->last_overrun[cpu]; iter->last_overrun[cpu] = data->overrun; } while (find_next_entry_inc(iter) != NULL) { int ret; int len = iter->seq.len; ret = print_trace_line(iter); if (!ret) { /* don't print partial lines */ iter->seq.len = len; break; } trace_consume(iter); if (iter->seq.len >= cnt) break; } for_each_cpu_mask(cpu, mask) { data = iter->tr->data[cpu]; __raw_spin_unlock(&data->lock); } for_each_cpu_mask(cpu, mask) { data = iter->tr->data[cpu]; atomic_dec(&data->disabled); } #ifdef CONFIG_FTRACE ftrace_enabled = ftrace_save; #endif local_irq_restore(flags); /* Now copy what we have to the user */ sret = trace_seq_to_user(&iter->seq, ubuf, cnt); if (iter->seq.readpos >= iter->seq.len) trace_seq_reset(&iter->seq); if (sret == -EBUSY) sret = 0; out: mutex_unlock(&trace_types_lock); return sret; } static ssize_t tracing_entries_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_array *tr = filp->private_data; char buf[64]; int r; r = sprintf(buf, "%lu\n", tr->entries); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static ssize_t tracing_entries_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { unsigned long val; char buf[64]; int i, ret; if (cnt >= sizeof(buf)) return -EINVAL; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; ret = strict_strtoul(buf, 10, &val); if (ret < 0) return ret; /* must have at least 1 entry */ if (!val) return -EINVAL; mutex_lock(&trace_types_lock); if (current_trace != &no_tracer) { cnt = -EBUSY; pr_info("ftrace: set current_tracer to none" " before modifying buffer size\n"); goto out; } if (val > global_trace.entries) { long pages_requested; unsigned long freeable_pages; /* make sure we have enough memory before mapping */ pages_requested = (val + (ENTRIES_PER_PAGE-1)) / ENTRIES_PER_PAGE; /* account for each buffer (and max_tr) */ pages_requested *= tracing_nr_buffers * 2; /* Check for overflow */ if (pages_requested < 0) { cnt = -ENOMEM; goto out; } freeable_pages = determine_dirtyable_memory(); /* we only allow to request 1/4 of useable memory */ if (pages_requested > ((freeable_pages + tracing_pages_allocated) / 4)) { cnt = -ENOMEM; goto out; } while (global_trace.entries < val) { if (trace_alloc_page()) { cnt = -ENOMEM; goto out; } /* double check that we don't go over the known pages */ if (tracing_pages_allocated > pages_requested) break; } } else { /* include the number of entries in val (inc of page entries) */ while (global_trace.entries > val + (ENTRIES_PER_PAGE - 1)) trace_free_page(); } /* check integrity */ for_each_tracing_cpu(i) check_pages(global_trace.data[i]); filp->f_pos += cnt; /* If check pages failed, return ENOMEM */ if (tracing_disabled) cnt = -ENOMEM; out: max_tr.entries = global_trace.entries; mutex_unlock(&trace_types_lock); return cnt; } static struct file_operations tracing_max_lat_fops = { .open = tracing_open_generic, .read = tracing_max_lat_read, .write = tracing_max_lat_write, }; static struct file_operations tracing_ctrl_fops = { .open = tracing_open_generic, .read = tracing_ctrl_read, .write = tracing_ctrl_write, }; static struct file_operations set_tracer_fops = { .open = tracing_open_generic, .read = tracing_set_trace_read, .write = tracing_set_trace_write, }; static struct file_operations tracing_pipe_fops = { .open = tracing_open_pipe, .poll = tracing_poll_pipe, .read = tracing_read_pipe, .release = tracing_release_pipe, }; static struct file_operations tracing_entries_fops = { .open = tracing_open_generic, .read = tracing_entries_read, .write = tracing_entries_write, }; #ifdef CONFIG_DYNAMIC_FTRACE static ssize_t tracing_read_long(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { unsigned long *p = filp->private_data; char buf[64]; int r; r = sprintf(buf, "%ld\n", *p); return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); } static struct file_operations tracing_read_long_fops = { .open = tracing_open_generic, .read = tracing_read_long, }; #endif static struct dentry *d_tracer; struct dentry *tracing_init_dentry(void) { static int once; if (d_tracer) return d_tracer; d_tracer = debugfs_create_dir("tracing", NULL); if (!d_tracer && !once) { once = 1; pr_warning("Could not create debugfs directory 'tracing'\n"); return NULL; } return d_tracer; } #ifdef CONFIG_FTRACE_SELFTEST /* Let selftest have access to static functions in this file */ #include "trace_selftest.c" #endif static __init void tracer_init_debugfs(void) { struct dentry *d_tracer; struct dentry *entry; d_tracer = tracing_init_dentry(); entry = debugfs_create_file("tracing_enabled", 0644, d_tracer, &global_trace, &tracing_ctrl_fops); if (!entry) pr_warning("Could not create debugfs 'tracing_enabled' entry\n"); entry = debugfs_create_file("iter_ctrl", 0644, d_tracer, NULL, &tracing_iter_fops); if (!entry) pr_warning("Could not create debugfs 'iter_ctrl' entry\n"); entry = debugfs_create_file("tracing_cpumask", 0644, d_tracer, NULL, &tracing_cpumask_fops); if (!entry) pr_warning("Could not create debugfs 'tracing_cpumask' entry\n"); entry = debugfs_create_file("latency_trace", 0444, d_tracer, &global_trace, &tracing_lt_fops); if (!entry) pr_warning("Could not create debugfs 'latency_trace' entry\n"); entry = debugfs_create_file("trace", 0444, d_tracer, &global_trace, &tracing_fops); if (!entry) pr_warning("Could not create debugfs 'trace' entry\n"); entry = debugfs_create_file("available_tracers", 0444, d_tracer, &global_trace, &show_traces_fops); if (!entry) pr_warning("Could not create debugfs 'available_tracers' entry\n"); entry = debugfs_create_file("current_tracer", 0444, d_tracer, &global_trace, &set_tracer_fops); if (!entry) pr_warning("Could not create debugfs 'current_tracer' entry\n"); entry = debugfs_create_file("tracing_max_latency", 0644, d_tracer, &tracing_max_latency, &tracing_max_lat_fops); if (!entry) pr_warning("Could not create debugfs " "'tracing_max_latency' entry\n"); entry = debugfs_create_file("tracing_thresh", 0644, d_tracer, &tracing_thresh, &tracing_max_lat_fops); if (!entry) pr_warning("Could not create debugfs " "'tracing_thresh' entry\n"); entry = debugfs_create_file("README", 0644, d_tracer, NULL, &tracing_readme_fops); if (!entry) pr_warning("Could not create debugfs 'README' entry\n"); entry = debugfs_create_file("trace_pipe", 0644, d_tracer, NULL, &tracing_pipe_fops); if (!entry) pr_warning("Could not create debugfs " "'trace_pipe' entry\n"); entry = debugfs_create_file("trace_entries", 0644, d_tracer, &global_trace, &tracing_entries_fops); if (!entry) pr_warning("Could not create debugfs " "'trace_entries' entry\n"); #ifdef CONFIG_DYNAMIC_FTRACE entry = debugfs_create_file("dyn_ftrace_total_info", 0444, d_tracer, &ftrace_update_tot_cnt, &tracing_read_long_fops); if (!entry) pr_warning("Could not create debugfs " "'dyn_ftrace_total_info' entry\n"); #endif #ifdef CONFIG_SYSPROF_TRACER init_tracer_sysprof_debugfs(d_tracer); #endif } #define TRACE_BUF_SIZE 1024 #define TRACE_PRINT_BUF_SIZE \ (sizeof(struct trace_field) - offsetof(struct trace_field, print.buf)) #define TRACE_CONT_BUF_SIZE sizeof(struct trace_field) int __ftrace_printk(unsigned long ip, const char *fmt, ...) { struct trace_array *tr = &global_trace; static DEFINE_SPINLOCK(trace_buf_lock); static char trace_buf[TRACE_BUF_SIZE]; struct trace_array_cpu *data; struct trace_entry *entry; unsigned long flags; long disabled; va_list ap; int cpu, len = 0, write, written = 0; if (likely(!ftrace_function_enabled)) return 0; local_irq_save(flags); cpu = raw_smp_processor_id(); data = tr->data[cpu]; disabled = atomic_inc_return(&data->disabled); if (unlikely(disabled != 1 || !ftrace_function_enabled)) goto out; spin_lock(&trace_buf_lock); va_start(ap, fmt); len = vsnprintf(trace_buf, TRACE_BUF_SIZE, fmt, ap); va_end(ap); len = min(len, TRACE_BUF_SIZE-1); trace_buf[len] = 0; __raw_spin_lock(&data->lock); entry = tracing_get_trace_entry(tr, data); tracing_generic_entry_update(entry, flags); entry->type = TRACE_PRINT; entry->field.print.ip = ip; write = min(len, (int)(TRACE_PRINT_BUF_SIZE-1)); memcpy(&entry->field.print.buf, trace_buf, write); entry->field.print.buf[write] = 0; written = write; if (written != len) entry->field.flags |= TRACE_FLAG_CONT; while (written != len) { entry = tracing_get_trace_entry(tr, data); entry->type = TRACE_CONT; write = min(len - written, (int)(TRACE_CONT_BUF_SIZE-1)); memcpy(&entry->cont.buf, trace_buf+written, write); entry->cont.buf[write] = 0; written += write; } __raw_spin_unlock(&data->lock); spin_unlock(&trace_buf_lock); out: atomic_dec(&data->disabled); local_irq_restore(flags); return len; } EXPORT_SYMBOL_GPL(__ftrace_printk); static int trace_panic_handler(struct notifier_block *this, unsigned long event, void *unused) { ftrace_dump(); return NOTIFY_OK; } static struct notifier_block trace_panic_notifier = { .notifier_call = trace_panic_handler, .next = NULL, .priority = 150 /* priority: INT_MAX >= x >= 0 */ }; static int trace_die_handler(struct notifier_block *self, unsigned long val, void *data) { switch (val) { case DIE_OOPS: ftrace_dump(); break; default: break; } return NOTIFY_OK; } static struct notifier_block trace_die_notifier = { .notifier_call = trace_die_handler, .priority = 200 }; /* * printk is set to max of 1024, we really don't need it that big. * Nothing should be printing 1000 characters anyway. */ #define TRACE_MAX_PRINT 1000 /* * Define here KERN_TRACE so that we have one place to modify * it if we decide to change what log level the ftrace dump * should be at. */ #define KERN_TRACE KERN_INFO static void trace_printk_seq(struct trace_seq *s) { /* Probably should print a warning here. */ if (s->len >= 1000) s->len = 1000; /* should be zero ended, but we are paranoid. */ s->buffer[s->len] = 0; printk(KERN_TRACE "%s", s->buffer); trace_seq_reset(s); } void ftrace_dump(void) { static DEFINE_SPINLOCK(ftrace_dump_lock); /* use static because iter can be a bit big for the stack */ static struct trace_iterator iter; struct trace_array_cpu *data; static cpumask_t mask; static int dump_ran; unsigned long flags; int cnt = 0; int cpu; /* only one dump */ spin_lock_irqsave(&ftrace_dump_lock, flags); if (dump_ran) goto out; dump_ran = 1; /* No turning back! */ ftrace_kill_atomic(); printk(KERN_TRACE "Dumping ftrace buffer:\n"); iter.tr = &global_trace; iter.trace = current_trace; /* * We need to stop all tracing on all CPUS to read the * the next buffer. This is a bit expensive, but is * not done often. We fill all what we can read, * and then release the locks again. */ cpus_clear(mask); for_each_tracing_cpu(cpu) { data = iter.tr->data[cpu]; if (!head_page(data) || !data->trace_idx) continue; atomic_inc(&data->disabled); cpu_set(cpu, mask); } for_each_cpu_mask(cpu, mask) { data = iter.tr->data[cpu]; __raw_spin_lock(&data->lock); if (data->overrun > iter.last_overrun[cpu]) iter.overrun[cpu] += data->overrun - iter.last_overrun[cpu]; iter.last_overrun[cpu] = data->overrun; } while (!trace_empty(&iter)) { if (!cnt) printk(KERN_TRACE "---------------------------------\n"); cnt++; /* reset all but tr, trace, and overruns */ memset(&iter.seq, 0, sizeof(struct trace_iterator) - offsetof(struct trace_iterator, seq)); iter.iter_flags |= TRACE_FILE_LAT_FMT; iter.pos = -1; if (find_next_entry_inc(&iter) != NULL) { print_trace_line(&iter); trace_consume(&iter); } trace_printk_seq(&iter.seq); } if (!cnt) printk(KERN_TRACE " (ftrace buffer empty)\n"); else printk(KERN_TRACE "---------------------------------\n"); for_each_cpu_mask(cpu, mask) { data = iter.tr->data[cpu]; __raw_spin_unlock(&data->lock); } for_each_cpu_mask(cpu, mask) { data = iter.tr->data[cpu]; atomic_dec(&data->disabled); } out: spin_unlock_irqrestore(&ftrace_dump_lock, flags); } static int trace_alloc_page(void) { struct trace_array_cpu *data; struct page *page, *tmp; LIST_HEAD(pages); void *array; unsigned pages_allocated = 0; int i; /* first allocate a page for each CPU */ for_each_tracing_cpu(i) { array = (void *)__get_free_page(GFP_KERNEL); if (array == NULL) { printk(KERN_ERR "tracer: failed to allocate page" "for trace buffer!\n"); goto free_pages; } pages_allocated++; page = virt_to_page(array); list_add(&page->lru, &pages); /* Only allocate if we are actually using the max trace */ #ifdef CONFIG_TRACER_MAX_TRACE array = (void *)__get_free_page(GFP_KERNEL); if (array == NULL) { printk(KERN_ERR "tracer: failed to allocate page" "for trace buffer!\n"); goto free_pages; } pages_allocated++; page = virt_to_page(array); list_add(&page->lru, &pages); #endif } /* Now that we successfully allocate a page per CPU, add them */ for_each_tracing_cpu(i) { data = global_trace.data[i]; page = list_entry(pages.next, struct page, lru); list_del_init(&page->lru); list_add_tail(&page->lru, &data->trace_pages); ClearPageLRU(page); #ifdef CONFIG_TRACER_MAX_TRACE data = max_tr.data[i]; page = list_entry(pages.next, struct page, lru); list_del_init(&page->lru); list_add_tail(&page->lru, &data->trace_pages); SetPageLRU(page); #endif } tracing_pages_allocated += pages_allocated; global_trace.entries += ENTRIES_PER_PAGE; return 0; free_pages: list_for_each_entry_safe(page, tmp, &pages, lru) { list_del_init(&page->lru); __free_page(page); } return -ENOMEM; } static int trace_free_page(void) { struct trace_array_cpu *data; struct page *page; struct list_head *p; int i; int ret = 0; /* free one page from each buffer */ for_each_tracing_cpu(i) { data = global_trace.data[i]; p = data->trace_pages.next; if (p == &data->trace_pages) { /* should never happen */ WARN_ON(1); tracing_disabled = 1; ret = -1; break; } page = list_entry(p, struct page, lru); ClearPageLRU(page); list_del(&page->lru); tracing_pages_allocated--; tracing_pages_allocated--; __free_page(page); tracing_reset(data); #ifdef CONFIG_TRACER_MAX_TRACE data = max_tr.data[i]; p = data->trace_pages.next; if (p == &data->trace_pages) { /* should never happen */ WARN_ON(1); tracing_disabled = 1; ret = -1; break; } page = list_entry(p, struct page, lru); ClearPageLRU(page); list_del(&page->lru); __free_page(page); tracing_reset(data); #endif } global_trace.entries -= ENTRIES_PER_PAGE; return ret; } __init static int tracer_alloc_buffers(void) { struct trace_array_cpu *data; void *array; struct page *page; int pages = 0; int ret = -ENOMEM; int i; /* TODO: make the number of buffers hot pluggable with CPUS */ tracing_nr_buffers = num_possible_cpus(); tracing_buffer_mask = cpu_possible_map; /* Allocate the first page for all buffers */ for_each_tracing_cpu(i) { data = global_trace.data[i] = &per_cpu(global_trace_cpu, i); max_tr.data[i] = &per_cpu(max_data, i); array = (void *)__get_free_page(GFP_KERNEL); if (array == NULL) { printk(KERN_ERR "tracer: failed to allocate page" "for trace buffer!\n"); goto free_buffers; } /* set the array to the list */ INIT_LIST_HEAD(&data->trace_pages); page = virt_to_page(array); list_add(&page->lru, &data->trace_pages); /* use the LRU flag to differentiate the two buffers */ ClearPageLRU(page); data->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; max_tr.data[i]->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; /* Only allocate if we are actually using the max trace */ #ifdef CONFIG_TRACER_MAX_TRACE array = (void *)__get_free_page(GFP_KERNEL); if (array == NULL) { printk(KERN_ERR "tracer: failed to allocate page" "for trace buffer!\n"); goto free_buffers; } INIT_LIST_HEAD(&max_tr.data[i]->trace_pages); page = virt_to_page(array); list_add(&page->lru, &max_tr.data[i]->trace_pages); SetPageLRU(page); #endif } /* * Since we allocate by orders of pages, we may be able to * round up a bit. */ global_trace.entries = ENTRIES_PER_PAGE; pages++; while (global_trace.entries < trace_nr_entries) { if (trace_alloc_page()) break; pages++; } max_tr.entries = global_trace.entries; pr_info("tracer: %d pages allocated for %ld entries of %ld bytes\n", pages, trace_nr_entries, (long)TRACE_ENTRY_SIZE); pr_info(" actual entries %ld\n", global_trace.entries); tracer_init_debugfs(); trace_init_cmdlines(); register_tracer(&no_tracer); current_trace = &no_tracer; /* All seems OK, enable tracing */ global_trace.ctrl = tracer_enabled; tracing_disabled = 0; atomic_notifier_chain_register(&panic_notifier_list, &trace_panic_notifier); register_die_notifier(&trace_die_notifier); return 0; free_buffers: for (i-- ; i >= 0; i--) { struct page *page, *tmp; struct trace_array_cpu *data = global_trace.data[i]; if (data) { list_for_each_entry_safe(page, tmp, &data->trace_pages, lru) { list_del_init(&page->lru); __free_page(page); } } #ifdef CONFIG_TRACER_MAX_TRACE data = max_tr.data[i]; if (data) { list_for_each_entry_safe(page, tmp, &data->trace_pages, lru) { list_del_init(&page->lru); __free_page(page); } } #endif } return ret; } fs_initcall(tracer_alloc_buffers);