/****************************************************************************** * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-io.h" #include "iwl-helpers.h" #include "iwl-agn-hw.h" #include "iwl-agn.h" #include "iwl-sta.h" #include "iwl-trans.h" #include "iwl-shared.h" int iwlagn_hw_valid_rtc_data_addr(u32 addr) { return (addr >= IWLAGN_RTC_DATA_LOWER_BOUND) && (addr < IWLAGN_RTC_DATA_UPPER_BOUND); } int iwlagn_send_tx_power(struct iwl_priv *priv) { struct iwlagn_tx_power_dbm_cmd tx_power_cmd; u8 tx_ant_cfg_cmd; if (WARN_ONCE(test_bit(STATUS_SCAN_HW, &priv->shrd->status), "TX Power requested while scanning!\n")) return -EAGAIN; /* half dBm need to multiply */ tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt); if (priv->tx_power_lmt_in_half_dbm && priv->tx_power_lmt_in_half_dbm < tx_power_cmd.global_lmt) { /* * For the newer devices which using enhanced/extend tx power * table in EEPROM, the format is in half dBm. driver need to * convert to dBm format before report to mac80211. * By doing so, there is a possibility of 1/2 dBm resolution * lost. driver will perform "round-up" operation before * reporting, but it will cause 1/2 dBm tx power over the * regulatory limit. Perform the checking here, if the * "tx_power_user_lmt" is higher than EEPROM value (in * half-dBm format), lower the tx power based on EEPROM */ tx_power_cmd.global_lmt = priv->tx_power_lmt_in_half_dbm; } tx_power_cmd.flags = IWLAGN_TX_POWER_NO_CLOSED; tx_power_cmd.srv_chan_lmt = IWLAGN_TX_POWER_AUTO; if (IWL_UCODE_API(priv->ucode_ver) == 1) tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD_V1; else tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD; return iwl_trans_send_cmd_pdu(trans(priv), tx_ant_cfg_cmd, CMD_SYNC, sizeof(tx_power_cmd), &tx_power_cmd); } void iwlagn_temperature(struct iwl_priv *priv) { /* store temperature from correct statistics (in Celsius) */ priv->temperature = le32_to_cpu(priv->statistics.common.temperature); iwl_tt_handler(priv); } u16 iwlagn_eeprom_calib_version(struct iwl_priv *priv) { struct iwl_eeprom_calib_hdr { u8 version; u8 pa_type; u16 voltage; } *hdr; hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv, EEPROM_CALIB_ALL); return hdr->version; } /* * EEPROM */ static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address) { u16 offset = 0; if ((address & INDIRECT_ADDRESS) == 0) return address; switch (address & INDIRECT_TYPE_MSK) { case INDIRECT_HOST: offset = iwl_eeprom_query16(priv, EEPROM_LINK_HOST); break; case INDIRECT_GENERAL: offset = iwl_eeprom_query16(priv, EEPROM_LINK_GENERAL); break; case INDIRECT_REGULATORY: offset = iwl_eeprom_query16(priv, EEPROM_LINK_REGULATORY); break; case INDIRECT_TXP_LIMIT: offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT); break; case INDIRECT_TXP_LIMIT_SIZE: offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT_SIZE); break; case INDIRECT_CALIBRATION: offset = iwl_eeprom_query16(priv, EEPROM_LINK_CALIBRATION); break; case INDIRECT_PROCESS_ADJST: offset = iwl_eeprom_query16(priv, EEPROM_LINK_PROCESS_ADJST); break; case INDIRECT_OTHERS: offset = iwl_eeprom_query16(priv, EEPROM_LINK_OTHERS); break; default: IWL_ERR(priv, "illegal indirect type: 0x%X\n", address & INDIRECT_TYPE_MSK); break; } /* translate the offset from words to byte */ return (address & ADDRESS_MSK) + (offset << 1); } const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) { u32 address = eeprom_indirect_address(priv, offset); BUG_ON(address >= priv->cfg->base_params->eeprom_size); return &priv->eeprom[address]; } struct iwl_mod_params iwlagn_mod_params = { .amsdu_size_8K = 1, .restart_fw = 1, .plcp_check = true, .bt_coex_active = true, .no_sleep_autoadjust = true, .power_level = IWL_POWER_INDEX_1, .bt_ch_announce = true, .wanted_ucode_alternative = 1, .auto_agg = true, /* the rest are 0 by default */ }; int iwlagn_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band) { int idx = 0; int band_offset = 0; /* HT rate format: mac80211 wants an MCS number, which is just LSB */ if (rate_n_flags & RATE_MCS_HT_MSK) { idx = (rate_n_flags & 0xff); return idx; /* Legacy rate format, search for match in table */ } else { if (band == IEEE80211_BAND_5GHZ) band_offset = IWL_FIRST_OFDM_RATE; for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) if (iwl_rates[idx].plcp == (rate_n_flags & 0xFF)) return idx - band_offset; } return -1; } static int iwl_get_single_channel_for_scan(struct iwl_priv *priv, struct ieee80211_vif *vif, enum ieee80211_band band, struct iwl_scan_channel *scan_ch) { const struct ieee80211_supported_band *sband; u16 passive_dwell = 0; u16 active_dwell = 0; int added = 0; u16 channel = 0; sband = iwl_get_hw_mode(priv, band); if (!sband) { IWL_ERR(priv, "invalid band\n"); return added; } active_dwell = iwl_get_active_dwell_time(priv, band, 0); passive_dwell = iwl_get_passive_dwell_time(priv, band, vif); if (passive_dwell <= active_dwell) passive_dwell = active_dwell + 1; channel = iwl_get_single_channel_number(priv, band); if (channel) { scan_ch->channel = cpu_to_le16(channel); scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE; scan_ch->active_dwell = cpu_to_le16(active_dwell); scan_ch->passive_dwell = cpu_to_le16(passive_dwell); /* Set txpower levels to defaults */ scan_ch->dsp_atten = 110; if (band == IEEE80211_BAND_5GHZ) scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3; else scan_ch->tx_gain = ((1 << 5) | (5 << 3)); added++; } else IWL_ERR(priv, "no valid channel found\n"); return added; } static int iwl_get_channels_for_scan(struct iwl_priv *priv, struct ieee80211_vif *vif, enum ieee80211_band band, u8 is_active, u8 n_probes, struct iwl_scan_channel *scan_ch) { struct ieee80211_channel *chan; const struct ieee80211_supported_band *sband; const struct iwl_channel_info *ch_info; u16 passive_dwell = 0; u16 active_dwell = 0; int added, i; u16 channel; sband = iwl_get_hw_mode(priv, band); if (!sband) return 0; active_dwell = iwl_get_active_dwell_time(priv, band, n_probes); passive_dwell = iwl_get_passive_dwell_time(priv, band, vif); if (passive_dwell <= active_dwell) passive_dwell = active_dwell + 1; for (i = 0, added = 0; i < priv->scan_request->n_channels; i++) { chan = priv->scan_request->channels[i]; if (chan->band != band) continue; channel = chan->hw_value; scan_ch->channel = cpu_to_le16(channel); ch_info = iwl_get_channel_info(priv, band, channel); if (!is_channel_valid(ch_info)) { IWL_DEBUG_SCAN(priv, "Channel %d is INVALID for this band.\n", channel); continue; } if (!is_active || is_channel_passive(ch_info) || (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN)) scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE; else scan_ch->type = SCAN_CHANNEL_TYPE_ACTIVE; if (n_probes) scan_ch->type |= IWL_SCAN_PROBE_MASK(n_probes); scan_ch->active_dwell = cpu_to_le16(active_dwell); scan_ch->passive_dwell = cpu_to_le16(passive_dwell); /* Set txpower levels to defaults */ scan_ch->dsp_atten = 110; /* NOTE: if we were doing 6Mb OFDM for scans we'd use * power level: * scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3; */ if (band == IEEE80211_BAND_5GHZ) scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3; else scan_ch->tx_gain = ((1 << 5) | (5 << 3)); IWL_DEBUG_SCAN(priv, "Scanning ch=%d prob=0x%X [%s %d]\n", channel, le32_to_cpu(scan_ch->type), (scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ? "ACTIVE" : "PASSIVE", (scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ? active_dwell : passive_dwell); scan_ch++; added++; } IWL_DEBUG_SCAN(priv, "total channels to scan %d\n", added); return added; } int iwlagn_request_scan(struct iwl_priv *priv, struct ieee80211_vif *vif) { struct iwl_host_cmd cmd = { .id = REPLY_SCAN_CMD, .len = { sizeof(struct iwl_scan_cmd), }, .flags = CMD_SYNC, }; struct iwl_scan_cmd *scan; struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS]; u32 rate_flags = 0; u16 cmd_len; u16 rx_chain = 0; enum ieee80211_band band; u8 n_probes = 0; u8 rx_ant = hw_params(priv).valid_rx_ant; u8 rate; bool is_active = false; int chan_mod; u8 active_chains; u8 scan_tx_antennas = hw_params(priv).valid_tx_ant; int ret; lockdep_assert_held(&priv->shrd->mutex); if (vif) ctx = iwl_rxon_ctx_from_vif(vif); if (!priv->scan_cmd) { priv->scan_cmd = kmalloc(sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE, GFP_KERNEL); if (!priv->scan_cmd) { IWL_DEBUG_SCAN(priv, "fail to allocate memory for scan\n"); return -ENOMEM; } } scan = priv->scan_cmd; memset(scan, 0, sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE); scan->quiet_plcp_th = IWL_PLCP_QUIET_THRESH; scan->quiet_time = IWL_ACTIVE_QUIET_TIME; if (priv->scan_type != IWL_SCAN_ROC && iwl_is_any_associated(priv)) { u16 interval = 0; u32 extra; u32 suspend_time = 100; u32 scan_suspend_time = 100; IWL_DEBUG_INFO(priv, "Scanning while associated...\n"); switch (priv->scan_type) { case IWL_SCAN_ROC: WARN_ON(1); break; case IWL_SCAN_RADIO_RESET: interval = 0; break; case IWL_SCAN_NORMAL: interval = vif->bss_conf.beacon_int; break; } scan->suspend_time = 0; scan->max_out_time = cpu_to_le32(200 * 1024); if (!interval) interval = suspend_time; extra = (suspend_time / interval) << 22; scan_suspend_time = (extra | ((suspend_time % interval) * 1024)); scan->suspend_time = cpu_to_le32(scan_suspend_time); IWL_DEBUG_SCAN(priv, "suspend_time 0x%X beacon interval %d\n", scan_suspend_time, interval); } else if (priv->scan_type == IWL_SCAN_ROC) { scan->suspend_time = 0; scan->max_out_time = 0; scan->quiet_time = 0; scan->quiet_plcp_th = 0; } switch (priv->scan_type) { case IWL_SCAN_RADIO_RESET: IWL_DEBUG_SCAN(priv, "Start internal passive scan.\n"); break; case IWL_SCAN_NORMAL: if (priv->scan_request->n_ssids) { int i, p = 0; IWL_DEBUG_SCAN(priv, "Kicking off active scan\n"); for (i = 0; i < priv->scan_request->n_ssids; i++) { /* always does wildcard anyway */ if (!priv->scan_request->ssids[i].ssid_len) continue; scan->direct_scan[p].id = WLAN_EID_SSID; scan->direct_scan[p].len = priv->scan_request->ssids[i].ssid_len; memcpy(scan->direct_scan[p].ssid, priv->scan_request->ssids[i].ssid, priv->scan_request->ssids[i].ssid_len); n_probes++; p++; } is_active = true; } else IWL_DEBUG_SCAN(priv, "Start passive scan.\n"); break; case IWL_SCAN_ROC: IWL_DEBUG_SCAN(priv, "Start ROC scan.\n"); break; } scan->tx_cmd.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK; scan->tx_cmd.sta_id = ctx->bcast_sta_id; scan->tx_cmd.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE; switch (priv->scan_band) { case IEEE80211_BAND_2GHZ: scan->flags = RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK; chan_mod = le32_to_cpu( priv->contexts[IWL_RXON_CTX_BSS].active.flags & RXON_FLG_CHANNEL_MODE_MSK) >> RXON_FLG_CHANNEL_MODE_POS; if (chan_mod == CHANNEL_MODE_PURE_40) { rate = IWL_RATE_6M_PLCP; } else { rate = IWL_RATE_1M_PLCP; rate_flags = RATE_MCS_CCK_MSK; } /* * Internal scans are passive, so we can indiscriminately set * the BT ignore flag on 2.4 GHz since it applies to TX only. */ if (priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist) scan->tx_cmd.tx_flags |= TX_CMD_FLG_IGNORE_BT; break; case IEEE80211_BAND_5GHZ: rate = IWL_RATE_6M_PLCP; break; default: IWL_WARN(priv, "Invalid scan band\n"); return -EIO; } /* * If active scanning is requested but a certain channel is * marked passive, we can do active scanning if we detect * transmissions. * * There is an issue with some firmware versions that triggers * a sysassert on a "good CRC threshold" of zero (== disabled), * on a radar channel even though this means that we should NOT * send probes. * * The "good CRC threshold" is the number of frames that we * need to receive during our dwell time on a channel before * sending out probes -- setting this to a huge value will * mean we never reach it, but at the same time work around * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER * here instead of IWL_GOOD_CRC_TH_DISABLED. * * This was fixed in later versions along with some other * scan changes, and the threshold behaves as a flag in those * versions. */ if (priv->new_scan_threshold_behaviour) scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT : IWL_GOOD_CRC_TH_DISABLED; else scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT : IWL_GOOD_CRC_TH_NEVER; band = priv->scan_band; if (priv->cfg->scan_rx_antennas[band]) rx_ant = priv->cfg->scan_rx_antennas[band]; if (band == IEEE80211_BAND_2GHZ && priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist) { /* transmit 2.4 GHz probes only on first antenna */ scan_tx_antennas = first_antenna(scan_tx_antennas); } priv->scan_tx_ant[band] = iwl_toggle_tx_ant(priv, priv->scan_tx_ant[band], scan_tx_antennas); rate_flags |= iwl_ant_idx_to_flags(priv->scan_tx_ant[band]); scan->tx_cmd.rate_n_flags = iwl_hw_set_rate_n_flags(rate, rate_flags); /* In power save mode use one chain, otherwise use all chains */ if (test_bit(STATUS_POWER_PMI, &priv->shrd->status)) { /* rx_ant has been set to all valid chains previously */ active_chains = rx_ant & ((u8)(priv->chain_noise_data.active_chains)); if (!active_chains) active_chains = rx_ant; IWL_DEBUG_SCAN(priv, "chain_noise_data.active_chains: %u\n", priv->chain_noise_data.active_chains); rx_ant = first_antenna(active_chains); } if (priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist && priv->bt_full_concurrent) { /* operated as 1x1 in full concurrency mode */ rx_ant = first_antenna(rx_ant); } /* MIMO is not used here, but value is required */ rx_chain |= hw_params(priv).valid_rx_ant << RXON_RX_CHAIN_VALID_POS; rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS; rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_SEL_POS; rx_chain |= 0x1 << RXON_RX_CHAIN_DRIVER_FORCE_POS; scan->rx_chain = cpu_to_le16(rx_chain); switch (priv->scan_type) { case IWL_SCAN_NORMAL: cmd_len = iwl_fill_probe_req(priv, (struct ieee80211_mgmt *)scan->data, vif->addr, priv->scan_request->ie, priv->scan_request->ie_len, IWL_MAX_SCAN_SIZE - sizeof(*scan)); break; case IWL_SCAN_RADIO_RESET: case IWL_SCAN_ROC: /* use bcast addr, will not be transmitted but must be valid */ cmd_len = iwl_fill_probe_req(priv, (struct ieee80211_mgmt *)scan->data, iwl_bcast_addr, NULL, 0, IWL_MAX_SCAN_SIZE - sizeof(*scan)); break; default: BUG(); } scan->tx_cmd.len = cpu_to_le16(cmd_len); scan->filter_flags |= (RXON_FILTER_ACCEPT_GRP_MSK | RXON_FILTER_BCON_AWARE_MSK); switch (priv->scan_type) { case IWL_SCAN_RADIO_RESET: scan->channel_count = iwl_get_single_channel_for_scan(priv, vif, band, (void *)&scan->data[cmd_len]); break; case IWL_SCAN_NORMAL: scan->channel_count = iwl_get_channels_for_scan(priv, vif, band, is_active, n_probes, (void *)&scan->data[cmd_len]); break; case IWL_SCAN_ROC: { struct iwl_scan_channel *scan_ch; scan->channel_count = 1; scan_ch = (void *)&scan->data[cmd_len]; scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE; scan_ch->channel = cpu_to_le16(priv->hw_roc_channel->hw_value); scan_ch->active_dwell = scan_ch->passive_dwell = cpu_to_le16(priv->hw_roc_duration); /* Set txpower levels to defaults */ scan_ch->dsp_atten = 110; /* NOTE: if we were doing 6Mb OFDM for scans we'd use * power level: * scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3; */ if (priv->hw_roc_channel->band == IEEE80211_BAND_5GHZ) scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3; else scan_ch->tx_gain = ((1 << 5) | (5 << 3)); } break; } if (scan->channel_count == 0) { IWL_DEBUG_SCAN(priv, "channel count %d\n", scan->channel_count); return -EIO; } cmd.len[0] += le16_to_cpu(scan->tx_cmd.len) + scan->channel_count * sizeof(struct iwl_scan_channel); cmd.data[0] = scan; cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY; scan->len = cpu_to_le16(cmd.len[0]); /* set scan bit here for PAN params */ set_bit(STATUS_SCAN_HW, &priv->shrd->status); ret = iwlagn_set_pan_params(priv); if (ret) return ret; ret = iwl_trans_send_cmd(trans(priv), &cmd); if (ret) { clear_bit(STATUS_SCAN_HW, &priv->shrd->status); iwlagn_set_pan_params(priv); } return ret; } int iwlagn_manage_ibss_station(struct iwl_priv *priv, struct ieee80211_vif *vif, bool add) { struct iwl_vif_priv *vif_priv = (void *)vif->drv_priv; if (add) return iwlagn_add_bssid_station(priv, vif_priv->ctx, vif->bss_conf.bssid, &vif_priv->ibss_bssid_sta_id); return iwl_remove_station(priv, vif_priv->ibss_bssid_sta_id, vif->bss_conf.bssid); } /** * iwlagn_txfifo_flush: send REPLY_TXFIFO_FLUSH command to uCode * * pre-requirements: * 1. acquire mutex before calling * 2. make sure rf is on and not in exit state */ int iwlagn_txfifo_flush(struct iwl_priv *priv, u16 flush_control) { struct iwl_txfifo_flush_cmd flush_cmd; struct iwl_host_cmd cmd = { .id = REPLY_TXFIFO_FLUSH, .len = { sizeof(struct iwl_txfifo_flush_cmd), }, .flags = CMD_SYNC, .data = { &flush_cmd, }, }; might_sleep(); memset(&flush_cmd, 0, sizeof(flush_cmd)); if (flush_control & BIT(IWL_RXON_CTX_BSS)) flush_cmd.fifo_control = IWL_SCD_VO_MSK | IWL_SCD_VI_MSK | IWL_SCD_BE_MSK | IWL_SCD_BK_MSK | IWL_SCD_MGMT_MSK; if ((flush_control & BIT(IWL_RXON_CTX_PAN)) && (priv->valid_contexts != BIT(IWL_RXON_CTX_BSS))) flush_cmd.fifo_control |= IWL_PAN_SCD_VO_MSK | IWL_PAN_SCD_VI_MSK | IWL_PAN_SCD_BE_MSK | IWL_PAN_SCD_BK_MSK | IWL_PAN_SCD_MGMT_MSK | IWL_PAN_SCD_MULTICAST_MSK; if (priv->cfg->sku & EEPROM_SKU_CAP_11N_ENABLE) flush_cmd.fifo_control |= IWL_AGG_TX_QUEUE_MSK; IWL_DEBUG_INFO(priv, "fifo queue control: 0X%x\n", flush_cmd.fifo_control); flush_cmd.flush_control = cpu_to_le16(flush_control); return iwl_trans_send_cmd(trans(priv), &cmd); } void iwlagn_dev_txfifo_flush(struct iwl_priv *priv, u16 flush_control) { mutex_lock(&priv->shrd->mutex); ieee80211_stop_queues(priv->hw); if (iwlagn_txfifo_flush(priv, IWL_DROP_ALL)) { IWL_ERR(priv, "flush request fail\n"); goto done; } IWL_DEBUG_INFO(priv, "wait transmit/flush all frames\n"); iwl_trans_wait_tx_queue_empty(trans(priv)); done: ieee80211_wake_queues(priv->hw); mutex_unlock(&priv->shrd->mutex); } /* * BT coex */ /* * Macros to access the lookup table. * * The lookup table has 7 inputs: bt3_prio, bt3_txrx, bt_rf_act, wifi_req, * wifi_prio, wifi_txrx and wifi_sh_ant_req. * * It has three outputs: WLAN_ACTIVE, WLAN_KILL and ANT_SWITCH * * The format is that "registers" 8 through 11 contain the WLAN_ACTIVE bits * one after another in 32-bit registers, and "registers" 0 through 7 contain * the WLAN_KILL and ANT_SWITCH bits interleaved (in that order). * * These macros encode that format. */ #define LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, wifi_req, wifi_prio, \ wifi_txrx, wifi_sh_ant_req) \ (bt3_prio | (bt3_txrx << 1) | (bt_rf_act << 2) | (wifi_req << 3) | \ (wifi_prio << 4) | (wifi_txrx << 5) | (wifi_sh_ant_req << 6)) #define LUT_PTA_WLAN_ACTIVE_OP(lut, op, val) \ lut[8 + ((val) >> 5)] op (cpu_to_le32(BIT((val) & 0x1f))) #define LUT_TEST_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ (!!(LUT_PTA_WLAN_ACTIVE_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, \ bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \ wifi_sh_ant_req)))) #define LUT_SET_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ LUT_PTA_WLAN_ACTIVE_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, \ bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \ wifi_sh_ant_req)) #define LUT_CLEAR_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, \ wifi_sh_ant_req) \ LUT_PTA_WLAN_ACTIVE_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, \ bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \ wifi_sh_ant_req)) #define LUT_WLAN_KILL_OP(lut, op, val) \ lut[(val) >> 4] op (cpu_to_le32(BIT(((val) << 1) & 0x1e))) #define LUT_TEST_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ (!!(LUT_WLAN_KILL_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req)))) #define LUT_SET_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ LUT_WLAN_KILL_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req)) #define LUT_CLEAR_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ LUT_WLAN_KILL_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req)) #define LUT_ANT_SWITCH_OP(lut, op, val) \ lut[(val) >> 4] op (cpu_to_le32(BIT((((val) << 1) & 0x1e) + 1))) #define LUT_TEST_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ (!!(LUT_ANT_SWITCH_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, \ wifi_sh_ant_req)))) #define LUT_SET_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ LUT_ANT_SWITCH_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req)) #define LUT_CLEAR_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \ wifi_prio, wifi_txrx, wifi_sh_ant_req) \ LUT_ANT_SWITCH_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \ wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req)) static const __le32 iwlagn_def_3w_lookup[12] = { cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaeaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xcc00ff28), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xcc00aaaa), cpu_to_le32(0x0000aaaa), cpu_to_le32(0xc0004000), cpu_to_le32(0x00004000), cpu_to_le32(0xf0005000), cpu_to_le32(0xf0005000), }; static const __le32 iwlagn_concurrent_lookup[12] = { cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0xaaaaaaaa), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), cpu_to_le32(0x00000000), }; void iwlagn_send_advance_bt_config(struct iwl_priv *priv) { struct iwl_basic_bt_cmd basic = { .max_kill = IWLAGN_BT_MAX_KILL_DEFAULT, .bt3_timer_t7_value = IWLAGN_BT3_T7_DEFAULT, .bt3_prio_sample_time = IWLAGN_BT3_PRIO_SAMPLE_DEFAULT, .bt3_timer_t2_value = IWLAGN_BT3_T2_DEFAULT, }; struct iwl6000_bt_cmd bt_cmd_6000; struct iwl2000_bt_cmd bt_cmd_2000; int ret; BUILD_BUG_ON(sizeof(iwlagn_def_3w_lookup) != sizeof(basic.bt3_lookup_table)); if (priv->cfg->bt_params) { if (priv->cfg->bt_params->bt_session_2) { bt_cmd_2000.prio_boost = cpu_to_le32( priv->cfg->bt_params->bt_prio_boost); bt_cmd_2000.tx_prio_boost = 0; bt_cmd_2000.rx_prio_boost = 0; } else { bt_cmd_6000.prio_boost = priv->cfg->bt_params->bt_prio_boost; bt_cmd_6000.tx_prio_boost = 0; bt_cmd_6000.rx_prio_boost = 0; } } else { IWL_ERR(priv, "failed to construct BT Coex Config\n"); return; } basic.kill_ack_mask = priv->kill_ack_mask; basic.kill_cts_mask = priv->kill_cts_mask; basic.valid = priv->bt_valid; /* * Configure BT coex mode to "no coexistence" when the * user disabled BT coexistence, we have no interface * (might be in monitor mode), or the interface is in * IBSS mode (no proper uCode support for coex then). */ if (!iwlagn_mod_params.bt_coex_active || priv->iw_mode == NL80211_IFTYPE_ADHOC) { basic.flags = IWLAGN_BT_FLAG_COEX_MODE_DISABLED; } else { basic.flags = IWLAGN_BT_FLAG_COEX_MODE_3W << IWLAGN_BT_FLAG_COEX_MODE_SHIFT; if (!priv->bt_enable_pspoll) basic.flags |= IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE; else basic.flags &= ~IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE; if (priv->bt_ch_announce) basic.flags |= IWLAGN_BT_FLAG_CHANNEL_INHIBITION; IWL_DEBUG_COEX(priv, "BT coex flag: 0X%x\n", basic.flags); } priv->bt_enable_flag = basic.flags; if (priv->bt_full_concurrent) memcpy(basic.bt3_lookup_table, iwlagn_concurrent_lookup, sizeof(iwlagn_concurrent_lookup)); else memcpy(basic.bt3_lookup_table, iwlagn_def_3w_lookup, sizeof(iwlagn_def_3w_lookup)); IWL_DEBUG_COEX(priv, "BT coex %s in %s mode\n", basic.flags ? "active" : "disabled", priv->bt_full_concurrent ? "full concurrency" : "3-wire"); if (priv->cfg->bt_params->bt_session_2) { memcpy(&bt_cmd_2000.basic, &basic, sizeof(basic)); ret = iwl_trans_send_cmd_pdu(trans(priv), REPLY_BT_CONFIG, CMD_SYNC, sizeof(bt_cmd_2000), &bt_cmd_2000); } else { memcpy(&bt_cmd_6000.basic, &basic, sizeof(basic)); ret = iwl_trans_send_cmd_pdu(trans(priv), REPLY_BT_CONFIG, CMD_SYNC, sizeof(bt_cmd_6000), &bt_cmd_6000); } if (ret) IWL_ERR(priv, "failed to send BT Coex Config\n"); } void iwlagn_bt_adjust_rssi_monitor(struct iwl_priv *priv, bool rssi_ena) { struct iwl_rxon_context *ctx, *found_ctx = NULL; bool found_ap = false; lockdep_assert_held(&priv->shrd->mutex); /* Check whether AP or GO mode is active. */ if (rssi_ena) { for_each_context(priv, ctx) { if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_AP && iwl_is_associated_ctx(ctx)) { found_ap = true; break; } } } /* * If disable was received or If GO/AP mode, disable RSSI * measurements. */ if (!rssi_ena || found_ap) { if (priv->cur_rssi_ctx) { ctx = priv->cur_rssi_ctx; ieee80211_disable_rssi_reports(ctx->vif); priv->cur_rssi_ctx = NULL; } return; } /* * If rssi measurements need to be enabled, consider all cases now. * Figure out how many contexts are active. */ for_each_context(priv, ctx) { if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION && iwl_is_associated_ctx(ctx)) { found_ctx = ctx; break; } } /* * rssi monitor already enabled for the correct interface...nothing * to do. */ if (found_ctx == priv->cur_rssi_ctx) return; /* * Figure out if rssi monitor is currently enabled, and needs * to be changed. If rssi monitor is already enabled, disable * it first else just enable rssi measurements on the * interface found above. */ if (priv->cur_rssi_ctx) { ctx = priv->cur_rssi_ctx; if (ctx->vif) ieee80211_disable_rssi_reports(ctx->vif); } priv->cur_rssi_ctx = found_ctx; if (!found_ctx) return; ieee80211_enable_rssi_reports(found_ctx->vif, IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD, IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD); } static bool iwlagn_bt_traffic_is_sco(struct iwl_bt_uart_msg *uart_msg) { return BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3 >> BT_UART_MSG_FRAME3SCOESCO_POS; } static void iwlagn_bt_traffic_change_work(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, bt_traffic_change_work); struct iwl_rxon_context *ctx; int smps_request = -1; if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) { /* bt coex disabled */ return; } /* * Note: bt_traffic_load can be overridden by scan complete and * coex profile notifications. Ignore that since only bad consequence * can be not matching debug print with actual state. */ IWL_DEBUG_COEX(priv, "BT traffic load changes: %d\n", priv->bt_traffic_load); switch (priv->bt_traffic_load) { case IWL_BT_COEX_TRAFFIC_LOAD_NONE: if (priv->bt_status) smps_request = IEEE80211_SMPS_DYNAMIC; else smps_request = IEEE80211_SMPS_AUTOMATIC; break; case IWL_BT_COEX_TRAFFIC_LOAD_LOW: smps_request = IEEE80211_SMPS_DYNAMIC; break; case IWL_BT_COEX_TRAFFIC_LOAD_HIGH: case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS: smps_request = IEEE80211_SMPS_STATIC; break; default: IWL_ERR(priv, "Invalid BT traffic load: %d\n", priv->bt_traffic_load); break; } mutex_lock(&priv->shrd->mutex); /* * We can not send command to firmware while scanning. When the scan * complete we will schedule this work again. We do check with mutex * locked to prevent new scan request to arrive. We do not check * STATUS_SCANNING to avoid race when queue_work two times from * different notifications, but quit and not perform any work at all. */ if (test_bit(STATUS_SCAN_HW, &priv->shrd->status)) goto out; iwl_update_chain_flags(priv); if (smps_request != -1) { priv->current_ht_config.smps = smps_request; for_each_context(priv, ctx) { if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION) ieee80211_request_smps(ctx->vif, smps_request); } } /* * Dynamic PS poll related functionality. Adjust RSSI measurements if * necessary. */ iwlagn_bt_coex_rssi_monitor(priv); out: mutex_unlock(&priv->shrd->mutex); } /* * If BT sco traffic, and RSSI monitor is enabled, move measurements to the * correct interface or disable it if this is the last interface to be * removed. */ void iwlagn_bt_coex_rssi_monitor(struct iwl_priv *priv) { if (priv->bt_is_sco && priv->bt_traffic_load == IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS) iwlagn_bt_adjust_rssi_monitor(priv, true); else iwlagn_bt_adjust_rssi_monitor(priv, false); } static void iwlagn_print_uartmsg(struct iwl_priv *priv, struct iwl_bt_uart_msg *uart_msg) { IWL_DEBUG_COEX(priv, "Message Type = 0x%X, SSN = 0x%X, " "Update Req = 0x%X", (BT_UART_MSG_FRAME1MSGTYPE_MSK & uart_msg->frame1) >> BT_UART_MSG_FRAME1MSGTYPE_POS, (BT_UART_MSG_FRAME1SSN_MSK & uart_msg->frame1) >> BT_UART_MSG_FRAME1SSN_POS, (BT_UART_MSG_FRAME1UPDATEREQ_MSK & uart_msg->frame1) >> BT_UART_MSG_FRAME1UPDATEREQ_POS); IWL_DEBUG_COEX(priv, "Open connections = 0x%X, Traffic load = 0x%X, " "Chl_SeqN = 0x%X, In band = 0x%X", (BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK & uart_msg->frame2) >> BT_UART_MSG_FRAME2OPENCONNECTIONS_POS, (BT_UART_MSG_FRAME2TRAFFICLOAD_MSK & uart_msg->frame2) >> BT_UART_MSG_FRAME2TRAFFICLOAD_POS, (BT_UART_MSG_FRAME2CHLSEQN_MSK & uart_msg->frame2) >> BT_UART_MSG_FRAME2CHLSEQN_POS, (BT_UART_MSG_FRAME2INBAND_MSK & uart_msg->frame2) >> BT_UART_MSG_FRAME2INBAND_POS); IWL_DEBUG_COEX(priv, "SCO/eSCO = 0x%X, Sniff = 0x%X, A2DP = 0x%X, " "ACL = 0x%X, Master = 0x%X, OBEX = 0x%X", (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3SCOESCO_POS, (BT_UART_MSG_FRAME3SNIFF_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3SNIFF_POS, (BT_UART_MSG_FRAME3A2DP_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3A2DP_POS, (BT_UART_MSG_FRAME3ACL_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3ACL_POS, (BT_UART_MSG_FRAME3MASTER_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3MASTER_POS, (BT_UART_MSG_FRAME3OBEX_MSK & uart_msg->frame3) >> BT_UART_MSG_FRAME3OBEX_POS); IWL_DEBUG_COEX(priv, "Idle duration = 0x%X", (BT_UART_MSG_FRAME4IDLEDURATION_MSK & uart_msg->frame4) >> BT_UART_MSG_FRAME4IDLEDURATION_POS); IWL_DEBUG_COEX(priv, "Tx Activity = 0x%X, Rx Activity = 0x%X, " "eSCO Retransmissions = 0x%X", (BT_UART_MSG_FRAME5TXACTIVITY_MSK & uart_msg->frame5) >> BT_UART_MSG_FRAME5TXACTIVITY_POS, (BT_UART_MSG_FRAME5RXACTIVITY_MSK & uart_msg->frame5) >> BT_UART_MSG_FRAME5RXACTIVITY_POS, (BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK & uart_msg->frame5) >> BT_UART_MSG_FRAME5ESCORETRANSMIT_POS); IWL_DEBUG_COEX(priv, "Sniff Interval = 0x%X, Discoverable = 0x%X", (BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK & uart_msg->frame6) >> BT_UART_MSG_FRAME6SNIFFINTERVAL_POS, (BT_UART_MSG_FRAME6DISCOVERABLE_MSK & uart_msg->frame6) >> BT_UART_MSG_FRAME6DISCOVERABLE_POS); IWL_DEBUG_COEX(priv, "Sniff Activity = 0x%X, Page = " "0x%X, Inquiry = 0x%X, Connectable = 0x%X", (BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK & uart_msg->frame7) >> BT_UART_MSG_FRAME7SNIFFACTIVITY_POS, (BT_UART_MSG_FRAME7PAGE_MSK & uart_msg->frame7) >> BT_UART_MSG_FRAME7PAGE_POS, (BT_UART_MSG_FRAME7INQUIRY_MSK & uart_msg->frame7) >> BT_UART_MSG_FRAME7INQUIRY_POS, (BT_UART_MSG_FRAME7CONNECTABLE_MSK & uart_msg->frame7) >> BT_UART_MSG_FRAME7CONNECTABLE_POS); } static void iwlagn_set_kill_msk(struct iwl_priv *priv, struct iwl_bt_uart_msg *uart_msg) { u8 kill_msk; static const __le32 bt_kill_ack_msg[2] = { IWLAGN_BT_KILL_ACK_MASK_DEFAULT, IWLAGN_BT_KILL_ACK_CTS_MASK_SCO }; static const __le32 bt_kill_cts_msg[2] = { IWLAGN_BT_KILL_CTS_MASK_DEFAULT, IWLAGN_BT_KILL_ACK_CTS_MASK_SCO }; kill_msk = (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3) ? 1 : 0; if (priv->kill_ack_mask != bt_kill_ack_msg[kill_msk] || priv->kill_cts_mask != bt_kill_cts_msg[kill_msk]) { priv->bt_valid |= IWLAGN_BT_VALID_KILL_ACK_MASK; priv->kill_ack_mask = bt_kill_ack_msg[kill_msk]; priv->bt_valid |= IWLAGN_BT_VALID_KILL_CTS_MASK; priv->kill_cts_mask = bt_kill_cts_msg[kill_msk]; /* schedule to send runtime bt_config */ queue_work(priv->shrd->workqueue, &priv->bt_runtime_config); } } void iwlagn_bt_coex_profile_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { unsigned long flags; struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_bt_coex_profile_notif *coex = &pkt->u.bt_coex_profile_notif; struct iwl_bt_uart_msg *uart_msg = &coex->last_bt_uart_msg; if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) { /* bt coex disabled */ return; } IWL_DEBUG_COEX(priv, "BT Coex notification:\n"); IWL_DEBUG_COEX(priv, " status: %d\n", coex->bt_status); IWL_DEBUG_COEX(priv, " traffic load: %d\n", coex->bt_traffic_load); IWL_DEBUG_COEX(priv, " CI compliance: %d\n", coex->bt_ci_compliance); iwlagn_print_uartmsg(priv, uart_msg); priv->last_bt_traffic_load = priv->bt_traffic_load; priv->bt_is_sco = iwlagn_bt_traffic_is_sco(uart_msg); if (priv->iw_mode != NL80211_IFTYPE_ADHOC) { if (priv->bt_status != coex->bt_status || priv->last_bt_traffic_load != coex->bt_traffic_load) { if (coex->bt_status) { /* BT on */ if (!priv->bt_ch_announce) priv->bt_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_HIGH; else priv->bt_traffic_load = coex->bt_traffic_load; } else { /* BT off */ priv->bt_traffic_load = IWL_BT_COEX_TRAFFIC_LOAD_NONE; } priv->bt_status = coex->bt_status; queue_work(priv->shrd->workqueue, &priv->bt_traffic_change_work); } } iwlagn_set_kill_msk(priv, uart_msg); /* FIXME: based on notification, adjust the prio_boost */ spin_lock_irqsave(&priv->shrd->lock, flags); priv->bt_ci_compliance = coex->bt_ci_compliance; spin_unlock_irqrestore(&priv->shrd->lock, flags); } void iwlagn_bt_rx_handler_setup(struct iwl_priv *priv) { priv->rx_handlers[REPLY_BT_COEX_PROFILE_NOTIF] = iwlagn_bt_coex_profile_notif; } void iwlagn_bt_setup_deferred_work(struct iwl_priv *priv) { INIT_WORK(&priv->bt_traffic_change_work, iwlagn_bt_traffic_change_work); } void iwlagn_bt_cancel_deferred_work(struct iwl_priv *priv) { cancel_work_sync(&priv->bt_traffic_change_work); } static bool is_single_rx_stream(struct iwl_priv *priv) { return priv->current_ht_config.smps == IEEE80211_SMPS_STATIC || priv->current_ht_config.single_chain_sufficient; } #define IWL_NUM_RX_CHAINS_MULTIPLE 3 #define IWL_NUM_RX_CHAINS_SINGLE 2 #define IWL_NUM_IDLE_CHAINS_DUAL 2 #define IWL_NUM_IDLE_CHAINS_SINGLE 1 /* * Determine how many receiver/antenna chains to use. * * More provides better reception via diversity. Fewer saves power * at the expense of throughput, but only when not in powersave to * start with. * * MIMO (dual stream) requires at least 2, but works better with 3. * This does not determine *which* chains to use, just how many. */ static int iwl_get_active_rx_chain_count(struct iwl_priv *priv) { if (priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist && (priv->bt_full_concurrent || priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) { /* * only use chain 'A' in bt high traffic load or * full concurrency mode */ return IWL_NUM_RX_CHAINS_SINGLE; } /* # of Rx chains to use when expecting MIMO. */ if (is_single_rx_stream(priv)) return IWL_NUM_RX_CHAINS_SINGLE; else return IWL_NUM_RX_CHAINS_MULTIPLE; } /* * When we are in power saving mode, unless device support spatial * multiplexing power save, use the active count for rx chain count. */ static int iwl_get_idle_rx_chain_count(struct iwl_priv *priv, int active_cnt) { /* # Rx chains when idling, depending on SMPS mode */ switch (priv->current_ht_config.smps) { case IEEE80211_SMPS_STATIC: case IEEE80211_SMPS_DYNAMIC: return IWL_NUM_IDLE_CHAINS_SINGLE; case IEEE80211_SMPS_OFF: return active_cnt; default: WARN(1, "invalid SMPS mode %d", priv->current_ht_config.smps); return active_cnt; } } /* up to 4 chains */ static u8 iwl_count_chain_bitmap(u32 chain_bitmap) { u8 res; res = (chain_bitmap & BIT(0)) >> 0; res += (chain_bitmap & BIT(1)) >> 1; res += (chain_bitmap & BIT(2)) >> 2; res += (chain_bitmap & BIT(3)) >> 3; return res; } /** * iwlagn_set_rxon_chain - Set up Rx chain usage in "staging" RXON image * * Selects how many and which Rx receivers/antennas/chains to use. * This should not be used for scan command ... it puts data in wrong place. */ void iwlagn_set_rxon_chain(struct iwl_priv *priv, struct iwl_rxon_context *ctx) { bool is_single = is_single_rx_stream(priv); bool is_cam = !test_bit(STATUS_POWER_PMI, &priv->shrd->status); u8 idle_rx_cnt, active_rx_cnt, valid_rx_cnt; u32 active_chains; u16 rx_chain; /* Tell uCode which antennas are actually connected. * Before first association, we assume all antennas are connected. * Just after first association, iwl_chain_noise_calibration() * checks which antennas actually *are* connected. */ if (priv->chain_noise_data.active_chains) active_chains = priv->chain_noise_data.active_chains; else active_chains = hw_params(priv).valid_rx_ant; if (priv->cfg->bt_params && priv->cfg->bt_params->advanced_bt_coexist && (priv->bt_full_concurrent || priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) { /* * only use chain 'A' in bt high traffic load or * full concurrency mode */ active_chains = first_antenna(active_chains); } rx_chain = active_chains << RXON_RX_CHAIN_VALID_POS; /* How many receivers should we use? */ active_rx_cnt = iwl_get_active_rx_chain_count(priv); idle_rx_cnt = iwl_get_idle_rx_chain_count(priv, active_rx_cnt); /* correct rx chain count according hw settings * and chain noise calibration */ valid_rx_cnt = iwl_count_chain_bitmap(active_chains); if (valid_rx_cnt < active_rx_cnt) active_rx_cnt = valid_rx_cnt; if (valid_rx_cnt < idle_rx_cnt) idle_rx_cnt = valid_rx_cnt; rx_chain |= active_rx_cnt << RXON_RX_CHAIN_MIMO_CNT_POS; rx_chain |= idle_rx_cnt << RXON_RX_CHAIN_CNT_POS; ctx->staging.rx_chain = cpu_to_le16(rx_chain); if (!is_single && (active_rx_cnt >= IWL_NUM_RX_CHAINS_SINGLE) && is_cam) ctx->staging.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK; else ctx->staging.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK; IWL_DEBUG_ASSOC(priv, "rx_chain=0x%X active=%d idle=%d\n", ctx->staging.rx_chain, active_rx_cnt, idle_rx_cnt); WARN_ON(active_rx_cnt == 0 || idle_rx_cnt == 0 || active_rx_cnt < idle_rx_cnt); } u8 iwl_toggle_tx_ant(struct iwl_priv *priv, u8 ant, u8 valid) { int i; u8 ind = ant; if (priv->band == IEEE80211_BAND_2GHZ && priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH) return 0; for (i = 0; i < RATE_ANT_NUM - 1; i++) { ind = (ind + 1) < RATE_ANT_NUM ? ind + 1 : 0; if (valid & BIT(ind)) return ind; } return ant; } /* notification wait support */ void iwlagn_init_notification_wait(struct iwl_priv *priv, struct iwl_notification_wait *wait_entry, u8 cmd, void (*fn)(struct iwl_priv *priv, struct iwl_rx_packet *pkt, void *data), void *fn_data) { wait_entry->fn = fn; wait_entry->fn_data = fn_data; wait_entry->cmd = cmd; wait_entry->triggered = false; wait_entry->aborted = false; spin_lock_bh(&priv->notif_wait_lock); list_add(&wait_entry->list, &priv->notif_waits); spin_unlock_bh(&priv->notif_wait_lock); } int iwlagn_wait_notification(struct iwl_priv *priv, struct iwl_notification_wait *wait_entry, unsigned long timeout) { int ret; ret = wait_event_timeout(priv->notif_waitq, wait_entry->triggered || wait_entry->aborted, timeout); spin_lock_bh(&priv->notif_wait_lock); list_del(&wait_entry->list); spin_unlock_bh(&priv->notif_wait_lock); if (wait_entry->aborted) return -EIO; /* return value is always >= 0 */ if (ret <= 0) return -ETIMEDOUT; return 0; } void iwlagn_remove_notification(struct iwl_priv *priv, struct iwl_notification_wait *wait_entry) { spin_lock_bh(&priv->notif_wait_lock); list_del(&wait_entry->list); spin_unlock_bh(&priv->notif_wait_lock); }