/* audit.c -- Auditing support * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. * System-call specific features have moved to auditsc.c * * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Written by Rickard E. (Rik) Faith * * Goals: 1) Integrate fully with Security Modules. * 2) Minimal run-time overhead: * a) Minimal when syscall auditing is disabled (audit_enable=0). * b) Small when syscall auditing is enabled and no audit record * is generated (defer as much work as possible to record * generation time): * i) context is allocated, * ii) names from getname are stored without a copy, and * iii) inode information stored from path_lookup. * 3) Ability to disable syscall auditing at boot time (audit=0). * 4) Usable by other parts of the kernel (if audit_log* is called, * then a syscall record will be generated automatically for the * current syscall). * 5) Netlink interface to user-space. * 6) Support low-overhead kernel-based filtering to minimize the * information that must be passed to user-space. * * Audit userspace, documentation, tests, and bug/issue trackers: * https://github.com/linux-audit */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SECURITY #include #endif #include #include #include #include "audit.h" /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. * (Initialization happens after skb_init is called.) */ #define AUDIT_DISABLED -1 #define AUDIT_UNINITIALIZED 0 #define AUDIT_INITIALIZED 1 static int audit_initialized; #define AUDIT_OFF 0 #define AUDIT_ON 1 #define AUDIT_LOCKED 2 u32 audit_enabled = AUDIT_OFF; bool audit_ever_enabled = !!AUDIT_OFF; EXPORT_SYMBOL_GPL(audit_enabled); /* Default state when kernel boots without any parameters. */ static u32 audit_default = AUDIT_OFF; /* If auditing cannot proceed, audit_failure selects what happens. */ static u32 audit_failure = AUDIT_FAIL_PRINTK; /* private audit network namespace index */ static unsigned int audit_net_id; /** * struct audit_net - audit private network namespace data * @sk: communication socket */ struct audit_net { struct sock *sk; }; /** * struct auditd_connection - kernel/auditd connection state * @pid: auditd PID * @portid: netlink portid * @net: the associated network namespace * @rcu: RCU head * * Description: * This struct is RCU protected; you must either hold the RCU lock for reading * or the associated spinlock for writing. */ static struct auditd_connection { struct pid *pid; u32 portid; struct net *net; struct rcu_head rcu; } *auditd_conn = NULL; static DEFINE_SPINLOCK(auditd_conn_lock); /* If audit_rate_limit is non-zero, limit the rate of sending audit records * to that number per second. This prevents DoS attacks, but results in * audit records being dropped. */ static u32 audit_rate_limit; /* Number of outstanding audit_buffers allowed. * When set to zero, this means unlimited. */ static u32 audit_backlog_limit = 64; #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; /* The identity of the user shutting down the audit system. */ kuid_t audit_sig_uid = INVALID_UID; pid_t audit_sig_pid = -1; u32 audit_sig_sid = 0; /* Records can be lost in several ways: 0) [suppressed in audit_alloc] 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 2) out of memory in audit_log_move [alloc_skb] 3) suppressed due to audit_rate_limit 4) suppressed due to audit_backlog_limit */ static atomic_t audit_lost = ATOMIC_INIT(0); /* Hash for inode-based rules */ struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; static struct kmem_cache *audit_buffer_cache; /* queue msgs to send via kauditd_task */ static struct sk_buff_head audit_queue; /* queue msgs due to temporary unicast send problems */ static struct sk_buff_head audit_retry_queue; /* queue msgs waiting for new auditd connection */ static struct sk_buff_head audit_hold_queue; /* queue servicing thread */ static struct task_struct *kauditd_task; static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); /* waitqueue for callers who are blocked on the audit backlog */ static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, .mask = -1, .features = 0, .lock = 0,}; static char *audit_feature_names[2] = { "only_unset_loginuid", "loginuid_immutable", }; /** * struct audit_ctl_mutex - serialize requests from userspace * @lock: the mutex used for locking * @owner: the task which owns the lock * * Description: * This is the lock struct used to ensure we only process userspace requests * in an orderly fashion. We can't simply use a mutex/lock here because we * need to track lock ownership so we don't end up blocking the lock owner in * audit_log_start() or similar. */ static struct audit_ctl_mutex { struct mutex lock; void *owner; } audit_cmd_mutex; /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting * audit records. Since printk uses a 1024 byte buffer, this buffer * should be at least that large. */ #define AUDIT_BUFSIZ 1024 /* The audit_buffer is used when formatting an audit record. The caller * locks briefly to get the record off the freelist or to allocate the * buffer, and locks briefly to send the buffer to the netlink layer or * to place it on a transmit queue. Multiple audit_buffers can be in * use simultaneously. */ struct audit_buffer { struct sk_buff *skb; /* formatted skb ready to send */ struct audit_context *ctx; /* NULL or associated context */ gfp_t gfp_mask; }; struct audit_reply { __u32 portid; struct net *net; struct sk_buff *skb; }; /** * auditd_test_task - Check to see if a given task is an audit daemon * @task: the task to check * * Description: * Return 1 if the task is a registered audit daemon, 0 otherwise. */ int auditd_test_task(struct task_struct *task) { int rc; struct auditd_connection *ac; rcu_read_lock(); ac = rcu_dereference(auditd_conn); rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); rcu_read_unlock(); return rc; } /** * audit_ctl_lock - Take the audit control lock */ void audit_ctl_lock(void) { mutex_lock(&audit_cmd_mutex.lock); audit_cmd_mutex.owner = current; } /** * audit_ctl_unlock - Drop the audit control lock */ void audit_ctl_unlock(void) { audit_cmd_mutex.owner = NULL; mutex_unlock(&audit_cmd_mutex.lock); } /** * audit_ctl_owner_current - Test to see if the current task owns the lock * * Description: * Return true if the current task owns the audit control lock, false if it * doesn't own the lock. */ static bool audit_ctl_owner_current(void) { return (current == audit_cmd_mutex.owner); } /** * auditd_pid_vnr - Return the auditd PID relative to the namespace * * Description: * Returns the PID in relation to the namespace, 0 on failure. */ static pid_t auditd_pid_vnr(void) { pid_t pid; const struct auditd_connection *ac; rcu_read_lock(); ac = rcu_dereference(auditd_conn); if (!ac || !ac->pid) pid = 0; else pid = pid_vnr(ac->pid); rcu_read_unlock(); return pid; } /** * audit_get_sk - Return the audit socket for the given network namespace * @net: the destination network namespace * * Description: * Returns the sock pointer if valid, NULL otherwise. The caller must ensure * that a reference is held for the network namespace while the sock is in use. */ static struct sock *audit_get_sk(const struct net *net) { struct audit_net *aunet; if (!net) return NULL; aunet = net_generic(net, audit_net_id); return aunet->sk; } void audit_panic(const char *message) { switch (audit_failure) { case AUDIT_FAIL_SILENT: break; case AUDIT_FAIL_PRINTK: if (printk_ratelimit()) pr_err("%s\n", message); break; case AUDIT_FAIL_PANIC: panic("audit: %s\n", message); break; } } static inline int audit_rate_check(void) { static unsigned long last_check = 0; static int messages = 0; static DEFINE_SPINLOCK(lock); unsigned long flags; unsigned long now; unsigned long elapsed; int retval = 0; if (!audit_rate_limit) return 1; spin_lock_irqsave(&lock, flags); if (++messages < audit_rate_limit) { retval = 1; } else { now = jiffies; elapsed = now - last_check; if (elapsed > HZ) { last_check = now; messages = 0; retval = 1; } } spin_unlock_irqrestore(&lock, flags); return retval; } /** * audit_log_lost - conditionally log lost audit message event * @message: the message stating reason for lost audit message * * Emit at least 1 message per second, even if audit_rate_check is * throttling. * Always increment the lost messages counter. */ void audit_log_lost(const char *message) { static unsigned long last_msg = 0; static DEFINE_SPINLOCK(lock); unsigned long flags; unsigned long now; int print; atomic_inc(&audit_lost); print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); if (!print) { spin_lock_irqsave(&lock, flags); now = jiffies; if (now - last_msg > HZ) { print = 1; last_msg = now; } spin_unlock_irqrestore(&lock, flags); } if (print) { if (printk_ratelimit()) pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", atomic_read(&audit_lost), audit_rate_limit, audit_backlog_limit); audit_panic(message); } } static int audit_log_config_change(char *function_name, u32 new, u32 old, int allow_changes) { struct audit_buffer *ab; int rc = 0; ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); if (unlikely(!ab)) return rc; audit_log_format(ab, "%s=%u old=%u", function_name, new, old); audit_log_session_info(ab); rc = audit_log_task_context(ab); if (rc) allow_changes = 0; /* Something weird, deny request */ audit_log_format(ab, " res=%d", allow_changes); audit_log_end(ab); return rc; } static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) { int allow_changes, rc = 0; u32 old = *to_change; /* check if we are locked */ if (audit_enabled == AUDIT_LOCKED) allow_changes = 0; else allow_changes = 1; if (audit_enabled != AUDIT_OFF) { rc = audit_log_config_change(function_name, new, old, allow_changes); if (rc) allow_changes = 0; } /* If we are allowed, make the change */ if (allow_changes == 1) *to_change = new; /* Not allowed, update reason */ else if (rc == 0) rc = -EPERM; return rc; } static int audit_set_rate_limit(u32 limit) { return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); } static int audit_set_backlog_limit(u32 limit) { return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); } static int audit_set_backlog_wait_time(u32 timeout) { return audit_do_config_change("audit_backlog_wait_time", &audit_backlog_wait_time, timeout); } static int audit_set_enabled(u32 state) { int rc; if (state > AUDIT_LOCKED) return -EINVAL; rc = audit_do_config_change("audit_enabled", &audit_enabled, state); if (!rc) audit_ever_enabled |= !!state; return rc; } static int audit_set_failure(u32 state) { if (state != AUDIT_FAIL_SILENT && state != AUDIT_FAIL_PRINTK && state != AUDIT_FAIL_PANIC) return -EINVAL; return audit_do_config_change("audit_failure", &audit_failure, state); } /** * auditd_conn_free - RCU helper to release an auditd connection struct * @rcu: RCU head * * Description: * Drop any references inside the auditd connection tracking struct and free * the memory. */ static void auditd_conn_free(struct rcu_head *rcu) { struct auditd_connection *ac; ac = container_of(rcu, struct auditd_connection, rcu); put_pid(ac->pid); put_net(ac->net); kfree(ac); } /** * auditd_set - Set/Reset the auditd connection state * @pid: auditd PID * @portid: auditd netlink portid * @net: auditd network namespace pointer * * Description: * This function will obtain and drop network namespace references as * necessary. Returns zero on success, negative values on failure. */ static int auditd_set(struct pid *pid, u32 portid, struct net *net) { unsigned long flags; struct auditd_connection *ac_old, *ac_new; if (!pid || !net) return -EINVAL; ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); if (!ac_new) return -ENOMEM; ac_new->pid = get_pid(pid); ac_new->portid = portid; ac_new->net = get_net(net); spin_lock_irqsave(&auditd_conn_lock, flags); ac_old = rcu_dereference_protected(auditd_conn, lockdep_is_held(&auditd_conn_lock)); rcu_assign_pointer(auditd_conn, ac_new); spin_unlock_irqrestore(&auditd_conn_lock, flags); if (ac_old) call_rcu(&ac_old->rcu, auditd_conn_free); return 0; } /** * kauditd_print_skb - Print the audit record to the ring buffer * @skb: audit record * * Whatever the reason, this packet may not make it to the auditd connection * so write it via printk so the information isn't completely lost. */ static void kauditd_printk_skb(struct sk_buff *skb) { struct nlmsghdr *nlh = nlmsg_hdr(skb); char *data = nlmsg_data(nlh); if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) pr_notice("type=%d %s\n", nlh->nlmsg_type, data); } /** * kauditd_rehold_skb - Handle a audit record send failure in the hold queue * @skb: audit record * * Description: * This should only be used by the kauditd_thread when it fails to flush the * hold queue. */ static void kauditd_rehold_skb(struct sk_buff *skb) { /* put the record back in the queue at the same place */ skb_queue_head(&audit_hold_queue, skb); } /** * kauditd_hold_skb - Queue an audit record, waiting for auditd * @skb: audit record * * Description: * Queue the audit record, waiting for an instance of auditd. When this * function is called we haven't given up yet on sending the record, but things * are not looking good. The first thing we want to do is try to write the * record via printk and then see if we want to try and hold on to the record * and queue it, if we have room. If we want to hold on to the record, but we * don't have room, record a record lost message. */ static void kauditd_hold_skb(struct sk_buff *skb) { /* at this point it is uncertain if we will ever send this to auditd so * try to send the message via printk before we go any further */ kauditd_printk_skb(skb); /* can we just silently drop the message? */ if (!audit_default) { kfree_skb(skb); return; } /* if we have room, queue the message */ if (!audit_backlog_limit || skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { skb_queue_tail(&audit_hold_queue, skb); return; } /* we have no other options - drop the message */ audit_log_lost("kauditd hold queue overflow"); kfree_skb(skb); } /** * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd * @skb: audit record * * Description: * Not as serious as kauditd_hold_skb() as we still have a connected auditd, * but for some reason we are having problems sending it audit records so * queue the given record and attempt to resend. */ static void kauditd_retry_skb(struct sk_buff *skb) { /* NOTE: because records should only live in the retry queue for a * short period of time, before either being sent or moved to the hold * queue, we don't currently enforce a limit on this queue */ skb_queue_tail(&audit_retry_queue, skb); } /** * auditd_reset - Disconnect the auditd connection * @ac: auditd connection state * * Description: * Break the auditd/kauditd connection and move all the queued records into the * hold queue in case auditd reconnects. It is important to note that the @ac * pointer should never be dereferenced inside this function as it may be NULL * or invalid, you can only compare the memory address! If @ac is NULL then * the connection will always be reset. */ static void auditd_reset(const struct auditd_connection *ac) { unsigned long flags; struct sk_buff *skb; struct auditd_connection *ac_old; /* if it isn't already broken, break the connection */ spin_lock_irqsave(&auditd_conn_lock, flags); ac_old = rcu_dereference_protected(auditd_conn, lockdep_is_held(&auditd_conn_lock)); if (ac && ac != ac_old) { /* someone already registered a new auditd connection */ spin_unlock_irqrestore(&auditd_conn_lock, flags); return; } rcu_assign_pointer(auditd_conn, NULL); spin_unlock_irqrestore(&auditd_conn_lock, flags); if (ac_old) call_rcu(&ac_old->rcu, auditd_conn_free); /* flush the retry queue to the hold queue, but don't touch the main * queue since we need to process that normally for multicast */ while ((skb = skb_dequeue(&audit_retry_queue))) kauditd_hold_skb(skb); } /** * auditd_send_unicast_skb - Send a record via unicast to auditd * @skb: audit record * * Description: * Send a skb to the audit daemon, returns positive/zero values on success and * negative values on failure; in all cases the skb will be consumed by this * function. If the send results in -ECONNREFUSED the connection with auditd * will be reset. This function may sleep so callers should not hold any locks * where this would cause a problem. */ static int auditd_send_unicast_skb(struct sk_buff *skb) { int rc; u32 portid; struct net *net; struct sock *sk; struct auditd_connection *ac; /* NOTE: we can't call netlink_unicast while in the RCU section so * take a reference to the network namespace and grab local * copies of the namespace, the sock, and the portid; the * namespace and sock aren't going to go away while we hold a * reference and if the portid does become invalid after the RCU * section netlink_unicast() should safely return an error */ rcu_read_lock(); ac = rcu_dereference(auditd_conn); if (!ac) { rcu_read_unlock(); kfree_skb(skb); rc = -ECONNREFUSED; goto err; } net = get_net(ac->net); sk = audit_get_sk(net); portid = ac->portid; rcu_read_unlock(); rc = netlink_unicast(sk, skb, portid, 0); put_net(net); if (rc < 0) goto err; return rc; err: if (ac && rc == -ECONNREFUSED) auditd_reset(ac); return rc; } /** * kauditd_send_queue - Helper for kauditd_thread to flush skb queues * @sk: the sending sock * @portid: the netlink destination * @queue: the skb queue to process * @retry_limit: limit on number of netlink unicast failures * @skb_hook: per-skb hook for additional processing * @err_hook: hook called if the skb fails the netlink unicast send * * Description: * Run through the given queue and attempt to send the audit records to auditd, * returns zero on success, negative values on failure. It is up to the caller * to ensure that the @sk is valid for the duration of this function. * */ static int kauditd_send_queue(struct sock *sk, u32 portid, struct sk_buff_head *queue, unsigned int retry_limit, void (*skb_hook)(struct sk_buff *skb), void (*err_hook)(struct sk_buff *skb)) { int rc = 0; struct sk_buff *skb; static unsigned int failed = 0; /* NOTE: kauditd_thread takes care of all our locking, we just use * the netlink info passed to us (e.g. sk and portid) */ while ((skb = skb_dequeue(queue))) { /* call the skb_hook for each skb we touch */ if (skb_hook) (*skb_hook)(skb); /* can we send to anyone via unicast? */ if (!sk) { if (err_hook) (*err_hook)(skb); continue; } /* grab an extra skb reference in case of error */ skb_get(skb); rc = netlink_unicast(sk, skb, portid, 0); if (rc < 0) { /* fatal failure for our queue flush attempt? */ if (++failed >= retry_limit || rc == -ECONNREFUSED || rc == -EPERM) { /* yes - error processing for the queue */ sk = NULL; if (err_hook) (*err_hook)(skb); if (!skb_hook) goto out; /* keep processing with the skb_hook */ continue; } else /* no - requeue to preserve ordering */ skb_queue_head(queue, skb); } else { /* it worked - drop the extra reference and continue */ consume_skb(skb); failed = 0; } } out: return (rc >= 0 ? 0 : rc); } /* * kauditd_send_multicast_skb - Send a record to any multicast listeners * @skb: audit record * * Description: * Write a multicast message to anyone listening in the initial network * namespace. This function doesn't consume an skb as might be expected since * it has to copy it anyways. */ static void kauditd_send_multicast_skb(struct sk_buff *skb) { struct sk_buff *copy; struct sock *sock = audit_get_sk(&init_net); struct nlmsghdr *nlh; /* NOTE: we are not taking an additional reference for init_net since * we don't have to worry about it going away */ if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) return; /* * The seemingly wasteful skb_copy() rather than bumping the refcount * using skb_get() is necessary because non-standard mods are made to * the skb by the original kaudit unicast socket send routine. The * existing auditd daemon assumes this breakage. Fixing this would * require co-ordinating a change in the established protocol between * the kaudit kernel subsystem and the auditd userspace code. There is * no reason for new multicast clients to continue with this * non-compliance. */ copy = skb_copy(skb, GFP_KERNEL); if (!copy) return; nlh = nlmsg_hdr(copy); nlh->nlmsg_len = skb->len; nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); } /** * kauditd_thread - Worker thread to send audit records to userspace * @dummy: unused */ static int kauditd_thread(void *dummy) { int rc; u32 portid = 0; struct net *net = NULL; struct sock *sk = NULL; struct auditd_connection *ac; #define UNICAST_RETRIES 5 set_freezable(); while (!kthread_should_stop()) { /* NOTE: see the lock comments in auditd_send_unicast_skb() */ rcu_read_lock(); ac = rcu_dereference(auditd_conn); if (!ac) { rcu_read_unlock(); goto main_queue; } net = get_net(ac->net); sk = audit_get_sk(net); portid = ac->portid; rcu_read_unlock(); /* attempt to flush the hold queue */ rc = kauditd_send_queue(sk, portid, &audit_hold_queue, UNICAST_RETRIES, NULL, kauditd_rehold_skb); if (ac && rc < 0) { sk = NULL; auditd_reset(ac); goto main_queue; } /* attempt to flush the retry queue */ rc = kauditd_send_queue(sk, portid, &audit_retry_queue, UNICAST_RETRIES, NULL, kauditd_hold_skb); if (ac && rc < 0) { sk = NULL; auditd_reset(ac); goto main_queue; } main_queue: /* process the main queue - do the multicast send and attempt * unicast, dump failed record sends to the retry queue; if * sk == NULL due to previous failures we will just do the * multicast send and move the record to the hold queue */ rc = kauditd_send_queue(sk, portid, &audit_queue, 1, kauditd_send_multicast_skb, (sk ? kauditd_retry_skb : kauditd_hold_skb)); if (ac && rc < 0) auditd_reset(ac); sk = NULL; /* drop our netns reference, no auditd sends past this line */ if (net) { put_net(net); net = NULL; } /* we have processed all the queues so wake everyone */ wake_up(&audit_backlog_wait); /* NOTE: we want to wake up if there is anything on the queue, * regardless of if an auditd is connected, as we need to * do the multicast send and rotate records from the * main queue to the retry/hold queues */ wait_event_freezable(kauditd_wait, (skb_queue_len(&audit_queue) ? 1 : 0)); } return 0; } int audit_send_list(void *_dest) { struct audit_netlink_list *dest = _dest; struct sk_buff *skb; struct sock *sk = audit_get_sk(dest->net); /* wait for parent to finish and send an ACK */ audit_ctl_lock(); audit_ctl_unlock(); while ((skb = __skb_dequeue(&dest->q)) != NULL) netlink_unicast(sk, skb, dest->portid, 0); put_net(dest->net); kfree(dest); return 0; } struct sk_buff *audit_make_reply(int seq, int type, int done, int multi, const void *payload, int size) { struct sk_buff *skb; struct nlmsghdr *nlh; void *data; int flags = multi ? NLM_F_MULTI : 0; int t = done ? NLMSG_DONE : type; skb = nlmsg_new(size, GFP_KERNEL); if (!skb) return NULL; nlh = nlmsg_put(skb, 0, seq, t, size, flags); if (!nlh) goto out_kfree_skb; data = nlmsg_data(nlh); memcpy(data, payload, size); return skb; out_kfree_skb: kfree_skb(skb); return NULL; } static int audit_send_reply_thread(void *arg) { struct audit_reply *reply = (struct audit_reply *)arg; struct sock *sk = audit_get_sk(reply->net); audit_ctl_lock(); audit_ctl_unlock(); /* Ignore failure. It'll only happen if the sender goes away, because our timeout is set to infinite. */ netlink_unicast(sk, reply->skb, reply->portid, 0); put_net(reply->net); kfree(reply); return 0; } /** * audit_send_reply - send an audit reply message via netlink * @request_skb: skb of request we are replying to (used to target the reply) * @seq: sequence number * @type: audit message type * @done: done (last) flag * @multi: multi-part message flag * @payload: payload data * @size: payload size * * Allocates an skb, builds the netlink message, and sends it to the port id. * No failure notifications. */ static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, int multi, const void *payload, int size) { struct net *net = sock_net(NETLINK_CB(request_skb).sk); struct sk_buff *skb; struct task_struct *tsk; struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), GFP_KERNEL); if (!reply) return; skb = audit_make_reply(seq, type, done, multi, payload, size); if (!skb) goto out; reply->net = get_net(net); reply->portid = NETLINK_CB(request_skb).portid; reply->skb = skb; tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); if (!IS_ERR(tsk)) return; kfree_skb(skb); out: kfree(reply); } /* * Check for appropriate CAP_AUDIT_ capabilities on incoming audit * control messages. */ static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) { int err = 0; /* Only support initial user namespace for now. */ /* * We return ECONNREFUSED because it tricks userspace into thinking * that audit was not configured into the kernel. Lots of users * configure their PAM stack (because that's what the distro does) * to reject login if unable to send messages to audit. If we return * ECONNREFUSED the PAM stack thinks the kernel does not have audit * configured in and will let login proceed. If we return EPERM * userspace will reject all logins. This should be removed when we * support non init namespaces!! */ if (current_user_ns() != &init_user_ns) return -ECONNREFUSED; switch (msg_type) { case AUDIT_LIST: case AUDIT_ADD: case AUDIT_DEL: return -EOPNOTSUPP; case AUDIT_GET: case AUDIT_SET: case AUDIT_GET_FEATURE: case AUDIT_SET_FEATURE: case AUDIT_LIST_RULES: case AUDIT_ADD_RULE: case AUDIT_DEL_RULE: case AUDIT_SIGNAL_INFO: case AUDIT_TTY_GET: case AUDIT_TTY_SET: case AUDIT_TRIM: case AUDIT_MAKE_EQUIV: /* Only support auditd and auditctl in initial pid namespace * for now. */ if (task_active_pid_ns(current) != &init_pid_ns) return -EPERM; if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) err = -EPERM; break; case AUDIT_USER: case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: if (!netlink_capable(skb, CAP_AUDIT_WRITE)) err = -EPERM; break; default: /* bad msg */ err = -EINVAL; } return err; } static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) { uid_t uid = from_kuid(&init_user_ns, current_uid()); pid_t pid = task_tgid_nr(current); if (!audit_enabled && msg_type != AUDIT_USER_AVC) { *ab = NULL; return; } *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); if (unlikely(!*ab)) return; audit_log_format(*ab, "pid=%d uid=%u", pid, uid); audit_log_session_info(*ab); audit_log_task_context(*ab); } int is_audit_feature_set(int i) { return af.features & AUDIT_FEATURE_TO_MASK(i); } static int audit_get_feature(struct sk_buff *skb) { u32 seq; seq = nlmsg_hdr(skb)->nlmsg_seq; audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); return 0; } static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, u32 old_lock, u32 new_lock, int res) { struct audit_buffer *ab; if (audit_enabled == AUDIT_OFF) return; ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); if (!ab) return; audit_log_task_info(ab, current); audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", audit_feature_names[which], !!old_feature, !!new_feature, !!old_lock, !!new_lock, res); audit_log_end(ab); } static int audit_set_feature(struct sk_buff *skb) { struct audit_features *uaf; int i; BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); uaf = nlmsg_data(nlmsg_hdr(skb)); /* if there is ever a version 2 we should handle that here */ for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { u32 feature = AUDIT_FEATURE_TO_MASK(i); u32 old_feature, new_feature, old_lock, new_lock; /* if we are not changing this feature, move along */ if (!(feature & uaf->mask)) continue; old_feature = af.features & feature; new_feature = uaf->features & feature; new_lock = (uaf->lock | af.lock) & feature; old_lock = af.lock & feature; /* are we changing a locked feature? */ if (old_lock && (new_feature != old_feature)) { audit_log_feature_change(i, old_feature, new_feature, old_lock, new_lock, 0); return -EPERM; } } /* nothing invalid, do the changes */ for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { u32 feature = AUDIT_FEATURE_TO_MASK(i); u32 old_feature, new_feature, old_lock, new_lock; /* if we are not changing this feature, move along */ if (!(feature & uaf->mask)) continue; old_feature = af.features & feature; new_feature = uaf->features & feature; old_lock = af.lock & feature; new_lock = (uaf->lock | af.lock) & feature; if (new_feature != old_feature) audit_log_feature_change(i, old_feature, new_feature, old_lock, new_lock, 1); if (new_feature) af.features |= feature; else af.features &= ~feature; af.lock |= new_lock; } return 0; } static int audit_replace(struct pid *pid) { pid_t pvnr; struct sk_buff *skb; pvnr = pid_vnr(pid); skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); if (!skb) return -ENOMEM; return auditd_send_unicast_skb(skb); } static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) { u32 seq; void *data; int err; struct audit_buffer *ab; u16 msg_type = nlh->nlmsg_type; struct audit_sig_info *sig_data; char *ctx = NULL; u32 len; err = audit_netlink_ok(skb, msg_type); if (err) return err; seq = nlh->nlmsg_seq; data = nlmsg_data(nlh); switch (msg_type) { case AUDIT_GET: { struct audit_status s; memset(&s, 0, sizeof(s)); s.enabled = audit_enabled; s.failure = audit_failure; /* NOTE: use pid_vnr() so the PID is relative to the current * namespace */ s.pid = auditd_pid_vnr(); s.rate_limit = audit_rate_limit; s.backlog_limit = audit_backlog_limit; s.lost = atomic_read(&audit_lost); s.backlog = skb_queue_len(&audit_queue); s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; s.backlog_wait_time = audit_backlog_wait_time; audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); break; } case AUDIT_SET: { struct audit_status s; memset(&s, 0, sizeof(s)); /* guard against past and future API changes */ memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); if (s.mask & AUDIT_STATUS_ENABLED) { err = audit_set_enabled(s.enabled); if (err < 0) return err; } if (s.mask & AUDIT_STATUS_FAILURE) { err = audit_set_failure(s.failure); if (err < 0) return err; } if (s.mask & AUDIT_STATUS_PID) { /* NOTE: we are using the vnr PID functions below * because the s.pid value is relative to the * namespace of the caller; at present this * doesn't matter much since you can really only * run auditd from the initial pid namespace, but * something to keep in mind if this changes */ pid_t new_pid = s.pid; pid_t auditd_pid; struct pid *req_pid = task_tgid(current); /* Sanity check - PID values must match. Setting * pid to 0 is how auditd ends auditing. */ if (new_pid && (new_pid != pid_vnr(req_pid))) return -EINVAL; /* test the auditd connection */ audit_replace(req_pid); auditd_pid = auditd_pid_vnr(); if (auditd_pid) { /* replacing a healthy auditd is not allowed */ if (new_pid) { audit_log_config_change("audit_pid", new_pid, auditd_pid, 0); return -EEXIST; } /* only current auditd can unregister itself */ if (pid_vnr(req_pid) != auditd_pid) { audit_log_config_change("audit_pid", new_pid, auditd_pid, 0); return -EACCES; } } if (new_pid) { /* register a new auditd connection */ err = auditd_set(req_pid, NETLINK_CB(skb).portid, sock_net(NETLINK_CB(skb).sk)); if (audit_enabled != AUDIT_OFF) audit_log_config_change("audit_pid", new_pid, auditd_pid, err ? 0 : 1); if (err) return err; /* try to process any backlog */ wake_up_interruptible(&kauditd_wait); } else { if (audit_enabled != AUDIT_OFF) audit_log_config_change("audit_pid", new_pid, auditd_pid, 1); /* unregister the auditd connection */ auditd_reset(NULL); } } if (s.mask & AUDIT_STATUS_RATE_LIMIT) { err = audit_set_rate_limit(s.rate_limit); if (err < 0) return err; } if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { err = audit_set_backlog_limit(s.backlog_limit); if (err < 0) return err; } if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { if (sizeof(s) > (size_t)nlh->nlmsg_len) return -EINVAL; if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) return -EINVAL; err = audit_set_backlog_wait_time(s.backlog_wait_time); if (err < 0) return err; } if (s.mask == AUDIT_STATUS_LOST) { u32 lost = atomic_xchg(&audit_lost, 0); audit_log_config_change("lost", 0, lost, 1); return lost; } break; } case AUDIT_GET_FEATURE: err = audit_get_feature(skb); if (err) return err; break; case AUDIT_SET_FEATURE: err = audit_set_feature(skb); if (err) return err; break; case AUDIT_USER: case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: if (!audit_enabled && msg_type != AUDIT_USER_AVC) return 0; err = audit_filter(msg_type, AUDIT_FILTER_USER); if (err == 1) { /* match or error */ err = 0; if (msg_type == AUDIT_USER_TTY) { err = tty_audit_push(); if (err) break; } audit_log_common_recv_msg(&ab, msg_type); if (msg_type != AUDIT_USER_TTY) audit_log_format(ab, " msg='%.*s'", AUDIT_MESSAGE_TEXT_MAX, (char *)data); else { int size; audit_log_format(ab, " data="); size = nlmsg_len(nlh); if (size > 0 && ((unsigned char *)data)[size - 1] == '\0') size--; audit_log_n_untrustedstring(ab, data, size); } audit_log_end(ab); } break; case AUDIT_ADD_RULE: case AUDIT_DEL_RULE: if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) return -EINVAL; if (audit_enabled == AUDIT_LOCKED) { audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); audit_log_end(ab); return -EPERM; } err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh)); break; case AUDIT_LIST_RULES: err = audit_list_rules_send(skb, seq); break; case AUDIT_TRIM: audit_trim_trees(); audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); audit_log_format(ab, " op=trim res=1"); audit_log_end(ab); break; case AUDIT_MAKE_EQUIV: { void *bufp = data; u32 sizes[2]; size_t msglen = nlmsg_len(nlh); char *old, *new; err = -EINVAL; if (msglen < 2 * sizeof(u32)) break; memcpy(sizes, bufp, 2 * sizeof(u32)); bufp += 2 * sizeof(u32); msglen -= 2 * sizeof(u32); old = audit_unpack_string(&bufp, &msglen, sizes[0]); if (IS_ERR(old)) { err = PTR_ERR(old); break; } new = audit_unpack_string(&bufp, &msglen, sizes[1]); if (IS_ERR(new)) { err = PTR_ERR(new); kfree(old); break; } /* OK, here comes... */ err = audit_tag_tree(old, new); audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); audit_log_format(ab, " op=make_equiv old="); audit_log_untrustedstring(ab, old); audit_log_format(ab, " new="); audit_log_untrustedstring(ab, new); audit_log_format(ab, " res=%d", !err); audit_log_end(ab); kfree(old); kfree(new); break; } case AUDIT_SIGNAL_INFO: len = 0; if (audit_sig_sid) { err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); if (err) return err; } sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); if (!sig_data) { if (audit_sig_sid) security_release_secctx(ctx, len); return -ENOMEM; } sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); sig_data->pid = audit_sig_pid; if (audit_sig_sid) { memcpy(sig_data->ctx, ctx, len); security_release_secctx(ctx, len); } audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, sig_data, sizeof(*sig_data) + len); kfree(sig_data); break; case AUDIT_TTY_GET: { struct audit_tty_status s; unsigned int t; t = READ_ONCE(current->signal->audit_tty); s.enabled = t & AUDIT_TTY_ENABLE; s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); break; } case AUDIT_TTY_SET: { struct audit_tty_status s, old; struct audit_buffer *ab; unsigned int t; memset(&s, 0, sizeof(s)); /* guard against past and future API changes */ memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); /* check if new data is valid */ if ((s.enabled != 0 && s.enabled != 1) || (s.log_passwd != 0 && s.log_passwd != 1)) err = -EINVAL; if (err) t = READ_ONCE(current->signal->audit_tty); else { t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); t = xchg(¤t->signal->audit_tty, t); } old.enabled = t & AUDIT_TTY_ENABLE; old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" " old-log_passwd=%d new-log_passwd=%d res=%d", old.enabled, s.enabled, old.log_passwd, s.log_passwd, !err); audit_log_end(ab); break; } default: err = -EINVAL; break; } return err < 0 ? err : 0; } /** * audit_receive - receive messages from a netlink control socket * @skb: the message buffer * * Parse the provided skb and deal with any messages that may be present, * malformed skbs are discarded. */ static void audit_receive(struct sk_buff *skb) { struct nlmsghdr *nlh; /* * len MUST be signed for nlmsg_next to be able to dec it below 0 * if the nlmsg_len was not aligned */ int len; int err; nlh = nlmsg_hdr(skb); len = skb->len; audit_ctl_lock(); while (nlmsg_ok(nlh, len)) { err = audit_receive_msg(skb, nlh); /* if err or if this message says it wants a response */ if (err || (nlh->nlmsg_flags & NLM_F_ACK)) netlink_ack(skb, nlh, err, NULL); nlh = nlmsg_next(nlh, &len); } audit_ctl_unlock(); } /* Run custom bind function on netlink socket group connect or bind requests. */ static int audit_bind(struct net *net, int group) { if (!capable(CAP_AUDIT_READ)) return -EPERM; return 0; } static int __net_init audit_net_init(struct net *net) { struct netlink_kernel_cfg cfg = { .input = audit_receive, .bind = audit_bind, .flags = NL_CFG_F_NONROOT_RECV, .groups = AUDIT_NLGRP_MAX, }; struct audit_net *aunet = net_generic(net, audit_net_id); aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); if (aunet->sk == NULL) { audit_panic("cannot initialize netlink socket in namespace"); return -ENOMEM; } aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; return 0; } static void __net_exit audit_net_exit(struct net *net) { struct audit_net *aunet = net_generic(net, audit_net_id); /* NOTE: you would think that we would want to check the auditd * connection and potentially reset it here if it lives in this * namespace, but since the auditd connection tracking struct holds a * reference to this namespace (see auditd_set()) we are only ever * going to get here after that connection has been released */ netlink_kernel_release(aunet->sk); } static struct pernet_operations audit_net_ops __net_initdata = { .init = audit_net_init, .exit = audit_net_exit, .id = &audit_net_id, .size = sizeof(struct audit_net), }; /* Initialize audit support at boot time. */ static int __init audit_init(void) { int i; if (audit_initialized == AUDIT_DISABLED) return 0; audit_buffer_cache = kmem_cache_create("audit_buffer", sizeof(struct audit_buffer), 0, SLAB_PANIC, NULL); skb_queue_head_init(&audit_queue); skb_queue_head_init(&audit_retry_queue); skb_queue_head_init(&audit_hold_queue); for (i = 0; i < AUDIT_INODE_BUCKETS; i++) INIT_LIST_HEAD(&audit_inode_hash[i]); mutex_init(&audit_cmd_mutex.lock); audit_cmd_mutex.owner = NULL; pr_info("initializing netlink subsys (%s)\n", audit_default ? "enabled" : "disabled"); register_pernet_subsys(&audit_net_ops); audit_initialized = AUDIT_INITIALIZED; kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); if (IS_ERR(kauditd_task)) { int err = PTR_ERR(kauditd_task); panic("audit: failed to start the kauditd thread (%d)\n", err); } audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "state=initialized audit_enabled=%u res=1", audit_enabled); return 0; } postcore_initcall(audit_init); /* * Process kernel command-line parameter at boot time. * audit={0|off} or audit={1|on}. */ static int __init audit_enable(char *str) { if (!strcasecmp(str, "off") || !strcmp(str, "0")) audit_default = AUDIT_OFF; else if (!strcasecmp(str, "on") || !strcmp(str, "1")) audit_default = AUDIT_ON; else { pr_err("audit: invalid 'audit' parameter value (%s)\n", str); audit_default = AUDIT_ON; } if (audit_default == AUDIT_OFF) audit_initialized = AUDIT_DISABLED; if (audit_set_enabled(audit_default)) pr_err("audit: error setting audit state (%d)\n", audit_default); pr_info("%s\n", audit_default ? "enabled (after initialization)" : "disabled (until reboot)"); return 1; } __setup("audit=", audit_enable); /* Process kernel command-line parameter at boot time. * audit_backlog_limit= */ static int __init audit_backlog_limit_set(char *str) { u32 audit_backlog_limit_arg; pr_info("audit_backlog_limit: "); if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { pr_cont("using default of %u, unable to parse %s\n", audit_backlog_limit, str); return 1; } audit_backlog_limit = audit_backlog_limit_arg; pr_cont("%d\n", audit_backlog_limit); return 1; } __setup("audit_backlog_limit=", audit_backlog_limit_set); static void audit_buffer_free(struct audit_buffer *ab) { if (!ab) return; kfree_skb(ab->skb); kmem_cache_free(audit_buffer_cache, ab); } static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, gfp_t gfp_mask, int type) { struct audit_buffer *ab; ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); if (!ab) return NULL; ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); if (!ab->skb) goto err; if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) goto err; ab->ctx = ctx; ab->gfp_mask = gfp_mask; return ab; err: audit_buffer_free(ab); return NULL; } /** * audit_serial - compute a serial number for the audit record * * Compute a serial number for the audit record. Audit records are * written to user-space as soon as they are generated, so a complete * audit record may be written in several pieces. The timestamp of the * record and this serial number are used by the user-space tools to * determine which pieces belong to the same audit record. The * (timestamp,serial) tuple is unique for each syscall and is live from * syscall entry to syscall exit. * * NOTE: Another possibility is to store the formatted records off the * audit context (for those records that have a context), and emit them * all at syscall exit. However, this could delay the reporting of * significant errors until syscall exit (or never, if the system * halts). */ unsigned int audit_serial(void) { static atomic_t serial = ATOMIC_INIT(0); return atomic_add_return(1, &serial); } static inline void audit_get_stamp(struct audit_context *ctx, struct timespec64 *t, unsigned int *serial) { if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { *t = current_kernel_time64(); *serial = audit_serial(); } } /** * audit_log_start - obtain an audit buffer * @ctx: audit_context (may be NULL) * @gfp_mask: type of allocation * @type: audit message type * * Returns audit_buffer pointer on success or NULL on error. * * Obtain an audit buffer. This routine does locking to obtain the * audit buffer, but then no locking is required for calls to * audit_log_*format. If the task (ctx) is a task that is currently in a * syscall, then the syscall is marked as auditable and an audit record * will be written at syscall exit. If there is no associated task, then * task context (ctx) should be NULL. */ struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, int type) { struct audit_buffer *ab; struct timespec64 t; unsigned int uninitialized_var(serial); if (audit_initialized != AUDIT_INITIALIZED) return NULL; if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE))) return NULL; /* NOTE: don't ever fail/sleep on these two conditions: * 1. auditd generated record - since we need auditd to drain the * queue; also, when we are checking for auditd, compare PIDs using * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() * using a PID anchored in the caller's namespace * 2. generator holding the audit_cmd_mutex - we don't want to block * while holding the mutex */ if (!(auditd_test_task(current) || audit_ctl_owner_current())) { long stime = audit_backlog_wait_time; while (audit_backlog_limit && (skb_queue_len(&audit_queue) > audit_backlog_limit)) { /* wake kauditd to try and flush the queue */ wake_up_interruptible(&kauditd_wait); /* sleep if we are allowed and we haven't exhausted our * backlog wait limit */ if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { DECLARE_WAITQUEUE(wait, current); add_wait_queue_exclusive(&audit_backlog_wait, &wait); set_current_state(TASK_UNINTERRUPTIBLE); stime = schedule_timeout(stime); remove_wait_queue(&audit_backlog_wait, &wait); } else { if (audit_rate_check() && printk_ratelimit()) pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", skb_queue_len(&audit_queue), audit_backlog_limit); audit_log_lost("backlog limit exceeded"); return NULL; } } } ab = audit_buffer_alloc(ctx, gfp_mask, type); if (!ab) { audit_log_lost("out of memory in audit_log_start"); return NULL; } audit_get_stamp(ab->ctx, &t, &serial); audit_log_format(ab, "audit(%llu.%03lu:%u): ", (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); return ab; } /** * audit_expand - expand skb in the audit buffer * @ab: audit_buffer * @extra: space to add at tail of the skb * * Returns 0 (no space) on failed expansion, or available space if * successful. */ static inline int audit_expand(struct audit_buffer *ab, int extra) { struct sk_buff *skb = ab->skb; int oldtail = skb_tailroom(skb); int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); int newtail = skb_tailroom(skb); if (ret < 0) { audit_log_lost("out of memory in audit_expand"); return 0; } skb->truesize += newtail - oldtail; return newtail; } /* * Format an audit message into the audit buffer. If there isn't enough * room in the audit buffer, more room will be allocated and vsnprint * will be called a second time. Currently, we assume that a printk * can't format message larger than 1024 bytes, so we don't either. */ static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args) { int len, avail; struct sk_buff *skb; va_list args2; if (!ab) return; BUG_ON(!ab->skb); skb = ab->skb; avail = skb_tailroom(skb); if (avail == 0) { avail = audit_expand(ab, AUDIT_BUFSIZ); if (!avail) goto out; } va_copy(args2, args); len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); if (len >= avail) { /* The printk buffer is 1024 bytes long, so if we get * here and AUDIT_BUFSIZ is at least 1024, then we can * log everything that printk could have logged. */ avail = audit_expand(ab, max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); if (!avail) goto out_va_end; len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); } if (len > 0) skb_put(skb, len); out_va_end: va_end(args2); out: return; } /** * audit_log_format - format a message into the audit buffer. * @ab: audit_buffer * @fmt: format string * @...: optional parameters matching @fmt string * * All the work is done in audit_log_vformat. */ void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) { va_list args; if (!ab) return; va_start(args, fmt); audit_log_vformat(ab, fmt, args); va_end(args); } /** * audit_log_n_hex - convert a buffer to hex and append it to the audit skb * @ab: the audit_buffer * @buf: buffer to convert to hex * @len: length of @buf to be converted * * No return value; failure to expand is silently ignored. * * This function will take the passed buf and convert it into a string of * ascii hex digits. The new string is placed onto the skb. */ void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, size_t len) { int i, avail, new_len; unsigned char *ptr; struct sk_buff *skb; if (!ab) return; BUG_ON(!ab->skb); skb = ab->skb; avail = skb_tailroom(skb); new_len = len<<1; if (new_len >= avail) { /* Round the buffer request up to the next multiple */ new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); avail = audit_expand(ab, new_len); if (!avail) return; } ptr = skb_tail_pointer(skb); for (i = 0; i < len; i++) ptr = hex_byte_pack_upper(ptr, buf[i]); *ptr = 0; skb_put(skb, len << 1); /* new string is twice the old string */ } /* * Format a string of no more than slen characters into the audit buffer, * enclosed in quote marks. */ void audit_log_n_string(struct audit_buffer *ab, const char *string, size_t slen) { int avail, new_len; unsigned char *ptr; struct sk_buff *skb; if (!ab) return; BUG_ON(!ab->skb); skb = ab->skb; avail = skb_tailroom(skb); new_len = slen + 3; /* enclosing quotes + null terminator */ if (new_len > avail) { avail = audit_expand(ab, new_len); if (!avail) return; } ptr = skb_tail_pointer(skb); *ptr++ = '"'; memcpy(ptr, string, slen); ptr += slen; *ptr++ = '"'; *ptr = 0; skb_put(skb, slen + 2); /* don't include null terminator */ } /** * audit_string_contains_control - does a string need to be logged in hex * @string: string to be checked * @len: max length of the string to check */ bool audit_string_contains_control(const char *string, size_t len) { const unsigned char *p; for (p = string; p < (const unsigned char *)string + len; p++) { if (*p == '"' || *p < 0x21 || *p > 0x7e) return true; } return false; } /** * audit_log_n_untrustedstring - log a string that may contain random characters * @ab: audit_buffer * @len: length of string (not including trailing null) * @string: string to be logged * * This code will escape a string that is passed to it if the string * contains a control character, unprintable character, double quote mark, * or a space. Unescaped strings will start and end with a double quote mark. * Strings that are escaped are printed in hex (2 digits per char). * * The caller specifies the number of characters in the string to log, which may * or may not be the entire string. */ void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, size_t len) { if (audit_string_contains_control(string, len)) audit_log_n_hex(ab, string, len); else audit_log_n_string(ab, string, len); } /** * audit_log_untrustedstring - log a string that may contain random characters * @ab: audit_buffer * @string: string to be logged * * Same as audit_log_n_untrustedstring(), except that strlen is used to * determine string length. */ void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) { audit_log_n_untrustedstring(ab, string, strlen(string)); } /* This is a helper-function to print the escaped d_path */ void audit_log_d_path(struct audit_buffer *ab, const char *prefix, const struct path *path) { char *p, *pathname; if (prefix) audit_log_format(ab, "%s", prefix); /* We will allow 11 spaces for ' (deleted)' to be appended */ pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); if (!pathname) { audit_log_string(ab, ""); return; } p = d_path(path, pathname, PATH_MAX+11); if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ /* FIXME: can we save some information here? */ audit_log_string(ab, ""); } else audit_log_untrustedstring(ab, p); kfree(pathname); } void audit_log_session_info(struct audit_buffer *ab) { unsigned int sessionid = audit_get_sessionid(current); uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); } void audit_log_key(struct audit_buffer *ab, char *key) { audit_log_format(ab, " key="); if (key) audit_log_untrustedstring(ab, key); else audit_log_format(ab, "(null)"); } void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) { int i; audit_log_format(ab, " %s=", prefix); CAP_FOR_EACH_U32(i) { audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); } } static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) { audit_log_cap(ab, "cap_fp", &name->fcap.permitted); audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); } static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) { struct cpu_vfs_cap_data caps; int rc; if (!dentry) return 0; rc = get_vfs_caps_from_disk(dentry, &caps); if (rc) return rc; name->fcap.permitted = caps.permitted; name->fcap.inheritable = caps.inheritable; name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; return 0; } /* Copy inode data into an audit_names. */ void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, struct inode *inode) { name->ino = inode->i_ino; name->dev = inode->i_sb->s_dev; name->mode = inode->i_mode; name->uid = inode->i_uid; name->gid = inode->i_gid; name->rdev = inode->i_rdev; security_inode_getsecid(inode, &name->osid); audit_copy_fcaps(name, dentry); } /** * audit_log_name - produce AUDIT_PATH record from struct audit_names * @context: audit_context for the task * @n: audit_names structure with reportable details * @path: optional path to report instead of audit_names->name * @record_num: record number to report when handling a list of names * @call_panic: optional pointer to int that will be updated if secid fails */ void audit_log_name(struct audit_context *context, struct audit_names *n, const struct path *path, int record_num, int *call_panic) { struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); if (!ab) return; audit_log_format(ab, "item=%d", record_num); if (path) audit_log_d_path(ab, " name=", path); else if (n->name) { switch (n->name_len) { case AUDIT_NAME_FULL: /* log the full path */ audit_log_format(ab, " name="); audit_log_untrustedstring(ab, n->name->name); break; case 0: /* name was specified as a relative path and the * directory component is the cwd */ audit_log_d_path(ab, " name=", &context->pwd); break; default: /* log the name's directory component */ audit_log_format(ab, " name="); audit_log_n_untrustedstring(ab, n->name->name, n->name_len); } } else audit_log_format(ab, " name=(null)"); if (n->ino != AUDIT_INO_UNSET) audit_log_format(ab, " inode=%lu" " dev=%02x:%02x mode=%#ho" " ouid=%u ogid=%u rdev=%02x:%02x", n->ino, MAJOR(n->dev), MINOR(n->dev), n->mode, from_kuid(&init_user_ns, n->uid), from_kgid(&init_user_ns, n->gid), MAJOR(n->rdev), MINOR(n->rdev)); if (n->osid != 0) { char *ctx = NULL; u32 len; if (security_secid_to_secctx( n->osid, &ctx, &len)) { audit_log_format(ab, " osid=%u", n->osid); if (call_panic) *call_panic = 2; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } /* log the audit_names record type */ audit_log_format(ab, " nametype="); switch(n->type) { case AUDIT_TYPE_NORMAL: audit_log_format(ab, "NORMAL"); break; case AUDIT_TYPE_PARENT: audit_log_format(ab, "PARENT"); break; case AUDIT_TYPE_CHILD_DELETE: audit_log_format(ab, "DELETE"); break; case AUDIT_TYPE_CHILD_CREATE: audit_log_format(ab, "CREATE"); break; default: audit_log_format(ab, "UNKNOWN"); break; } audit_log_fcaps(ab, n); audit_log_end(ab); } int audit_log_task_context(struct audit_buffer *ab) { char *ctx = NULL; unsigned len; int error; u32 sid; security_task_getsecid(current, &sid); if (!sid) return 0; error = security_secid_to_secctx(sid, &ctx, &len); if (error) { if (error != -EINVAL) goto error_path; return 0; } audit_log_format(ab, " subj=%s", ctx); security_release_secctx(ctx, len); return 0; error_path: audit_panic("error in audit_log_task_context"); return error; } EXPORT_SYMBOL(audit_log_task_context); void audit_log_d_path_exe(struct audit_buffer *ab, struct mm_struct *mm) { struct file *exe_file; if (!mm) goto out_null; exe_file = get_mm_exe_file(mm); if (!exe_file) goto out_null; audit_log_d_path(ab, " exe=", &exe_file->f_path); fput(exe_file); return; out_null: audit_log_format(ab, " exe=(null)"); } struct tty_struct *audit_get_tty(struct task_struct *tsk) { struct tty_struct *tty = NULL; unsigned long flags; spin_lock_irqsave(&tsk->sighand->siglock, flags); if (tsk->signal) tty = tty_kref_get(tsk->signal->tty); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); return tty; } void audit_put_tty(struct tty_struct *tty) { tty_kref_put(tty); } void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) { const struct cred *cred; char comm[sizeof(tsk->comm)]; struct tty_struct *tty; if (!ab) return; /* tsk == current */ cred = current_cred(); tty = audit_get_tty(tsk); audit_log_format(ab, " ppid=%d pid=%d auid=%u uid=%u gid=%u" " euid=%u suid=%u fsuid=%u" " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", task_ppid_nr(tsk), task_tgid_nr(tsk), from_kuid(&init_user_ns, audit_get_loginuid(tsk)), from_kuid(&init_user_ns, cred->uid), from_kgid(&init_user_ns, cred->gid), from_kuid(&init_user_ns, cred->euid), from_kuid(&init_user_ns, cred->suid), from_kuid(&init_user_ns, cred->fsuid), from_kgid(&init_user_ns, cred->egid), from_kgid(&init_user_ns, cred->sgid), from_kgid(&init_user_ns, cred->fsgid), tty ? tty_name(tty) : "(none)", audit_get_sessionid(tsk)); audit_put_tty(tty); audit_log_format(ab, " comm="); audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); audit_log_d_path_exe(ab, tsk->mm); audit_log_task_context(ab); } EXPORT_SYMBOL(audit_log_task_info); /** * audit_log_link_denied - report a link restriction denial * @operation: specific link operation * @link: the path that triggered the restriction */ void audit_log_link_denied(const char *operation, const struct path *link) { struct audit_buffer *ab; struct audit_names *name; if (!audit_enabled || audit_dummy_context()) return; name = kzalloc(sizeof(*name), GFP_NOFS); if (!name) return; /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ ab = audit_log_start(current->audit_context, GFP_KERNEL, AUDIT_ANOM_LINK); if (!ab) goto out; audit_log_format(ab, "op=%s", operation); audit_log_task_info(ab, current); audit_log_format(ab, " res=0"); audit_log_end(ab); /* Generate AUDIT_PATH record with object. */ name->type = AUDIT_TYPE_NORMAL; audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); audit_log_name(current->audit_context, name, link, 0, NULL); out: kfree(name); } /** * audit_log_end - end one audit record * @ab: the audit_buffer * * We can not do a netlink send inside an irq context because it blocks (last * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a * queue and a tasklet is scheduled to remove them from the queue outside the * irq context. May be called in any context. */ void audit_log_end(struct audit_buffer *ab) { struct sk_buff *skb; struct nlmsghdr *nlh; if (!ab) return; if (audit_rate_check()) { skb = ab->skb; ab->skb = NULL; /* setup the netlink header, see the comments in * kauditd_send_multicast_skb() for length quirks */ nlh = nlmsg_hdr(skb); nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; /* queue the netlink packet and poke the kauditd thread */ skb_queue_tail(&audit_queue, skb); wake_up_interruptible(&kauditd_wait); } else audit_log_lost("rate limit exceeded"); audit_buffer_free(ab); } /** * audit_log - Log an audit record * @ctx: audit context * @gfp_mask: type of allocation * @type: audit message type * @fmt: format string to use * @...: variable parameters matching the format string * * This is a convenience function that calls audit_log_start, * audit_log_vformat, and audit_log_end. It may be called * in any context. */ void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, const char *fmt, ...) { struct audit_buffer *ab; va_list args; ab = audit_log_start(ctx, gfp_mask, type); if (ab) { va_start(args, fmt); audit_log_vformat(ab, fmt, args); va_end(args); audit_log_end(ab); } } EXPORT_SYMBOL(audit_log_start); EXPORT_SYMBOL(audit_log_end); EXPORT_SYMBOL(audit_log_format); EXPORT_SYMBOL(audit_log);