/* * Compaq Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman * Copyright (C) 2001 IBM Corp. * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to * * Jan 12, 2003 - Added 66/100/133MHz PCI-X support, * Torben Mathiasen * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "cpqphp.h" #include "cpqphp_nvram.h" #include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependent we are... */ /* Global variables */ int cpqhp_debug; int cpqhp_legacy_mode; struct controller *cpqhp_ctrl_list; /* = NULL */ struct pci_func *cpqhp_slot_list[256]; /* local variables */ static void __iomem *smbios_table; static void __iomem *smbios_start; static void __iomem *cpqhp_rom_start; static int power_mode; static int debug; static int initialized; #define DRIVER_VERSION "0.9.8" #define DRIVER_AUTHOR "Dan Zink , Greg Kroah-Hartman " #define DRIVER_DESC "Compaq Hot Plug PCI Controller Driver" MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); module_param(power_mode, bool, 0644); MODULE_PARM_DESC(power_mode, "Power mode enabled or not"); module_param(debug, bool, 0644); MODULE_PARM_DESC(debug, "Debugging mode enabled or not"); #define CPQHPC_MODULE_MINOR 208 static int one_time_init (void); static int set_attention_status (struct hotplug_slot *slot, u8 value); static int process_SI (struct hotplug_slot *slot); static int process_SS (struct hotplug_slot *slot); static int hardware_test (struct hotplug_slot *slot, u32 value); static int get_power_status (struct hotplug_slot *slot, u8 *value); static int get_attention_status (struct hotplug_slot *slot, u8 *value); static int get_latch_status (struct hotplug_slot *slot, u8 *value); static int get_adapter_status (struct hotplug_slot *slot, u8 *value); static int get_max_bus_speed (struct hotplug_slot *slot, enum pci_bus_speed *value); static int get_cur_bus_speed (struct hotplug_slot *slot, enum pci_bus_speed *value); static struct hotplug_slot_ops cpqphp_hotplug_slot_ops = { .owner = THIS_MODULE, .set_attention_status = set_attention_status, .enable_slot = process_SI, .disable_slot = process_SS, .hardware_test = hardware_test, .get_power_status = get_power_status, .get_attention_status = get_attention_status, .get_latch_status = get_latch_status, .get_adapter_status = get_adapter_status, .get_max_bus_speed = get_max_bus_speed, .get_cur_bus_speed = get_cur_bus_speed, }; static inline int is_slot64bit(struct slot *slot) { return (readb(slot->p_sm_slot + SMBIOS_SLOT_WIDTH) == 0x06) ? 1 : 0; } static inline int is_slot66mhz(struct slot *slot) { return (readb(slot->p_sm_slot + SMBIOS_SLOT_TYPE) == 0x0E) ? 1 : 0; } /** * detect_SMBIOS_pointer - find the System Management BIOS Table in mem region. * * @begin: begin pointer for region to be scanned. * @end: end pointer for region to be scanned. * * Returns pointer to the head of the SMBIOS tables (or NULL) * */ static void __iomem * detect_SMBIOS_pointer(void __iomem *begin, void __iomem *end) { void __iomem *fp; void __iomem *endp; u8 temp1, temp2, temp3, temp4; int status = 0; endp = (end - sizeof(u32) + 1); for (fp = begin; fp <= endp; fp += 16) { temp1 = readb(fp); temp2 = readb(fp+1); temp3 = readb(fp+2); temp4 = readb(fp+3); if (temp1 == '_' && temp2 == 'S' && temp3 == 'M' && temp4 == '_') { status = 1; break; } } if (!status) fp = NULL; dbg("Discovered SMBIOS Entry point at %p\n", fp); return fp; } /** * init_SERR - Initializes the per slot SERR generation. * * For unexpected switch opens * */ static int init_SERR(struct controller * ctrl) { u32 tempdword; u32 number_of_slots; u8 physical_slot; if (!ctrl) return 1; tempdword = ctrl->first_slot; number_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; // Loop through slots while (number_of_slots) { physical_slot = tempdword; writeb(0, ctrl->hpc_reg + SLOT_SERR); tempdword++; number_of_slots--; } return 0; } /* nice debugging output */ static int pci_print_IRQ_route (void) { struct irq_routing_table *routing_table; int len; int loop; u8 tbus, tdevice, tslot; routing_table = pcibios_get_irq_routing_table(); if (routing_table == NULL) { err("No BIOS Routing Table??? Not good\n"); return -ENOMEM; } len = (routing_table->size - sizeof(struct irq_routing_table)) / sizeof(struct irq_info); // Make sure I got at least one entry if (len == 0) { kfree(routing_table); return -1; } dbg("bus dev func slot\n"); for (loop = 0; loop < len; ++loop) { tbus = routing_table->slots[loop].bus; tdevice = routing_table->slots[loop].devfn; tslot = routing_table->slots[loop].slot; dbg("%d %d %d %d\n", tbus, tdevice >> 3, tdevice & 0x7, tslot); } kfree(routing_table); return 0; } /** * get_subsequent_smbios_entry: get the next entry from bios table. * * Gets the first entry if previous == NULL * Otherwise, returns the next entry * Uses global SMBIOS Table pointer * * @curr: %NULL or pointer to previously returned structure * * returns a pointer to an SMBIOS structure or NULL if none found */ static void __iomem *get_subsequent_smbios_entry(void __iomem *smbios_start, void __iomem *smbios_table, void __iomem *curr) { u8 bail = 0; u8 previous_byte = 1; void __iomem *p_temp; void __iomem *p_max; if (!smbios_table || !curr) return(NULL); // set p_max to the end of the table p_max = smbios_start + readw(smbios_table + ST_LENGTH); p_temp = curr; p_temp += readb(curr + SMBIOS_GENERIC_LENGTH); while ((p_temp < p_max) && !bail) { /* Look for the double NULL terminator * The first condition is the previous byte * and the second is the curr */ if (!previous_byte && !(readb(p_temp))) { bail = 1; } previous_byte = readb(p_temp); p_temp++; } if (p_temp < p_max) { return p_temp; } else { return NULL; } } /** * get_SMBIOS_entry * * @type:SMBIOS structure type to be returned * @previous: %NULL or pointer to previously returned structure * * Gets the first entry of the specified type if previous == NULL * Otherwise, returns the next entry of the given type. * Uses global SMBIOS Table pointer * Uses get_subsequent_smbios_entry * * returns a pointer to an SMBIOS structure or %NULL if none found */ static void __iomem *get_SMBIOS_entry(void __iomem *smbios_start, void __iomem *smbios_table, u8 type, void __iomem *previous) { if (!smbios_table) return NULL; if (!previous) { previous = smbios_start; } else { previous = get_subsequent_smbios_entry(smbios_start, smbios_table, previous); } while (previous) { if (readb(previous + SMBIOS_GENERIC_TYPE) != type) { previous = get_subsequent_smbios_entry(smbios_start, smbios_table, previous); } else { break; } } return previous; } static void release_slot(struct hotplug_slot *hotplug_slot) { struct slot *slot = hotplug_slot->private; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); kfree(slot->hotplug_slot->info); kfree(slot->hotplug_slot->name); kfree(slot->hotplug_slot); kfree(slot); } static int ctrl_slot_setup(struct controller *ctrl, void __iomem *smbios_start, void __iomem *smbios_table) { struct slot *slot; struct hotplug_slot *hotplug_slot; struct hotplug_slot_info *hotplug_slot_info; u8 number_of_slots; u8 slot_device; u8 slot_number; u8 ctrl_slot; u32 tempdword; void __iomem *slot_entry= NULL; int result = -ENOMEM; dbg("%s\n", __FUNCTION__); tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); number_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; slot_device = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; slot_number = ctrl->first_slot; while (number_of_slots) { slot = kmalloc(sizeof(*slot), GFP_KERNEL); if (!slot) goto error; memset(slot, 0, sizeof(struct slot)); slot->hotplug_slot = kmalloc(sizeof(*(slot->hotplug_slot)), GFP_KERNEL); if (!slot->hotplug_slot) goto error_slot; hotplug_slot = slot->hotplug_slot; memset(hotplug_slot, 0, sizeof(struct hotplug_slot)); hotplug_slot->info = kmalloc(sizeof(*(hotplug_slot->info)), GFP_KERNEL); if (!hotplug_slot->info) goto error_hpslot; hotplug_slot_info = hotplug_slot->info; memset(hotplug_slot_info, 0, sizeof(struct hotplug_slot_info)); hotplug_slot->name = kmalloc(SLOT_NAME_SIZE, GFP_KERNEL); if (!hotplug_slot->name) goto error_info; slot->ctrl = ctrl; slot->bus = ctrl->bus; slot->device = slot_device; slot->number = slot_number; dbg("slot->number = %d\n", slot->number); slot_entry = get_SMBIOS_entry(smbios_start, smbios_table, 9, slot_entry); while (slot_entry && (readw(slot_entry + SMBIOS_SLOT_NUMBER) != slot->number)) { slot_entry = get_SMBIOS_entry(smbios_start, smbios_table, 9, slot_entry); } slot->p_sm_slot = slot_entry; init_timer(&slot->task_event); slot->task_event.expires = jiffies + 5 * HZ; slot->task_event.function = cpqhp_pushbutton_thread; //FIXME: these capabilities aren't used but if they are // they need to be correctly implemented slot->capabilities |= PCISLOT_REPLACE_SUPPORTED; slot->capabilities |= PCISLOT_INTERLOCK_SUPPORTED; if (is_slot64bit(slot)) slot->capabilities |= PCISLOT_64_BIT_SUPPORTED; if (is_slot66mhz(slot)) slot->capabilities |= PCISLOT_66_MHZ_SUPPORTED; if (ctrl->speed == PCI_SPEED_66MHz) slot->capabilities |= PCISLOT_66_MHZ_OPERATION; ctrl_slot = slot_device - (readb(ctrl->hpc_reg + SLOT_MASK) >> 4); // Check presence slot->capabilities |= ((((~tempdword) >> 23) | ((~tempdword) >> 15)) >> ctrl_slot) & 0x02; // Check the switch state slot->capabilities |= ((~tempdword & 0xFF) >> ctrl_slot) & 0x01; // Check the slot enable slot->capabilities |= ((read_slot_enable(ctrl) << 2) >> ctrl_slot) & 0x04; /* register this slot with the hotplug pci core */ hotplug_slot->release = &release_slot; hotplug_slot->private = slot; make_slot_name(hotplug_slot->name, SLOT_NAME_SIZE, slot); hotplug_slot->ops = &cpqphp_hotplug_slot_ops; hotplug_slot_info->power_status = get_slot_enabled(ctrl, slot); hotplug_slot_info->attention_status = cpq_get_attention_status(ctrl, slot); hotplug_slot_info->latch_status = cpq_get_latch_status(ctrl, slot); hotplug_slot_info->adapter_status = get_presence_status(ctrl, slot); dbg("registering bus %d, dev %d, number %d, " "ctrl->slot_device_offset %d, slot %d\n", slot->bus, slot->device, slot->number, ctrl->slot_device_offset, slot_number); result = pci_hp_register(hotplug_slot); if (result) { err("pci_hp_register failed with error %d\n", result); goto error_name; } slot->next = ctrl->slot; ctrl->slot = slot; number_of_slots--; slot_device++; slot_number++; } return 0; error_name: kfree(hotplug_slot->name); error_info: kfree(hotplug_slot_info); error_hpslot: kfree(hotplug_slot); error_slot: kfree(slot); error: return result; } static int ctrl_slot_cleanup (struct controller * ctrl) { struct slot *old_slot, *next_slot; old_slot = ctrl->slot; ctrl->slot = NULL; while (old_slot) { /* memory will be freed by the release_slot callback */ next_slot = old_slot->next; pci_hp_deregister (old_slot->hotplug_slot); old_slot = next_slot; } //Free IRQ associated with hot plug device free_irq(ctrl->interrupt, ctrl); //Unmap the memory iounmap(ctrl->hpc_reg); //Finally reclaim PCI mem release_mem_region(pci_resource_start(ctrl->pci_dev, 0), pci_resource_len(ctrl->pci_dev, 0)); return(0); } //============================================================================ // function: get_slot_mapping // // Description: Attempts to determine a logical slot mapping for a PCI // device. Won't work for more than one PCI-PCI bridge // in a slot. // // Input: u8 bus_num - bus number of PCI device // u8 dev_num - device number of PCI device // u8 *slot - Pointer to u8 where slot number will // be returned // // Output: SUCCESS or FAILURE //============================================================================= static int get_slot_mapping(struct pci_bus *bus, u8 bus_num, u8 dev_num, u8 *slot) { struct irq_routing_table *PCIIRQRoutingInfoLength; u32 work; long len; long loop; u8 tbus, tdevice, tslot, bridgeSlot; dbg("%s: %p, %d, %d, %p\n", __FUNCTION__, bus, bus_num, dev_num, slot); bridgeSlot = 0xFF; PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table(); if (!PCIIRQRoutingInfoLength) return -1; len = (PCIIRQRoutingInfoLength->size - sizeof(struct irq_routing_table)) / sizeof(struct irq_info); // Make sure I got at least one entry if (len == 0) { kfree(PCIIRQRoutingInfoLength); return -1; } for (loop = 0; loop < len; ++loop) { tbus = PCIIRQRoutingInfoLength->slots[loop].bus; tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn >> 3; tslot = PCIIRQRoutingInfoLength->slots[loop].slot; if ((tbus == bus_num) && (tdevice == dev_num)) { *slot = tslot; kfree(PCIIRQRoutingInfoLength); return 0; } else { /* Did not get a match on the target PCI device. Check * if the current IRQ table entry is a PCI-to-PCI bridge * device. If so, and it's secondary bus matches the * bus number for the target device, I need to save the * bridge's slot number. If I can not find an entry for * the target device, I will have to assume it's on the * other side of the bridge, and assign it the bridge's * slot. */ bus->number = tbus; pci_bus_read_config_dword(bus, PCI_DEVFN(tdevice, 0), PCI_REVISION_ID, &work); if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { pci_bus_read_config_dword(bus, PCI_DEVFN(tdevice, 0), PCI_PRIMARY_BUS, &work); // See if bridge's secondary bus matches target bus. if (((work >> 8) & 0x000000FF) == (long) bus_num) { bridgeSlot = tslot; } } } } // If we got here, we didn't find an entry in the IRQ mapping table // for the target PCI device. If we did determine that the target // device is on the other side of a PCI-to-PCI bridge, return the // slot number for the bridge. if (bridgeSlot != 0xFF) { *slot = bridgeSlot; kfree(PCIIRQRoutingInfoLength); return 0; } kfree(PCIIRQRoutingInfoLength); // Couldn't find an entry in the routing table for this PCI device return -1; } /** * cpqhp_set_attention_status - Turns the Amber LED for a slot on or off * */ static int cpqhp_set_attention_status(struct controller *ctrl, struct pci_func *func, u32 status) { u8 hp_slot; if (func == NULL) return(1); hp_slot = func->device - ctrl->slot_device_offset; // Wait for exclusive access to hardware down(&ctrl->crit_sect); if (status == 1) { amber_LED_on (ctrl, hp_slot); } else if (status == 0) { amber_LED_off (ctrl, hp_slot); } else { // Done with exclusive hardware access up(&ctrl->crit_sect); return(1); } set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq (ctrl); // Done with exclusive hardware access up(&ctrl->crit_sect); return(0); } /** * set_attention_status - Turns the Amber LED for a slot on or off * */ static int set_attention_status (struct hotplug_slot *hotplug_slot, u8 status) { struct pci_func *slot_func; struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; u8 bus; u8 devfn; u8 device; u8 function; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) return -ENODEV; return cpqhp_set_attention_status(ctrl, slot_func, status); } static int process_SI(struct hotplug_slot *hotplug_slot) { struct pci_func *slot_func; struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; u8 bus; u8 devfn; u8 device; u8 function; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) return -ENODEV; slot_func->bus = bus; slot_func->device = device; slot_func->function = function; slot_func->configured = 0; dbg("board_added(%p, %p)\n", slot_func, ctrl); return cpqhp_process_SI(ctrl, slot_func); } static int process_SS(struct hotplug_slot *hotplug_slot) { struct pci_func *slot_func; struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; u8 bus; u8 devfn; u8 device; u8 function; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); if (cpqhp_get_bus_dev(ctrl, &bus, &devfn, slot->number) == -1) return -ENODEV; device = devfn >> 3; function = devfn & 0x7; dbg("bus, dev, fn = %d, %d, %d\n", bus, device, function); slot_func = cpqhp_slot_find(bus, device, function); if (!slot_func) return -ENODEV; dbg("In %s, slot_func = %p, ctrl = %p\n", __FUNCTION__, slot_func, ctrl); return cpqhp_process_SS(ctrl, slot_func); } static int hardware_test(struct hotplug_slot *hotplug_slot, u32 value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); return cpqhp_hardware_test(ctrl, value); } static int get_power_status(struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = get_slot_enabled(ctrl, slot); return 0; } static int get_attention_status(struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = cpq_get_attention_status(ctrl, slot); return 0; } static int get_latch_status(struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = cpq_get_latch_status(ctrl, slot); return 0; } static int get_adapter_status(struct hotplug_slot *hotplug_slot, u8 *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = get_presence_status(ctrl, slot); return 0; } static int get_max_bus_speed (struct hotplug_slot *hotplug_slot, enum pci_bus_speed *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = ctrl->speed_capability; return 0; } static int get_cur_bus_speed (struct hotplug_slot *hotplug_slot, enum pci_bus_speed *value) { struct slot *slot = hotplug_slot->private; struct controller *ctrl = slot->ctrl; dbg("%s - physical_slot = %s\n", __FUNCTION__, hotplug_slot->name); *value = ctrl->speed; return 0; } static int cpqhpc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { u8 num_of_slots = 0; u8 hp_slot = 0; u8 device; u8 rev; u8 bus_cap; u16 temp_word; u16 vendor_id; u16 subsystem_vid; u16 subsystem_deviceid; u32 rc; struct controller *ctrl; struct pci_func *func; int err; err = pci_enable_device(pdev); if (err) { printk(KERN_ERR MY_NAME ": cannot enable PCI device %s (%d)\n", pci_name(pdev), err); return err; } // Need to read VID early b/c it's used to differentiate CPQ and INTC discovery rc = pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id); if (rc || ((vendor_id != PCI_VENDOR_ID_COMPAQ) && (vendor_id != PCI_VENDOR_ID_INTEL))) { err(msg_HPC_non_compaq_or_intel); rc = -ENODEV; goto err_disable_device; } dbg("Vendor ID: %x\n", vendor_id); rc = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); dbg("revision: %d\n", rev); if (rc || ((vendor_id == PCI_VENDOR_ID_COMPAQ) && (!rev))) { err(msg_HPC_rev_error); rc = -ENODEV; goto err_disable_device; } /* Check for the proper subsytem ID's * Intel uses a different SSID programming model than Compaq. * For Intel, each SSID bit identifies a PHP capability. * Also Intel HPC's may have RID=0. */ if ((rev > 2) || (vendor_id == PCI_VENDOR_ID_INTEL)) { // TODO: This code can be made to support non-Compaq or Intel subsystem IDs rc = pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vid); if (rc) { err("%s : pci_read_config_word failed\n", __FUNCTION__); goto err_disable_device; } dbg("Subsystem Vendor ID: %x\n", subsystem_vid); if ((subsystem_vid != PCI_VENDOR_ID_COMPAQ) && (subsystem_vid != PCI_VENDOR_ID_INTEL)) { err(msg_HPC_non_compaq_or_intel); rc = -ENODEV; goto err_disable_device; } ctrl = (struct controller *) kmalloc(sizeof(struct controller), GFP_KERNEL); if (!ctrl) { err("%s : out of memory\n", __FUNCTION__); rc = -ENOMEM; goto err_disable_device; } memset(ctrl, 0, sizeof(struct controller)); rc = pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &subsystem_deviceid); if (rc) { err("%s : pci_read_config_word failed\n", __FUNCTION__); goto err_free_ctrl; } info("Hot Plug Subsystem Device ID: %x\n", subsystem_deviceid); /* Set Vendor ID, so it can be accessed later from other functions */ ctrl->vendor_id = vendor_id; switch (subsystem_vid) { case PCI_VENDOR_ID_COMPAQ: if (rev >= 0x13) { /* CIOBX */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; ctrl->push_button = 1; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 1; ctrl->pcix_speed_capability = 1; pci_read_config_byte(pdev, 0x41, &bus_cap); if (bus_cap & 0x80) { dbg("bus max supports 133MHz PCI-X\n"); ctrl->speed_capability = PCI_SPEED_133MHz_PCIX; break; } if (bus_cap & 0x40) { dbg("bus max supports 100MHz PCI-X\n"); ctrl->speed_capability = PCI_SPEED_100MHz_PCIX; break; } if (bus_cap & 20) { dbg("bus max supports 66MHz PCI-X\n"); ctrl->speed_capability = PCI_SPEED_66MHz_PCIX; break; } if (bus_cap & 10) { dbg("bus max supports 66MHz PCI\n"); ctrl->speed_capability = PCI_SPEED_66MHz; break; } break; } switch (subsystem_deviceid) { case PCI_SUB_HPC_ID: /* Original 6500/7000 implementation */ ctrl->slot_switch_type = 1; ctrl->speed_capability = PCI_SPEED_33MHz; ctrl->push_button = 0; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; break; case PCI_SUB_HPC_ID2: /* First Pushbutton implementation */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; ctrl->speed_capability = PCI_SPEED_33MHz; ctrl->push_button = 1; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; break; case PCI_SUB_HPC_ID_INTC: /* Third party (6500/7000) */ ctrl->slot_switch_type = 1; ctrl->speed_capability = PCI_SPEED_33MHz; ctrl->push_button = 0; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; break; case PCI_SUB_HPC_ID3: /* First 66 Mhz implementation */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; ctrl->speed_capability = PCI_SPEED_66MHz; ctrl->push_button = 1; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; break; case PCI_SUB_HPC_ID4: /* First PCI-X implementation, 100MHz */ ctrl->push_flag = 1; ctrl->slot_switch_type = 1; ctrl->speed_capability = PCI_SPEED_100MHz_PCIX; ctrl->push_button = 1; ctrl->pci_config_space = 1; ctrl->defeature_PHP = 1; ctrl->pcix_support = 1; ctrl->pcix_speed_capability = 0; break; default: err(msg_HPC_not_supported); rc = -ENODEV; goto err_free_ctrl; } break; case PCI_VENDOR_ID_INTEL: /* Check for speed capability (0=33, 1=66) */ if (subsystem_deviceid & 0x0001) { ctrl->speed_capability = PCI_SPEED_66MHz; } else { ctrl->speed_capability = PCI_SPEED_33MHz; } /* Check for push button */ if (subsystem_deviceid & 0x0002) { /* no push button */ ctrl->push_button = 0; } else { /* push button supported */ ctrl->push_button = 1; } /* Check for slot switch type (0=mechanical, 1=not mechanical) */ if (subsystem_deviceid & 0x0004) { /* no switch */ ctrl->slot_switch_type = 0; } else { /* switch */ ctrl->slot_switch_type = 1; } /* PHP Status (0=De-feature PHP, 1=Normal operation) */ if (subsystem_deviceid & 0x0008) { ctrl->defeature_PHP = 1; // PHP supported } else { ctrl->defeature_PHP = 0; // PHP not supported } /* Alternate Base Address Register Interface (0=not supported, 1=supported) */ if (subsystem_deviceid & 0x0010) { ctrl->alternate_base_address = 1; // supported } else { ctrl->alternate_base_address = 0; // not supported } /* PCI Config Space Index (0=not supported, 1=supported) */ if (subsystem_deviceid & 0x0020) { ctrl->pci_config_space = 1; // supported } else { ctrl->pci_config_space = 0; // not supported } /* PCI-X support */ if (subsystem_deviceid & 0x0080) { /* PCI-X capable */ ctrl->pcix_support = 1; /* Frequency of operation in PCI-X mode */ if (subsystem_deviceid & 0x0040) { /* 133MHz PCI-X if bit 7 is 1 */ ctrl->pcix_speed_capability = 1; } else { /* 100MHz PCI-X if bit 7 is 1 and bit 0 is 0, */ /* 66MHz PCI-X if bit 7 is 1 and bit 0 is 1 */ ctrl->pcix_speed_capability = 0; } } else { /* Conventional PCI */ ctrl->pcix_support = 0; ctrl->pcix_speed_capability = 0; } break; default: err(msg_HPC_not_supported); rc = -ENODEV; goto err_free_ctrl; } } else { err(msg_HPC_not_supported); return -ENODEV; } // Tell the user that we found one. info("Initializing the PCI hot plug controller residing on PCI bus %d\n", pdev->bus->number); dbg("Hotplug controller capabilities:\n"); dbg(" speed_capability %d\n", ctrl->speed_capability); dbg(" slot_switch_type %s\n", ctrl->slot_switch_type ? "switch present" : "no switch"); dbg(" defeature_PHP %s\n", ctrl->defeature_PHP ? "PHP supported" : "PHP not supported"); dbg(" alternate_base_address %s\n", ctrl->alternate_base_address ? "supported" : "not supported"); dbg(" pci_config_space %s\n", ctrl->pci_config_space ? "supported" : "not supported"); dbg(" pcix_speed_capability %s\n", ctrl->pcix_speed_capability ? "supported" : "not supported"); dbg(" pcix_support %s\n", ctrl->pcix_support ? "supported" : "not supported"); ctrl->pci_dev = pdev; pci_set_drvdata(pdev, ctrl); /* make our own copy of the pci bus structure, * as we like tweaking it a lot */ ctrl->pci_bus = kmalloc(sizeof(*ctrl->pci_bus), GFP_KERNEL); if (!ctrl->pci_bus) { err("out of memory\n"); rc = -ENOMEM; goto err_free_ctrl; } memcpy(ctrl->pci_bus, pdev->bus, sizeof(*ctrl->pci_bus)); ctrl->bus = pdev->bus->number; ctrl->rev = rev; dbg("bus device function rev: %d %d %d %d\n", ctrl->bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), ctrl->rev); init_MUTEX(&ctrl->crit_sect); init_waitqueue_head(&ctrl->queue); /* initialize our threads if they haven't already been started up */ rc = one_time_init(); if (rc) { goto err_free_bus; } dbg("pdev = %p\n", pdev); dbg("pci resource start %lx\n", pci_resource_start(pdev, 0)); dbg("pci resource len %lx\n", pci_resource_len(pdev, 0)); if (!request_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0), MY_NAME)) { err("cannot reserve MMIO region\n"); rc = -ENOMEM; goto err_free_bus; } ctrl->hpc_reg = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!ctrl->hpc_reg) { err("cannot remap MMIO region %lx @ %lx\n", pci_resource_len(pdev, 0), pci_resource_start(pdev, 0)); rc = -ENODEV; goto err_free_mem_region; } // Check for 66Mhz operation ctrl->speed = get_controller_speed(ctrl); /******************************************************** * * Save configuration headers for this and * subordinate PCI buses * ********************************************************/ // find the physical slot number of the first hot plug slot /* Get slot won't work for devices behind bridges, but * in this case it will always be called for the "base" * bus/dev/func of a slot. * CS: this is leveraging the PCIIRQ routing code from the kernel * (pci-pc.c: get_irq_routing_table) */ rc = get_slot_mapping(ctrl->pci_bus, pdev->bus->number, (readb(ctrl->hpc_reg + SLOT_MASK) >> 4), &(ctrl->first_slot)); dbg("get_slot_mapping: first_slot = %d, returned = %d\n", ctrl->first_slot, rc); if (rc) { err(msg_initialization_err, rc); goto err_iounmap; } // Store PCI Config Space for all devices on this bus rc = cpqhp_save_config(ctrl, ctrl->bus, readb(ctrl->hpc_reg + SLOT_MASK)); if (rc) { err("%s: unable to save PCI configuration data, error %d\n", __FUNCTION__, rc); goto err_iounmap; } /* * Get IO, memory, and IRQ resources for new devices */ // The next line is required for cpqhp_find_available_resources ctrl->interrupt = pdev->irq; if (ctrl->interrupt < 0x10) { cpqhp_legacy_mode = 1; dbg("System seems to be configured for Full Table Mapped MPS mode\n"); } ctrl->cfgspc_irq = 0; pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &ctrl->cfgspc_irq); rc = cpqhp_find_available_resources(ctrl, cpqhp_rom_start); ctrl->add_support = !rc; if (rc) { dbg("cpqhp_find_available_resources = 0x%x\n", rc); err("unable to locate PCI configuration resources for hot plug add.\n"); goto err_iounmap; } /* * Finish setting up the hot plug ctrl device */ ctrl->slot_device_offset = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; dbg("NumSlots %d \n", ctrl->slot_device_offset); ctrl->next_event = 0; /* Setup the slot information structures */ rc = ctrl_slot_setup(ctrl, smbios_start, smbios_table); if (rc) { err(msg_initialization_err, 6); err("%s: unable to save PCI configuration data, error %d\n", __FUNCTION__, rc); goto err_iounmap; } /* Mask all general input interrupts */ writel(0xFFFFFFFFL, ctrl->hpc_reg + INT_MASK); /* set up the interrupt */ dbg("HPC interrupt = %d \n", ctrl->interrupt); if (request_irq(ctrl->interrupt, cpqhp_ctrl_intr, SA_SHIRQ, MY_NAME, ctrl)) { err("Can't get irq %d for the hotplug pci controller\n", ctrl->interrupt); rc = -ENODEV; goto err_iounmap; } /* Enable Shift Out interrupt and clear it, also enable SERR on power fault */ temp_word = readw(ctrl->hpc_reg + MISC); temp_word |= 0x4006; writew(temp_word, ctrl->hpc_reg + MISC); // Changed 05/05/97 to clear all interrupts at start writel(0xFFFFFFFFL, ctrl->hpc_reg + INT_INPUT_CLEAR); ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); writel(0x0L, ctrl->hpc_reg + INT_MASK); if (!cpqhp_ctrl_list) { cpqhp_ctrl_list = ctrl; ctrl->next = NULL; } else { ctrl->next = cpqhp_ctrl_list; cpqhp_ctrl_list = ctrl; } // turn off empty slots here unless command line option "ON" set // Wait for exclusive access to hardware down(&ctrl->crit_sect); num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0F; // find first device number for the ctrl device = readb(ctrl->hpc_reg + SLOT_MASK) >> 4; while (num_of_slots) { dbg("num_of_slots: %d\n", num_of_slots); func = cpqhp_slot_find(ctrl->bus, device, 0); if (!func) break; hp_slot = func->device - ctrl->slot_device_offset; dbg("hp_slot: %d\n", hp_slot); // We have to save the presence info for these slots temp_word = ctrl->ctrl_int_comp >> 16; func->presence_save = (temp_word >> hp_slot) & 0x01; func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { func->switch_save = 0; } else { func->switch_save = 0x10; } if (!power_mode) { if (!func->is_a_board) { green_LED_off(ctrl, hp_slot); slot_disable(ctrl, hp_slot); } } device++; num_of_slots--; } if (!power_mode) { set_SOGO(ctrl); // Wait for SOBS to be unset wait_for_ctrl_irq(ctrl); } rc = init_SERR(ctrl); if (rc) { err("init_SERR failed\n"); up(&ctrl->crit_sect); goto err_free_irq; } // Done with exclusive hardware access up(&ctrl->crit_sect); cpqhp_create_ctrl_files(ctrl); return 0; err_free_irq: free_irq(ctrl->interrupt, ctrl); err_iounmap: iounmap(ctrl->hpc_reg); err_free_mem_region: release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); err_free_bus: kfree(ctrl->pci_bus); err_free_ctrl: kfree(ctrl); err_disable_device: pci_disable_device(pdev); return rc; } static int one_time_init(void) { int loop; int retval = 0; if (initialized) return 0; power_mode = 0; retval = pci_print_IRQ_route(); if (retval) goto error; dbg("Initialize + Start the notification mechanism \n"); retval = cpqhp_event_start_thread(); if (retval) goto error; dbg("Initialize slot lists\n"); for (loop = 0; loop < 256; loop++) { cpqhp_slot_list[loop] = NULL; } // FIXME: We also need to hook the NMI handler eventually. // this also needs to be worked with Christoph // register_NMI_handler(); // Map rom address cpqhp_rom_start = ioremap(ROM_PHY_ADDR, ROM_PHY_LEN); if (!cpqhp_rom_start) { err ("Could not ioremap memory region for ROM\n"); retval = -EIO; goto error; } /* Now, map the int15 entry point if we are on compaq specific hardware */ compaq_nvram_init(cpqhp_rom_start); /* Map smbios table entry point structure */ smbios_table = detect_SMBIOS_pointer(cpqhp_rom_start, cpqhp_rom_start + ROM_PHY_LEN); if (!smbios_table) { err ("Could not find the SMBIOS pointer in memory\n"); retval = -EIO; goto error_rom_start; } smbios_start = ioremap(readl(smbios_table + ST_ADDRESS), readw(smbios_table + ST_LENGTH)); if (!smbios_start) { err ("Could not ioremap memory region taken from SMBIOS values\n"); retval = -EIO; goto error_smbios_start; } initialized = 1; return retval; error_smbios_start: iounmap(smbios_start); error_rom_start: iounmap(cpqhp_rom_start); error: return retval; } static void __exit unload_cpqphpd(void) { struct pci_func *next; struct pci_func *TempSlot; int loop; u32 rc; struct controller *ctrl; struct controller *tctrl; struct pci_resource *res; struct pci_resource *tres; rc = compaq_nvram_store(cpqhp_rom_start); ctrl = cpqhp_ctrl_list; while (ctrl) { if (ctrl->hpc_reg) { u16 misc; rc = read_slot_enable (ctrl); writeb(0, ctrl->hpc_reg + SLOT_SERR); writel(0xFFFFFFC0L | ~rc, ctrl->hpc_reg + INT_MASK); misc = readw(ctrl->hpc_reg + MISC); misc &= 0xFFFD; writew(misc, ctrl->hpc_reg + MISC); } ctrl_slot_cleanup(ctrl); res = ctrl->io_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->p_mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = ctrl->bus_head; while (res) { tres = res; res = res->next; kfree(tres); } kfree (ctrl->pci_bus); tctrl = ctrl; ctrl = ctrl->next; kfree(tctrl); } for (loop = 0; loop < 256; loop++) { next = cpqhp_slot_list[loop]; while (next != NULL) { res = next->io_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->p_mem_head; while (res) { tres = res; res = res->next; kfree(tres); } res = next->bus_head; while (res) { tres = res; res = res->next; kfree(tres); } TempSlot = next; next = next->next; kfree(TempSlot); } } // Stop the notification mechanism if (initialized) cpqhp_event_stop_thread(); //unmap the rom address if (cpqhp_rom_start) iounmap(cpqhp_rom_start); if (smbios_start) iounmap(smbios_start); } static struct pci_device_id hpcd_pci_tbl[] = { { /* handle any PCI Hotplug controller */ .class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00), .class_mask = ~0, /* no matter who makes it */ .vendor = PCI_ANY_ID, .device = PCI_ANY_ID, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(pci, hpcd_pci_tbl); static struct pci_driver cpqhpc_driver = { .name = "compaq_pci_hotplug", .id_table = hpcd_pci_tbl, .probe = cpqhpc_probe, /* remove: cpqhpc_remove_one, */ }; static int __init cpqhpc_init(void) { int result; cpqhp_debug = debug; info (DRIVER_DESC " version: " DRIVER_VERSION "\n"); result = pci_register_driver(&cpqhpc_driver); dbg("pci_register_driver = %d\n", result); return result; } static void __exit cpqhpc_cleanup(void) { dbg("unload_cpqphpd()\n"); unload_cpqphpd(); dbg("pci_unregister_driver\n"); pci_unregister_driver(&cpqhpc_driver); } module_init(cpqhpc_init); module_exit(cpqhpc_cleanup);