Commit Graph

819125 Commits

Author SHA1 Message Date
Kirill Tkhai
060f005f07 mm/vmscan.c: do not allocate duplicate stack variables in shrink_page_list()
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack
variables for the statistics twice.  This is completely useless, and
this just consumes stack much more, then we really need.

The patch kills duplicate stack variables from shrink_page_list(), and
this reduce stack usage and object file size significantly:

Stack usage:
  Before: vmscan.c:1122:22:shrink_page_list	648	static
  After:  vmscan.c:1122:22:shrink_page_list	616	static

Size of vmscan.o:
           text	   data	    bss	    dec	    hex	filename
  Before: 56866	   4720	    128	  61714	   f112	mm/vmscan.o
  After:  56770	   4720	    128	  61618	   f0b2	mm/vmscan.o

Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Yang Shi
2cee57d1b0 mm: ksm: do not block on page lock when searching stable tree
ksmd needs to search the stable tree to look for the suitable KSM page,
but the KSM page might be locked for a while due to i.e.  KSM page rmap
walk.  Basically it is not a big deal since commit 2c653d0ee2 ("ksm:
introduce ksm_max_page_sharing per page deduplication limit"), since
max_page_sharing limits the number of shared KSM pages.

But it still sounds not worth waiting for the lock, the page can be
skip, then try to merge it in the next scan to avoid potential stall if
its content is still intact.

Introduce trylock mode to get_ksm_page() to not block on page lock, like
what try_to_merge_one_page() does.  And, define three possible
operations (nolock, lock and trylock) as enum type to avoid stacking up
bools and make the code more readable.

Return -EBUSY if trylock fails, since NULL means not find suitable KSM
page, which is a valid case.

With the default max_page_sharing setting (256), there is almost no
observed change comparing lock vs trylock.

However, with ksm02 of LTP, the reduced ksmd full scan time can be
observed, which has set max_page_sharing to 786432.  With lock version,
ksmd may tak 10s - 11s to run two full scans, with trylock version ksmd
may take 8s - 11s to run two full scans.  And, the number of
pages_sharing and pages_to_scan keep same.  Basically, this change has
no harm.

[hughd@google.com: fix BUG_ON()]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1902182122280.6914@eggly.anvils
Link: http://lkml.kernel.org/r/1548793753-62377-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Chris Down
1ff9e6e179 mm: memcontrol: expose THP events on a per-memcg basis
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide.  This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.

For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic].  This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page.  It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.

[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
  Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Yang Shi
2bb0f34fe3 mm: vmscan: do not iterate all mem cgroups for global direct reclaim
In current implementation, both kswapd and direct reclaim has to iterate
all mem cgroups.  It is not a problem before offline mem cgroups could
be iterated.  But, currently with iterating offline mem cgroups, it
could be very time consuming.  In our workloads, we saw over 400K mem
cgroups accumulated in some cases, only a few hundred are online memcgs.
Although kswapd could help out to reduce the number of memcgs, direct
reclaim still get hit with iterating a number of offline memcgs in some
cases.  We experienced the responsiveness problems due to this
occassionally.

A simple test with pref shows it may take around 220ms to iterate 8K
memcgs in direct reclaim:
             dd 13873 [011]   578.542919: vmscan:mm_vmscan_direct_reclaim_begin
             dd 13873 [011]   578.758689: vmscan:mm_vmscan_direct_reclaim_end
So for 400K, it may take around 11 seconds to iterate all memcgs.

Here just break the iteration once it reclaims enough pages as what
memcg direct reclaim does.  This may hurt the fairness among memcgs.
But the cached iterator cookie could help to achieve the fairness more
or less.

Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Yang Shi
59118c42a6 mm: swap: use mem_cgroup_is_root() instead of deferencing css->parent
mem_cgroup_is_root() is the preferred API to check if memcg is root or
not.  Use it instead of deferencing css->parent.

Link: http://lkml.kernel.org/r/1547232913-118148-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Joel Fernandes (Google)
544029862c selftests/memfd: add tests for F_SEAL_FUTURE_WRITE seal
Add tests to verify sealing memfds with the F_SEAL_FUTURE_WRITE works as
expected.

Link: http://lkml.kernel.org/r/20190112203816.85534-3-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Shuah Khan <shuah@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Joel Fernandes (Google)
ab3948f58f mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd
Android uses ashmem for sharing memory regions.  We are looking forward
to migrating all usecases of ashmem to memfd so that we can possibly
remove the ashmem driver in the future from staging while also
benefiting from using memfd and contributing to it.  Note staging
drivers are also not ABI and generally can be removed at anytime.

One of the main usecases Android has is the ability to create a region
and mmap it as writeable, then add protection against making any
"future" writes while keeping the existing already mmap'ed
writeable-region active.  This allows us to implement a usecase where
receivers of the shared memory buffer can get a read-only view, while
the sender continues to write to the buffer.  See CursorWindow
documentation in Android for more details:

  https://developer.android.com/reference/android/database/CursorWindow

This usecase cannot be implemented with the existing F_SEAL_WRITE seal.
To support the usecase, this patch adds a new F_SEAL_FUTURE_WRITE seal
which prevents any future mmap and write syscalls from succeeding while
keeping the existing mmap active.

A better way to do F_SEAL_FUTURE_WRITE seal was discussed [1] last week
where we don't need to modify core VFS structures to get the same
behavior of the seal.  This solves several side-effects pointed by Andy.
self-tests are provided in later patch to verify the expected semantics.

[1] https://lore.kernel.org/lkml/20181111173650.GA256781@google.com/

Thanks a lot to Andy for suggestions to improve code.

Link: http://lkml.kernel.org/r/20190112203816.85534-2-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: J. Bruce Fields <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc-Andr Lureau <marcandre.lureau@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Aneesh Kumar K.V
7f18825174 powerpc/mm/iommu: allow large IOMMU page size only for hugetlb backing
THP pages can get split during different code paths.  An incremented
reference count does imply we will not split the compound page.  But the
pmd entry can be converted to level 4 pte entries.  Keep the code
simpler by allowing large IOMMU page size only if the guest ram is
backed by hugetlb pages.

Link: http://lkml.kernel.org/r/20190114095438.32470-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Aneesh Kumar K.V
678e174c4c powerpc/mm/iommu: allow migration of cma allocated pages during mm_iommu_do_alloc
The current code doesn't do page migration if the page allocated is a
compound page.  With HugeTLB migration support, we can end up allocating
hugetlb pages from CMA region.  Also, THP pages can be allocated from
CMA region.  This patch updates the code to handle compound pages
correctly.  The patch also switches to a single get_user_pages with the
right count, instead of doing one get_user_pages per page.  That avoids
reading page table multiple times.  This is done by using
get_user_pages_longterm, because that also takes care of DAX backed
pages.

DAX pages lifetime is dictated by file system rules and as such, we need
to make sure that we free these pages on operations like truncate and
punch hole.  If we have long term pin on these pages, which are mostly
return to userspace with elevated page count, the entity holding the
long term pin may not be aware of the fact that file got truncated and
the file system blocks possibly got reused.  That can result in
corruption.

The patch also converts the hpas member of mm_iommu_table_group_mem_t to
a union.  We use the same storage location to store pointers to struct
page.  We cannot update all the code path use struct page *, because we
access hpas in real mode and we can't do that struct page * to pfn
conversion in real mode.

[aneesh.kumar@linux.ibm.com: address review feedback, update changelog]
  Link: http://lkml.kernel.org/r/20190227144736.5872-4-aneesh.kumar@linux.ibm.com
Link: http://lkml.kernel.org/r/20190114095438.32470-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Aneesh Kumar K.V
9a4e9f3b2d mm: update get_user_pages_longterm to migrate pages allocated from CMA region
This patch updates get_user_pages_longterm to migrate pages allocated
out of CMA region.  This makes sure that we don't keep non-movable pages
(due to page reference count) in the CMA area.

This will be used by ppc64 in a later patch to avoid pinning pages in
the CMA region.  ppc64 uses CMA region for allocation of the hardware
page table (hash page table) and not able to migrate pages out of CMA
region results in page table allocation failures.

One case where we hit this easy is when a guest using a VFIO passthrough
device.  VFIO locks all the guest's memory and if the guest memory is
backed by CMA region, it becomes unmovable resulting in fragmenting the
CMA and possibly preventing other guests from allocation a large enough
hash page table.

NOTE: We allocate the new page without using __GFP_THISNODE

Link: http://lkml.kernel.org/r/20190114095438.32470-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Aneesh Kumar K.V
d7fefcc8de mm/cma: add PF flag to force non cma alloc
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA
region", v8.

ppc64 uses the CMA area for the allocation of guest page table (hash
page table).  We won't be able to start guest if we fail to allocate
hash page table.  We have observed hash table allocation failure because
we failed to migrate pages out of CMA region because they were pinned.
This happen when we are using VFIO.  VFIO on ppc64 pins the entire guest
RAM.  If the guest RAM pages get allocated out of CMA region, we won't
be able to migrate those pages.  The pages are also pinned for the
lifetime of the guest.

Currently we support migration of non-compound pages.  With THP and with
the addition of hugetlb migration we can end up allocating compound
pages from CMA region.  This patch series add support for migrating
compound pages.

This patch (of 4):

Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is
marked non-movable and hence cannot be satisfied by CMA region.

This is useful with get_user_pages_longterm where we want to take a page
pin by migrating pages from CMA region.  Marking the section
PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration
later.

Link: http://lkml.kernel.org/r/20190114095438.32470-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
David Hildenbrand
6e2e07cd35 mm: better document PG_reserved
The usage of PG_reserved and how PG_reserved pages are to be treated is
buried deep down in different parts of the kernel.  Let's shine some
light onto these details by documenting current users and expected
behavior.

Especially, clarify on the "Some of them might not even exist" case.
These are physical memory gaps that will never be dumped as they are not
marked as IORESOURCE_SYSRAM.  PG_reserved does in general not hinder
anybody from dumping or swapping.  In some cases, these pages will not
be stored in the hibernation image.

Link: http://lkml.kernel.org/r/20190114125903.24845-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: <yi.z.zhang@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
David Hildenbrand
731351d1bd ia64: perfmon: don't mark buffer pages as PG_reserved
In the old days, remap_pfn_range() required pages to be marked as
PG_reserved, so they would e.g.  never get swapped out.  This was
required for special mappings.  Nowadays, this is fully handled via the
VMA (VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP inside
remap_pfn_range() to be precise).  PG_reserved is no longer required but
only a relic from the past.

So only architecture specific MM handling might require it (e.g.  to
detect them as MMIO pages).  As there are no architecture specific
checks for PageReserved() apart from MCA handling in ia64code, this can
go.  Use simple vzalloc()/vfree() instead.

Note that before calling vzalloc(), size has already been aligned to
PAGE_SIZE, no need to align again.

Link: http://lkml.kernel.org/r/20190114125903.24845-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
David Hildenbrand
d9fa9d9517 arm64: kdump: no need to mark crashkernel pages manually PG_reserved
The crashkernel is reserved via memblock_reserve().  memblock_free_all()
will call free_low_memory_core_early(), which will go over all reserved
memblocks, marking the pages as PG_reserved.

So manually marking pages as PG_reserved is not necessary, they are
already in the desired state (otherwise they would have been handed over
to the buddy as free pages and bad things would happen).

Link: http://lkml.kernel.org/r/20190114125903.24845-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthias Brugger <mbrugger@suse.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Greg Hackmann <ghackmann@android.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: CHANDAN VN <chandan.vn@samsung.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
David Hildenbrand
aee4944244 arm64: kexec: no need to ClearPageReserved()
This will be done by free_reserved_page().

Link: http://lkml.kernel.org/r/20190114125903.24845-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: James Morse <james.morse@arm.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
David Hildenbrand
5ffb90b393 m68k/mm: use __ClearPageReserved()
The PG_reserved flag is cleared from memory that is part of the kernel
image (and therefore marked as PG_reserved).  Avoid using PG_reserved
directly.

Link: http://lkml.kernel.org/r/20190114125903.24845-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
David Hildenbrand
795c230604 riscv/vdso: don't clear PG_reserved
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.

As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables.  We can therefore leave the pages
marked as reserved.

Link: http://lkml.kernel.org/r/20190114125903.24845-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Palmer Dabbelt <palmer@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
David Hildenbrand
f55b74170b powerpc/vdso: don't clear PG_reserved
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.

As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables.  We can therefore leave the pages
marked as reserved.

Link: http://lkml.kernel.org/r/20190114125903.24845-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>		[powerpc]
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
David Hildenbrand
446d29645b s390/vdso: don't clear PG_reserved
The VDSO is part of the kernel image and therefore the struct pages are
marked as reserved during boot.

As we install a special mapping, the actual struct pages will never be
exposed to MM via the page tables.  We can therefore leave the pages
marked as reserved.

Link: http://lkml.kernel.org/r/20190114125903.24845-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
David Hildenbrand
750b317f85 agp: efficeon: no need to set PG_reserved on GATT tables
Patch series "mm: PG_reserved cleanups and documentation", v2.

I was recently going over all users of PG_reserved.  Short story: it is
difficult and sometimes not really clear if setting/checking for
PG_reserved is only a relict from the past.  Easy to break things.  I
guess I now have a pretty good idea wh things are like that nowadays and
how they evolved.

I had way more cleanups in this series inititally, but some
architectures take PG_reserved as a way to apply a different caching
strategy (for MMIO pages).  So I decided to only include the most
obvious changes (that are less likely to break something).  So the big
chunk of manual SetPageReserved users are MMIO/DMA related things on
device buffers.

Most notably, for device memory we will hopefully soon stop setting
PG_reserved.  Then the documentation has to be updated.

This patch (of 9):

The l1 GATT page table is kept in a special on-chip page with 64
entries.  We allocate the l2 page table pages via get_zeroed_page() and
enter them into the table.  These l2 pages are modified accordingly when
inserting/removing memory via efficeon_insert_memory and
efficeon_remove_memory.

Apart from that, these pages are not exposed or ioremap'ed.  We can stop
setting them reserved (propably copied from generic code).

Link: http://lkml.kernel.org/r/20190114125903.24845-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Vineeth Remanan Pillai
b56a2d8af9 mm: rid swapoff of quadratic complexity
This patch was initially posted by Kelley Nielsen.  Reposting the patch
with all review comments addressed and with minor modifications and
optimizations.  Also, folding in the fixes offered by Hugh Dickins and
Huang Ying.  Tests were rerun and commit message updated with new
results.

try_to_unuse() is of quadratic complexity, with a lot of wasted effort.
It unuses swap entries one by one, potentially iterating over all the
page tables for all the processes in the system for each one.

This new proposed implementation of try_to_unuse simplifies its
complexity to linear.  It iterates over the system's mms once, unusing
all the affected entries as it walks each set of page tables.  It also
makes similar changes to shmem_unuse.

Improvement

swapoff was called on a swap partition containing about 6G of data, in a
VM(8cpu, 16G RAM), and calls to unuse_pte_range() were counted.

Present implementation....about 1200M calls(8min, avg 80% cpu util).
Prototype.................about  9.0K calls(3min, avg 5% cpu util).

Details

In shmem_unuse(), iterate over the shmem_swaplist and, for each
shmem_inode_info that contains a swap entry, pass it to
shmem_unuse_inode(), along with the swap type.  In shmem_unuse_inode(),
iterate over its associated xarray, and store the index and value of
each swap entry in an array for passing to shmem_swapin_page() outside
of the RCU critical section.

In try_to_unuse(), instead of iterating over the entries in the type and
unusing them one by one, perhaps walking all the page tables for all the
processes for each one, iterate over the mmlist, making one pass.  Pass
each mm to unuse_mm() to begin its page table walk, and during the walk,
unuse all the ptes that have backing store in the swap type received by
try_to_unuse().  After the walk, check the type for orphaned swap
entries with find_next_to_unuse(), and remove them from the swap cache.
If find_next_to_unuse() starts over at the beginning of the type, repeat
the check of the shmem_swaplist and the walk a maximum of three times.

Change unuse_mm() and the intervening walk functions down to
unuse_pte_range() to take the type as a parameter, and to iterate over
their entire range, calling the next function down on every iteration.
In unuse_pte_range(), make a swap entry from each pte in the range using
the passed in type.  If it has backing store in the type, call
swapin_readahead() to retrieve the page and pass it to unuse_pte().

Pass the count of pages_to_unuse down the page table walks in
try_to_unuse(), and return from the walk when the desired number of
pages has been swapped back in.

Link: http://lkml.kernel.org/r/20190114153129.4852-2-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Signed-off-by: Kelley Nielsen <kelleynnn@gmail.com>
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Vineeth Remanan Pillai
c5bf121e43 mm: refactor swap-in logic out of shmem_getpage_gfp
swapin logic can be reused independently without rest of the logic in
shmem_getpage_gfp.  So lets refactor it out as an independent function.

Link: http://lkml.kernel.org/r/20190114153129.4852-1-vpillai@digitalocean.com
Signed-off-by: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Kirill Tkhai
a9e7c39fa9 mm/vmscan.c: remove 7th argument of isolate_lru_pages()
We may simply check for sc->may_unmap in isolate_lru_pages() instead of
doing that in both of its callers.

Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Vlastimil Babka
2e25644e8d mm, mempolicy: fix uninit memory access
Syzbot with KMSAN reports (excerpt):

==================================================================
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:353 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
CPU: 1 PID: 17420 Comm: syz-executor4 Not tainted 4.20.0-rc7+ #15
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
  __dump_stack lib/dump_stack.c:77 [inline]
  dump_stack+0x173/0x1d0 lib/dump_stack.c:113
  kmsan_report+0x12e/0x2a0 mm/kmsan/kmsan.c:613
  __msan_warning+0x82/0xf0 mm/kmsan/kmsan_instr.c:295
  mpol_rebind_policy mm/mempolicy.c:353 [inline]
  mpol_rebind_mm+0x249/0x370 mm/mempolicy.c:384
  update_tasks_nodemask+0x608/0xca0 kernel/cgroup/cpuset.c:1120
  update_nodemasks_hier kernel/cgroup/cpuset.c:1185 [inline]
  update_nodemask kernel/cgroup/cpuset.c:1253 [inline]
  cpuset_write_resmask+0x2a98/0x34b0 kernel/cgroup/cpuset.c:1728

...

Uninit was created at:
  kmsan_save_stack_with_flags mm/kmsan/kmsan.c:204 [inline]
  kmsan_internal_poison_shadow+0x92/0x150 mm/kmsan/kmsan.c:158
  kmsan_kmalloc+0xa6/0x130 mm/kmsan/kmsan_hooks.c:176
  kmem_cache_alloc+0x572/0xb90 mm/slub.c:2777
  mpol_new mm/mempolicy.c:276 [inline]
  do_mbind mm/mempolicy.c:1180 [inline]
  kernel_mbind+0x8a7/0x31a0 mm/mempolicy.c:1347
  __do_sys_mbind mm/mempolicy.c:1354 [inline]

As it's difficult to report where exactly the uninit value resides in
the mempolicy object, we have to guess a bit.  mm/mempolicy.c:353
contains this part of mpol_rebind_policy():

        if (!mpol_store_user_nodemask(pol) &&
            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))

"mpol_store_user_nodemask(pol)" is testing pol->flags, which I couldn't
ever see being uninitialized after leaving mpol_new().  So I'll guess
it's actually about accessing pol->w.cpuset_mems_allowed on line 354,
but still part of statement starting on line 353.

For w.cpuset_mems_allowed to be not initialized, and the nodes_equal()
reachable for a mempolicy where mpol_set_nodemask() is called in
do_mbind(), it seems the only possibility is a MPOL_PREFERRED policy
with empty set of nodes, i.e.  MPOL_LOCAL equivalent, with MPOL_F_LOCAL
flag.  Let's exclude such policies from the nodes_equal() check.  Note
the uninit access should be benign anyway, as rebinding this kind of
policy is always a no-op.  Therefore no actual need for stable
inclusion.

Link: http://lkml.kernel.org/r/a71997c3-e8ae-a787-d5ce-3db05768b27c@suse.cz
Link: http://lkml.kernel.org/r/73da3e9c-cc84-509e-17d9-0c434bb9967d@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: syzbot+b19c2dc2c990ea657a71@syzkaller.appspotmail.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Tetsuo Handa
7775face20 memcg: killed threads should not invoke memcg OOM killer
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem.  The race looks as
follows:

P1				oom_reaper		P2
try_charge						try_charge
  mem_cgroup_out_of_memory
    mutex_lock(oom_lock)
      out_of_memory
        oom_kill_process(P1,P2)
         wake_oom_reaper
    mutex_unlock(oom_lock)
    				oom_reap_task
							  mutex_lock(oom_lock)
							    select_bad_process # no victim

The problem is more visible with many threads.

Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.

The oom bypass is safe because we do the same early in the try_charge
path already.  The situation migh have changed in the mean time.  It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path.  "

Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Mike Rapoport
23a7052a5d mm/page_alloc.c: check return value of memblock_alloc_node_nopanic()
There are two early memory allocations that use
memblock_alloc_node_nopanic() and do not check its return value.

While this happens very early during boot and chances that the
allocation will fail are diminishing, it is still worth to have proper
checks for the allocation errors.

Link: http://lkml.kernel.org/r/1547734941-944-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Aneesh Kumar K.V
8ef5cbde6d arch/powerpc/mm/hugetlb: NestMMU workaround for hugetlb mprotect RW upgrade
NestMMU requires us to mark the pte invalid and flush the tlb when we do
a RW upgrade of pte.  We fixed a variant of this in the fault path in
bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to handle
nest MMU hang").

Link: http://lkml.kernel.org/r/20190116085035.29729-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Aneesh Kumar K.V
023bdd0023 mm/hugetlb: add prot_modify_start/commit sequence for hugetlb update
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte.  Follow the regular pte change protection
sequence for hugetlb too.  This allows the architectures to override the
update sequence.

Link: http://lkml.kernel.org/r/20190116085035.29729-5-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Aneesh Kumar K.V
5b323367ef arch/powerpc/mm: Nest MMU workaround for mprotect RW upgrade
NestMMU requires us to mark the pte invalid and flush the tlb when we do
a RW upgrade of pte.  We fixed a variant of this in the fault path in
bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to handle
nest MMU hang").

Do the same for mprotect upgrades.

Hugetlb is handled in the next patch.

Link: http://lkml.kernel.org/r/20190116085035.29729-4-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Aneesh Kumar K.V
04a8645304 mm: update ptep_modify_prot_commit to take old pte value as arg
Architectures like ppc64 require to do a conditional tlb flush based on
the old and new value of pte.  Enable that by passing old pte value as
the arg.

Link: http://lkml.kernel.org/r/20190116085035.29729-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Aneesh Kumar K.V
0cbe3e26ab mm: update ptep_modify_prot_start/commit to take vm_area_struct as arg
Patch series "NestMMU pte upgrade workaround for mprotect", v5.

We can upgrade pte access (R -> RW transition) via mprotect.  We need to
make sure we follow the recommended pte update sequence as outlined in
commit bd5050e38a ("powerpc/mm/radix: Change pte relax sequence to
handle nest MMU hang") for such updates.  This patch series does that.

This patch (of 5):

Some architectures may want to call flush_tlb_range from these helpers.

Link: http://lkml.kernel.org/r/20190116085035.29729-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Wei Yang
8bb4e7a2ee mm: fix some typos in mm directory
No functional change.

Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Changbin Du
8aa49762db mm/page_owner: move config option to mm/Kconfig.debug
Move the PAGE_OWNER option from submenu "Compile-time checks and
compiler options" to dedicated submenu "Memory Debugging".

Link: http://lkml.kernel.org/r/20190120024254.6270-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Yang Fan
43cca0b1c5 mm/mmap.c: remove some redundancy in arch_get_unmapped_area_topdown()
The variable 'addr' is redundant in arch_get_unmapped_area_topdown(),
just use parameter 'addr0' directly.  Then remove the const qualifier of
the parameter, and change its name to 'addr'.

And in according with other functions, remove the const qualifier of all
other no-pointer parameters in function arch_get_unmapped_area_topdown().

Link: http://lkml.kernel.org/r/20190127041112.25599-1-nullptr.cpp@gmail.com
Signed-off-by: Yang Fan <nullptr.cpp@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Shakeel Butt
bbbe480297 mm, oom: remove 'prefer children over parent' heuristic
Since the start of the git history of Linux, the kernel after selecting
the worst process to be oom-killed, prefer to kill its child (if the
child does not share mm with the parent).  Later it was changed to
prefer to kill a child who is worst.  If the parent is still the worst
then the parent will be killed.

This heuristic assumes that the children did less work than their parent
and by killing one of them, the work lost will be less.  However this is
very workload dependent.  If there is a workload which can benefit from
this heuristic, can use oom_score_adj to prefer children to be killed
before the parent.

The select_bad_process() has already selected the worst process in the
system/memcg.  There is no need to recheck the badness of its children
and hoping to find a worse candidate.  That's a lot of unneeded racy
work.  Also the heuristic is dangerous because it make fork bomb like
workloads to recover much later because we constantly pick and kill
processes which are not memory hogs.  So, let's remove this whole
heuristic.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20190121215850.221745-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Greg Kroah-Hartman
d9f7979c92 mm: no need to check return value of debugfs_create functions
When calling debugfs functions, there is no need to ever check the
return value.  The function can work or not, but the code logic should
never do something different based on this.

Link: http://lkml.kernel.org/r/20190122152151.16139-14-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Matthew Wilcox
0ee930e6ca mm/memory.c: prevent mapping typed pages to userspace
Pages which use page_type must never be mapped to userspace as it would
destroy their page type.  Add an explicit check for this instead of
assuming that kernel drivers always get this right.

Link: http://lkml.kernel.org/r/20190129053830.3749-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Matthew Wilcox
2d432cb709 mm: prevent mapping slab pages to userspace
It's never appropriate to map a page allocated by SLAB into userspace.
A buggy device driver might try this, or an attacker might be able to
find a way to make it happen.

Christoph said:

: Let's just fail the code.  Currently this may work with SLUB.  But SLAB
: and SLOB overlay fields with mapcount.  So you would have a corrupted page
: struct if you mapped a slab page to user space.

Link: http://lkml.kernel.org/r/20190125173827.2658-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Uladzislau Rezki (Sony)
afd07389d3 mm/vmalloc.c: fix kernel BUG at mm/vmalloc.c:512!
One of the vmalloc stress test case triggers the kernel BUG():

  <snip>
  [60.562151] ------------[ cut here ]------------
  [60.562154] kernel BUG at mm/vmalloc.c:512!
  [60.562206] invalid opcode: 0000 [#1] PREEMPT SMP PTI
  [60.562247] CPU: 0 PID: 430 Comm: vmalloc_test/0 Not tainted 4.20.0+ #161
  [60.562293] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
  [60.562351] RIP: 0010:alloc_vmap_area+0x36f/0x390
  <snip>

it can happen due to big align request resulting in overflowing of
calculated address, i.e.  it becomes 0 after ALIGN()'s fixup.

Fix it by checking if calculated address is within vstart/vend range.

Link: http://lkml.kernel.org/r/20190124115648.9433-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Chris Down
677dc9731b mm, memcg: extract memcg maxable seq_file logic to seq_show_memcg_tunable
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.

This patch makes this generic by providing a single function to do this
work.  In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.

Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Chris Down
aa9694bb78 mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).

There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css.  It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).

Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Johannes Weiner
dc50537bdd kernel: cgroup: add poll file operation
Cgroup has a standardized poll/notification mechanism for waking all
pollers on all fds when a filesystem node changes.  To allow polling for
custom events, add a .poll callback that can override the default.

This is in preparation for pollable cgroup pressure files which have
per-fd trigger configurations.

Link: http://lkml.kernel.org/r/20190124211518.244221-3-surenb@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Johannes Weiner
147e1a97c4 fs: kernfs: add poll file operation
Patch series "psi: pressure stall monitors", v3.

Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.

Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible.  Psi also
doesn't aggregate its averages at a high enough frequency right now.

This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.

As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.

With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user.  For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish.

In our memory stress testing psi memory monitors produce roughly 10x
less false positives compared to vmpressure signals.  Having ability to
specify multiple triggers for the same psi metric allows other parts of
Android framework to monitor memory state of the device and act
accordingly.

The new interface is straightforward.  The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time.  E.g.:

        /* Signal when stall time exceeds 100ms of a 1s window */
        char trigger[] = "full 100000 1000000";
        fd = open("/proc/pressure/memory");
        write(fd, trigger, sizeof(trigger));
        while (poll() >= 0) {
                ...
        }
        close(fd);

When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion.  Once the stalling subsides,
aggregation reverts back to normal.

The trigger is associated with the open file descriptor.  To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.

Patches 1-4 prepare the psi code for polling support.  Patch 5
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.

The patches were developed in collaboration with Johannes Weiner.

This patch (of 5):

Kernfs has a standardized poll/notification mechanism for waking all
pollers on all fds when a filesystem node changes.  To allow polling for
custom events, add a .poll callback that can override the default.

This is in preparation for pollable cgroup pressure files which have
per-fd trigger configurations.

Link: http://lkml.kernel.org/r/20190124211518.244221-2-surenb@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
5e1f0f098b mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during
compaction can be allocated by any parallel task.  This patch uses a
capture_control structure to isolate a page immediately when it is freed
by a direct compactor in the slow path of the page allocator.  The
intent is to avoid redundant scanning.

                                     5.0.0-rc1              5.0.0-rc1
                               selective-v3r17          capture-v3r19
Amean     fault-both-1         0.00 (   0.00%)        0.00 *   0.00%*
Amean     fault-both-3      2582.11 (   0.00%)     2563.68 (   0.71%)
Amean     fault-both-5      4500.26 (   0.00%)     4233.52 (   5.93%)
Amean     fault-both-7      5819.53 (   0.00%)     6333.65 (  -8.83%)
Amean     fault-both-12     9321.18 (   0.00%)     9759.38 (  -4.70%)
Amean     fault-both-18     9782.76 (   0.00%)    10338.76 (  -5.68%)
Amean     fault-both-24    15272.81 (   0.00%)    13379.55 *  12.40%*
Amean     fault-both-30    15121.34 (   0.00%)    16158.25 (  -6.86%)
Amean     fault-both-32    18466.67 (   0.00%)    18971.21 (  -2.73%)

Latency is only moderately affected but the devil is in the details.  A
closer examination indicates that base page fault latency is reduced but
latency of huge pages is increased as it takes creater care to succeed.
Part of the "problem" is that allocation success rates are close to 100%
even when under pressure and compaction gets harder

                                5.0.0-rc1              5.0.0-rc1
                          selective-v3r17          capture-v3r19
Percentage huge-3        96.70 (   0.00%)       98.23 (   1.58%)
Percentage huge-5        96.99 (   0.00%)       95.30 (  -1.75%)
Percentage huge-7        94.19 (   0.00%)       97.24 (   3.24%)
Percentage huge-12       94.95 (   0.00%)       97.35 (   2.53%)
Percentage huge-18       96.74 (   0.00%)       97.30 (   0.58%)
Percentage huge-24       97.07 (   0.00%)       97.55 (   0.50%)
Percentage huge-30       95.69 (   0.00%)       98.50 (   2.95%)
Percentage huge-32       96.70 (   0.00%)       99.27 (   2.65%)

And scan rates are reduced as expected by 6% for the migration scanner
and 29% for the free scanner indicating that there is less redundant
work.

Compaction migrate scanned    20815362    19573286
Compaction free scanned       16352612    11510663

[mgorman@techsingularity.net: remove redundant check]
  Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net
Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
e332f741a8 mm, compaction: be selective about what pageblocks to clear skip hints
Pageblock hints are cleared when compaction restarts or kswapd makes
enough progress that it can sleep but it's over-eager in that the bit is
cleared for migration sources with no LRU pages and migration targets
with no free pages.  As pageblock skip hint flushes are relatively rare
and out-of-band with respect to kswapd, this patch makes a few more
expensive checks to see if it's appropriate to even clear the bit.
Every pageblock that is not cleared will avoid 512 pages being scanned
unnecessarily on x86-64.

The impact is variable with different workloads showing small
differences in latency, success rates and scan rates.  This is expected
as clearing the hints is not that common but doing a small amount of
work out-of-band to avoid a large amount of work in-band later is
generally a good thing.

Link: http://lkml.kernel.org/r/20190118175136.31341-22-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
[cai@lca.pw: no stuck in __reset_isolation_pfn()]
  Link: http://lkml.kernel.org/r/20190206034732.75687-1-cai@lca.pw
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
4fca9730c5 mm, compaction: sample pageblocks for free pages
Once fast searching finishes, there is a possibility that the linear
scanner is scanning full blocks found by the fast scanner earlier.  This
patch uses an adaptive stride to sample pageblocks for free pages.  The
more consecutive full pageblocks encountered, the larger the stride
until a pageblock with free pages is found.  The scanners might meet
slightly sooner but it is an acceptable risk given that the search of
the free lists may still encounter the pages and adjust the cached PFN
of the free scanner accordingly.

                                     5.0.0-rc1              5.0.0-rc1
                              roundrobin-v3r17       samplefree-v3r17
Amean     fault-both-1         0.00 (   0.00%)        0.00 *   0.00%*
Amean     fault-both-3      2752.37 (   0.00%)     2729.95 (   0.81%)
Amean     fault-both-5      4341.69 (   0.00%)     4397.80 (  -1.29%)
Amean     fault-both-7      6308.75 (   0.00%)     6097.61 (   3.35%)
Amean     fault-both-12    10241.81 (   0.00%)     9407.15 (   8.15%)
Amean     fault-both-18    13736.09 (   0.00%)    10857.63 *  20.96%*
Amean     fault-both-24    16853.95 (   0.00%)    13323.24 *  20.95%*
Amean     fault-both-30    15862.61 (   0.00%)    17345.44 (  -9.35%)
Amean     fault-both-32    18450.85 (   0.00%)    16892.00 (   8.45%)

The latency is mildly improved offseting some overhead from earlier
patches that are prerequisites for the rest of the series.  However, a
major impact is on the free scan rate with an 82% reduction.

                                5.0.0-rc1      5.0.0-rc1
                         roundrobin-v3r17 samplefree-v3r17
Compaction migrate scanned    21607271            20116887
Compaction free scanned       95336406            16668703

It's also the first time in the series where the number of pages scanned
by the migration scanner is greater than the free scanner due to the
increased search efficiency.

Link: http://lkml.kernel.org/r/20190118175136.31341-21-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
dbe2d4e4f1 mm, compaction: round-robin the order while searching the free lists for a target
As compaction proceeds and creates high-order blocks, the free list
search gets less efficient as the larger blocks are used as compaction
targets.  Eventually, the larger blocks will be behind the migration
scanner for partially migrated pageblocks and the search fails.  This
patch round-robins what orders are searched so that larger blocks can be
ignored and find smaller blocks that can be used as migration targets.

The overall impact was small on 1-socket but it avoids corner cases
where the migration/free scanners meet prematurely or situations where
many of the pageblocks encountered by the free scanner are almost full
instead of being properly packed.  Previous testing had indicated that
without this patch there were occasional large spikes in the free
scanner without this patch.

[dan.carpenter@oracle.com: fix static checker warning]
Link: http://lkml.kernel.org/r/20190118175136.31341-20-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
d097a6f635 mm, compaction: reduce premature advancement of the migration target scanner
The fast isolation of free pages allows the cached PFN of the free
scanner to advance faster than necessary depending on the contents of
the free list.  The key is that fast_isolate_freepages() can update
zone->compact_cached_free_pfn via isolate_freepages_block().  When the
fast search fails, the linear scan can start from a point that has
skipped valid migration targets, particularly pageblocks with just
low-order free pages.  This can cause the migration source/target
scanners to meet prematurely causing a reset.

This patch starts by avoiding an update of the pageblock skip
information and cached PFN from isolate_freepages_block() and puts the
responsibility of updating that information in the callers.  The fast
scanner will update the cached PFN if and only if it finds a block that
is higher than the existing cached PFN and sets the skip if the
pageblock is full or nearly full.  The linear scanner will update
skipped information and the cached PFN only when a block is completely
scanned.  The total impact is that the free scanner advances more slowly
as it is primarily driven by the linear scanner instead of the fast
search.

                                     5.0.0-rc1              5.0.0-rc1
                               noresched-v3r17         slowfree-v3r17
Amean     fault-both-3      2965.68 (   0.00%)     3036.75 (  -2.40%)
Amean     fault-both-5      3995.90 (   0.00%)     4522.24 * -13.17%*
Amean     fault-both-7      5842.12 (   0.00%)     6365.35 (  -8.96%)
Amean     fault-both-12     9550.87 (   0.00%)    10340.93 (  -8.27%)
Amean     fault-both-18    13304.72 (   0.00%)    14732.46 ( -10.73%)
Amean     fault-both-24    14618.59 (   0.00%)    16288.96 ( -11.43%)
Amean     fault-both-30    16650.96 (   0.00%)    16346.21 (   1.83%)
Amean     fault-both-32    17145.15 (   0.00%)    19317.49 ( -12.67%)

The impact to latency is higher than the last version but it appears to
be due to a slight increase in the free scan rates which is a potential
side-effect of the patch.  However, this is necessary for later patches
that are more careful about how pageblocks are treated as earlier
iterations of those patches hit corner cases where the restarts were
punishing and very visible.

Link: http://lkml.kernel.org/r/20190118175136.31341-19-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
cf66f0700c mm, compaction: do not consider a need to reschedule as contention
Scanning on large machines can take a considerable length of time and
eventually need to be rescheduled.  This is treated as an abort event
but that's not appropriate as the attempt is likely to be retried after
making numerous checks and taking another cycle through the page
allocator.  This patch will check the need to reschedule if necessary
but continue the scanning.

The main benefit is reduced scanning when compaction is taking a long
time or the machine is over-saturated.  It also avoids an unnecessary
exit of compaction that ends up being retried by the page allocator in
the outer loop.

                                     5.0.0-rc1              5.0.0-rc1
                              synccached-v3r16        noresched-v3r17
Amean     fault-both-1         0.00 (   0.00%)        0.00 *   0.00%*
Amean     fault-both-3      2958.27 (   0.00%)     2965.68 (  -0.25%)
Amean     fault-both-5      4091.90 (   0.00%)     3995.90 (   2.35%)
Amean     fault-both-7      5803.05 (   0.00%)     5842.12 (  -0.67%)
Amean     fault-both-12     9481.06 (   0.00%)     9550.87 (  -0.74%)
Amean     fault-both-18    14141.51 (   0.00%)    13304.72 (   5.92%)
Amean     fault-both-24    16438.00 (   0.00%)    14618.59 (  11.07%)
Amean     fault-both-30    17531.72 (   0.00%)    16650.96 (   5.02%)
Amean     fault-both-32    17101.96 (   0.00%)    17145.15 (  -0.25%)

Link: http://lkml.kernel.org/r/20190118175136.31341-18-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Mel Gorman
cb810ad294 mm, compaction: rework compact_should_abort as compact_check_resched
With incremental changes, compact_should_abort no longer makes any
documented sense.  Rename to compact_check_resched and update the
associated comments.  There is no benefit other than reducing redundant
code and making the intent slightly clearer.  It could potentially be
merged with earlier patches but it just makes the review slightly
harder.

Link: http://lkml.kernel.org/r/20190118175136.31341-17-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00