In commit 510d25c92e ("mm/hwpoison: disable pcp for
page_handle_poison()"), __page_handle_poison() was introduced, and if we
mark:
RET_A = dissolve_free_huge_page();
RET_B = take_page_off_buddy();
then __page_handle_poison was supposed to return TRUE When RET_A == 0 &&
RET_B == TRUE
But since it failed to take care the case when RET_A is -EBUSY or -ENOMEM,
and just return the ret as a bool which actually become TRUE, it break the
original logic.
The following result is a huge page in freelist but was
referenced as poisoned, and lead into the final panic:
kernel BUG at mm/internal.h:95!
invalid opcode: 0000 [#1] SMP PTI
skip...
RIP: 0010:set_page_refcounted mm/internal.h:95 [inline]
RIP: 0010:remove_hugetlb_page+0x23c/0x240 mm/hugetlb.c:1371
skip...
Call Trace:
remove_pool_huge_page+0xe4/0x110 mm/hugetlb.c:1892
return_unused_surplus_pages+0x8d/0x150 mm/hugetlb.c:2272
hugetlb_acct_memory.part.91+0x524/0x690 mm/hugetlb.c:4017
This patch replaces 'bool' with 'int' to handle RET_A correctly.
Link: https://lkml.kernel.org/r/61782ac6-1e8a-4f6f-35e6-e94fce3b37f5@linux.alibaba.com
Fixes: 510d25c92e ("mm/hwpoison: disable pcp for page_handle_poison()")
Signed-off-by: Michael Wang <yun.wang@linux.alibaba.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Abaci <abaci@linux.alibaba.com>
Cc: <stable@vger.kernel.org> [5.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the current implementation of soft offline, if non-LRU page is met,
all the slab caches will be dropped to free the page then offline. But
if the page is not slab page all the effort is wasted in vain. Even
though it is a slab page, it is not guaranteed the page could be freed
at all.
However the side effect and cost is quite high. It does not only drop
the slab caches, but also may drop a significant amount of page caches
which are associated with inode caches. It could make the most
workingset gone in order to just offline a page. And the offline is not
guaranteed to succeed at all, actually I really doubt the success rate
for real life workload.
Furthermore the worse consequence is the system may be locked up and
unusable since the page cache release may incur huge amount of works
queued for memcg release.
Actually we ran into such unpleasant case in our production environment.
Firstly, the workqueue of memory_failure_work_func is locked up as
below:
BUG: workqueue lockup - pool cpus=1 node=0 flags=0x0 nice=0 stuck for 53s!
Showing busy workqueues and worker pools:
workqueue events: flags=0x0
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=14/256 refcnt=15
in-flight: 409271:memory_failure_work_func
pending: kfree_rcu_work, kfree_rcu_monitor, kfree_rcu_work, rht_deferred_worker, rht_deferred_worker, rht_deferred_worker, rht_deferred_worker, kfree_rcu_work, kfree_rcu_work, kfree_rcu_work, kfree_rcu_work, drain_local_stock, kfree_rcu_work
workqueue mm_percpu_wq: flags=0x8
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=1/256 refcnt=2
pending: vmstat_update
workqueue cgroup_destroy: flags=0x0
pwq 2: cpus=1 node=0 flags=0x0 nice=0 active=1/1 refcnt=12072
pending: css_release_work_fn
There were over 12K css_release_work_fn queued, and this caused a few
lockups due to the contention of worker pool lock with IRQ disabled, for
example:
NMI watchdog: Watchdog detected hard LOCKUP on cpu 1
Modules linked in: amd64_edac_mod edac_mce_amd crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xt_DSCP iptable_mangle kvm_amd bpfilter vfat fat acpi_ipmi i2c_piix4 usb_storage ipmi_si k10temp i2c_core ipmi_devintf ipmi_msghandler acpi_cpufreq sch_fq_codel xfs libcrc32c crc32c_intel mlx5_core mlxfw nvme xhci_pci ptp nvme_core pps_core xhci_hcd
CPU: 1 PID: 205500 Comm: kworker/1:0 Tainted: G L 5.10.32-t1.el7.twitter.x86_64 #1
Hardware name: TYAN F5AMT /z /S8026GM2NRE-CGN, BIOS V8.030 03/30/2021
Workqueue: events memory_failure_work_func
RIP: 0010:queued_spin_lock_slowpath+0x41/0x1a0
Code: 41 f0 0f ba 2f 08 0f 92 c0 0f b6 c0 c1 e0 08 89 c2 8b 07 30 e4 09 d0 a9 00 01 ff ff 75 1b 85 c0 74 0e 8b 07 84 c0 74 08 f3 90 <8b> 07 84 c0 75 f8 b8 01 00 00 00 66 89 07 c3 f6 c4 01 75 04 c6 47
RSP: 0018:ffff9b2ac278f900 EFLAGS: 00000002
RAX: 0000000000480101 RBX: ffff8ce98ce71800 RCX: 0000000000000084
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8ce98ce6a140
RBP: 00000000000284c8 R08: ffffd7248dcb6808 R09: 0000000000000000
R10: 0000000000000003 R11: ffff9b2ac278f9b0 R12: 0000000000000001
R13: ffff8cb44dab9c00 R14: ffffffffbd1ce6a0 R15: ffff8cacaa37f068
FS: 0000000000000000(0000) GS:ffff8ce98ce40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fcf6e8cb000 CR3: 0000000a0c60a000 CR4: 0000000000350ee0
Call Trace:
__queue_work+0xd6/0x3c0
queue_work_on+0x1c/0x30
uncharge_batch+0x10e/0x110
mem_cgroup_uncharge_list+0x6d/0x80
release_pages+0x37f/0x3f0
__pagevec_release+0x1c/0x50
__invalidate_mapping_pages+0x348/0x380
inode_lru_isolate+0x10a/0x160
__list_lru_walk_one+0x7b/0x170
list_lru_walk_one+0x4a/0x60
prune_icache_sb+0x37/0x50
super_cache_scan+0x123/0x1a0
do_shrink_slab+0x10c/0x2c0
shrink_slab+0x1f1/0x290
drop_slab_node+0x4d/0x70
soft_offline_page+0x1ac/0x5b0
memory_failure_work_func+0x6a/0x90
process_one_work+0x19e/0x340
worker_thread+0x30/0x360
kthread+0x116/0x130
The lockup made the machine is quite unusable. And it also made the
most workingset gone, the reclaimabled slab caches were reduced from 12G
to 300MB, the page caches were decreased from 17G to 4G.
But the most disappointing thing is all the effort doesn't make the page
offline, it just returns:
soft_offline: 0x1469f2: unknown non LRU page type 5ffff0000000000 ()
It seems the aggressive behavior for non-LRU page didn't pay back, so it
doesn't make too much sense to keep it considering the terrible side
effect.
Link: https://lkml.kernel.org/r/20210819054116.266126-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reported-by: David Mackey <tdmackey@twitter.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Functions memblock_alloc_exact_nid_raw() and memblock_alloc_try_nid_raw()
are intended for early memory allocation without overhead of zeroing the
allocated memory. Since these functions were used to allocate the memory
map, they have ended up with addition of a call to page_init_poison() that
poisoned the allocated memory when CONFIG_PAGE_POISON was set.
Since the memory map is allocated using a dedicated memmep_alloc()
function that takes care of the poisoning, remove page poisoning from the
memblock_alloc_*_raw() functions.
Link: https://lkml.kernel.org/r/20210714123739.16493-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several places that allocate memory for the memory map:
alloc_node_mem_map() for FLATMEM, sparse_buffer_init() and
__populate_section_memmap() for SPARSEMEM.
The memory allocated in the FLATMEM case is zeroed and it is never
poisoned, regardless of CONFIG_PAGE_POISON setting.
The memory allocated in the SPARSEMEM cases is not zeroed and it is
implicitly poisoned inside memblock if CONFIG_PAGE_POISON is set.
Introduce memmap_alloc() wrapper for memblock allocators that will be used
for both FLATMEM and SPARSEMEM cases and will makei memory map zeroing and
poisoning consistent for different memory models.
Link: https://lkml.kernel.org/r/20210714123739.16493-4-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: ensure consistency of memory map poisoning".
Currently memory map allocation for FLATMEM case does not poison the
struct pages regardless of CONFIG_PAGE_POISON setting.
This happens because allocation of the memory map for FLATMEM and SPARSMEM
use different memblock functions and those that are used for SPARSMEM case
(namely memblock_alloc_try_nid_raw() and memblock_alloc_exact_nid_raw())
implicitly poison the allocated memory.
Another side effect of this implicit poisoning is that early setup code
that uses the same functions to allocate memory burns cycles for the
memory poisoning even if it was not intended.
These patches introduce memmap_alloc() wrapper that ensure that the memory
map allocation is consistent for different memory models.
This patch (of 4):
Currently memory map for the holes is initialized only when SPARSEMEM
memory model is used. Yet, even with FLATMEM there could be holes in the
physical memory layout that have memory map entries.
For instance, the memory reserved using e820 API on i386 or
"reserved-memory" nodes in device tree would not appear in memblock.memory
and hence the struct pages for such holes will be skipped during memory
map initialization.
These struct pages will be zeroed because the memory map for FLATMEM
systems is allocated with memblock_alloc_node() that clears the allocated
memory. While zeroed struct pages do not cause immediate problems, the
correct behaviour is to initialize every page using __init_single_page().
Besides, enabling page poison for FLATMEM case will trigger
PF_POISONED_CHECK() unless the memory map is properly initialized.
Make sure init_unavailable_range() is called for both SPARSEMEM and
FLATMEM so that struct pages representing memory holes would appear as
PG_Reserved with any memory layout.
[rppt@kernel.org: fix microblaze]
Link: https://lkml.kernel.org/r/YQWW3RCE4eWBuMu/@kernel.org
Link: https://lkml.kernel.org/r/20210714123739.16493-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210714123739.16493-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case of simultaneous vmalloc allocations, for example it is 1GB and 12
CPUs my system is able to hit "BUG: soft lockup" for !CONFIG_PREEMPT
kernel.
RIP: 0010:__alloc_pages_bulk+0xa9f/0xbb0
Call Trace:
__vmalloc_node_range+0x11c/0x2d0
__vmalloc_node+0x4b/0x70
fix_size_alloc_test+0x44/0x60 [test_vmalloc]
test_func+0xe7/0x1f0 [test_vmalloc]
kthread+0x11a/0x140
ret_from_fork+0x22/0x30
To address this issue invoke a bulk-allocator many times until all pages
are obtained, i.e. do batched page requests adding cond_resched()
meanwhile to reschedule. Batched value is hard-coded and is 100 pages per
call.
Link: https://lkml.kernel.org/r/20210707182639.31282-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mremap will account the delta between new_len and old_len in
vma_to_resize, and then call move_vma when expanding an existing memory
mapping. In function move_vma, there are two scenarios when calling
do_munmap:
1. move_page_tables from old_addr to new_addr success
2. move_page_tables from old_addr to new_addr fail
In first scenario, it should account old_len if do_munmap fail, because
the delta has already been accounted.
In second scenario, new_addr/new_len will assign to old_addr/old_len if
move_page_table fail, so do_munmap is try to unmap new_addr actually, if
do_munmap fail, it should account the new_len, because error code will be
return from move_vma, and delta will be unaccounted. What'more, because
of new_len == old_len, so account old_len also is OK.
In summary, account old_len will be correct if do_munmap fail.
Link: https://lkml.kernel.org/r/20210717101942.120607-1-chenwandun@huawei.com
Fixes: 51df7bcb61 ("mm/mremap: account memory on do_munmap() failure")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Acked-by: Dmitry Safonov <dima@arista.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg->event_list_lock is usually taken in the normal context but when
the userspace closes the corresponding eventfd, eventfd_release through
memcg_event_wake takes memcg->event_list_lock with interrupts disabled.
This is not an issue on its own but it creates a nested dependency from
eventfd_ctx->wqh.lock to memcg->event_list_lock.
Independently, for unrelated eventfd, eventfd_signal() can be called in
the irq context, thus making eventfd_ctx->wqh.lock an irq lock. For
example, FPGA DFL driver, VHOST VPDA driver and couple of VFIO drivers.
This will force memcg->event_list_lock to be an irqsafe lock as well.
One way to break the nested dependency between eventfd_ctx->wqh.lock and
memcg->event_list_lock is to add an indirection. However the simplest
solution would be to make memcg->event_list_lock irqsafe. This is cgroup
v1 feature, is in maintenance and may get deprecated in near future. So,
no need to add more code.
BTW this has been discussed previously [1] but there weren't irq users of
eventfd_signal() at the time.
[1] https://www.spinics.net/lists/cgroups/msg06248.html
Link: https://lkml.kernel.org/r/20210830172953.207257-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Thomas and Vlastimil have noticed that the comment in drain_local_stock
doesn't quite make sense. It talks about a synchronization with the
memory hotplug but there is no actual memory hotplug involvement here. I
meant to talk about cpu hotplug here. Fix that up and hopefuly make the
comment more helpful by referencing the cpu hotplug callback as well.
Link: https://lkml.kernel.org/r/YRDwOhVglJmY7ES5@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment memcg stats are read in four contexts:
1. memcg stat user interfaces
2. dirty throttling
3. page fault
4. memory reclaim
Currently the kernel flushes the stats for first two cases. Flushing the
stats for remaining two casese may have performance impact. Always
flushing the memcg stats on the page fault code path may negatively
impacts the performance of the applications. In addition flushing in the
memory reclaim code path, though treated as slowpath, can become the
source of contention for the global lock taken for stat flushing because
when system or memcg is under memory pressure, many tasks may enter the
reclaim path.
This patch uses following mechanisms to solve these challenges:
1. Periodically flush the stats from root memcg every 2 seconds. This
will time limit the out of sync stats.
2. Asynchronously flush the stats after fixed number of stat updates.
In the worst case the stat can be out of sync by O(nr_cpus * BATCH) for
2 seconds.
3. For avoiding thundering herd to flush the stats particularly from
the memory reclaim context, introduce memcg local spinlock and let only
one flusher active at a time. This could have been done through
cgroup_rstat_lock lock but that lock is used by other subsystem and for
userspace reading memcg stats. So, it is better to keep flushers
introduced by this patch decoupled from cgroup_rstat_lock. However we
would have to use irqsafe version of rstat flush but that is fine as
this code path will be flushing for whole tree and do the work for
everyone. No one will be waiting for that worker.
[shakeelb@google.com: fix sleep-in-wrong context bug]
Link: https://lkml.kernel.org/r/20210716212137.1391164-2-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210714013948.270662-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 2d146aa3aa ("mm: memcontrol: switch to rstat") switched memcg
stats to rstat infrastructure but skipped the conversion of the lruvec
stats as such stats are read in the performance critical code paths and
flushing stats may have impacted the performances of the applications.
This patch converts the lruvec stats to rstat and later patches add
mechanisms to keep the performance impact to minimum.
The rstat conversion comes with the price i.e. memory cost. Effectively
this patch reverts the savings done by the commit f3344adf38 ("mm:
memcontrol: optimize per-lruvec stats counter memory usage"). However
this cost is justified due to negative impact of the inaccurate lruvec
stats on many heuristics. One such case is reported in [1].
The memory reclaim code is filled with plethora of heuristics and many of
those heuristics reads the lruvec stats. So, inaccurate stats can make
such heuristics ineffective. [1] reports the impact of inaccurate lruvec
stats on the "cache trim mode" heuristic. Inaccurate lruvec stats can
impact the deactivation and aging anon heuristics as well.
[1] https://lore.kernel.org/linux-mm/20210311004449.1170308-1-ying.huang@intel.com/
Link: https://lkml.kernel.org/r/20210716212137.1391164-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210714013948.270662-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extend shmem_huge_enabled(vma) to shmem_is_huge(vma, inode, index), so
that a consistent set of checks can be applied, even when the inode is
accessed through read/write syscalls (with NULL vma) instead of mmaps (the
index argument is seldom of interest, but required by mount option
"huge=within_size"). Clean up and rearrange the checks a little.
This then replaces the checks which shmem_fault() and shmem_getpage_gfp()
were making, and eliminates the SGP_HUGE and SGP_NOHUGE modes.
Replace a couple of 0s by explicit SHMEM_HUGE_NEVERs; and replace the
obscure !shmem_mapping() symlink check by explicit S_ISLNK() - nothing
else needs that symlink check, so leave it there in shmem_getpage_gfp().
Link: https://lkml.kernel.org/r/23a77889-2ddc-b030-75cd-44ca27fd4d1@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged's collapse_file() currently uses SGP_NOHUGE to tell
shmem_getpage() not to try allocating a huge page, in the very unlikely
event that a racing hole-punch removes the swapped or fallocated page as
soon as i_pages lock is dropped.
We want to consolidate shmem's huge decisions, removing SGP_HUGE and
SGP_NOHUGE; but cannot quite persuade ourselves that it's okay to regress
the protection in this case - Yang Shi points out that the huge page would
remain indefinitely, charged to root instead of the intended memcg.
collapse_file() should not even allocate a small page in this case: why
proceed if someone is punching a hole? SGP_READ is almost the right flag
here, except that it optimizes away from a fallocated page, with NULL to
tell caller to fill with zeroes (like a hole); whereas collapse_file()'s
sequence relies on using a cache page. Add SGP_NOALLOC just for this.
There are too many consecutive "if (page"s there in shmem_getpage_gfp():
group it better; and fix the outdated "bring it back from swap" comment.
Link: https://lkml.kernel.org/r/1355343b-acf-4653-ef79-6aee40214ac5@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a block of code in shmem_setattr() to add the inode to
shmem_unused_huge_shrink()'s shrinklist when lowering i_size: it dates
from before 5.7 changed truncation to do split_huge_page() for itself, and
should have been removed at that time.
I am over-stating that: split_huge_page() can fail (notably if there's an
extra reference to the page at that time), so there might be value in
retrying. But there were already retries as truncation worked through the
tails, and this addition risks repeating unsuccessful retries
indefinitely: I'd rather remove it now, and work on reducing the chance of
split_huge_page() failures separately, if we need to.
Link: https://lkml.kernel.org/r/b73b3492-8822-18f9-83e2-938528cdde94@google.com
Fixes: 71725ed10c ("mm: huge tmpfs: try to split_huge_page() when punching hole")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A successful shmem_fallocate() guarantees that the extent has been
reserved, even beyond i_size when the FALLOC_FL_KEEP_SIZE flag was used.
But that guarantee is broken by shmem_unused_huge_shrink()'s attempts to
split huge pages and free their excess beyond i_size; and by other uses of
split_huge_page() near i_size.
It's sad to add a shmem inode field just for this, but I did not find a
better way to keep the guarantee. A flag to say KEEP_SIZE has been used
would be cheaper, but I'm averse to unclearable flags. The fallocend
field is not perfect either (many disjoint ranges might be fallocated),
but good enough; and gains another use later on.
Link: https://lkml.kernel.org/r/ca9a146-3a59-6cd3-7f28-e9a044bb1052@google.com
Fixes: 779750d20b ("shmem: split huge pages beyond i_size under memory pressure")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "huge tmpfs: shmem_is_huge() fixes and cleanups".
A series of huge tmpfs fixes and cleanups.
This patch (of 9):
shmem_fallocate() goes to a lot of trouble to leave its newly allocated
pages !Uptodate, partly to identify and undo them on failure, partly to
leave the overhead of clearing them until later. But the huge page case
did not skip to the end of the extent, walked through the tail pages one
by one, and appeared to work just fine: but in doing so, cleared and
Uptodated the huge page, so there was no way to undo it on failure.
And by setting Uptodate too soon, it messed up both its nr_falloced and
nr_unswapped counts, so that the intended "time to give up" heuristic did
not work at all.
Now advance immediately to the end of the huge extent, with a comment on
why this is more than just an optimization. But although this speeds up
huge tmpfs fallocation, it does leave the clearing until first use, and
some users may have come to appreciate slow fallocate but fast first use:
if they complain, then we can consider adding a pass to clear at the end.
Link: https://lkml.kernel.org/r/da632211-8e3e-6b1-aee-ab24734429a0@google.com
Link: https://lkml.kernel.org/r/16201bd2-70e-37e2-e89b-5f929430da@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>